[go: nahoru, domu]

blob: 047787e74e63efe3e1556056e4b4af80a28d50ee [file] [log] [blame]
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "crypto/p224_spake.h"
#include <stddef.h>
#include <stdint.h>
#include <string>
#include "base/strings/string_number_conversions.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace crypto {
namespace {
std::string HexEncodeString(const std::string& binary_data) {
return base::HexEncode(binary_data.c_str(), binary_data.size());
}
bool RunExchange(P224EncryptedKeyExchange* client,
P224EncryptedKeyExchange* server,
bool is_password_same) {
for (;;) {
std::string client_message, server_message;
client_message = client->GetNextMessage();
server_message = server->GetNextMessage();
P224EncryptedKeyExchange::Result client_result, server_result;
client_result = client->ProcessMessage(server_message);
server_result = server->ProcessMessage(client_message);
// Check that we never hit the case where only one succeeds.
EXPECT_EQ(client_result == P224EncryptedKeyExchange::kResultSuccess,
server_result == P224EncryptedKeyExchange::kResultSuccess);
if (client_result == P224EncryptedKeyExchange::kResultFailed ||
server_result == P224EncryptedKeyExchange::kResultFailed) {
return false;
}
EXPECT_EQ(is_password_same,
client->GetUnverifiedKey() == server->GetUnverifiedKey());
if (client_result == P224EncryptedKeyExchange::kResultSuccess &&
server_result == P224EncryptedKeyExchange::kResultSuccess) {
return true;
}
EXPECT_EQ(P224EncryptedKeyExchange::kResultPending, client_result);
EXPECT_EQ(P224EncryptedKeyExchange::kResultPending, server_result);
}
}
const char kPassword[] = "foo";
} // namespace
TEST(MutualAuth, CorrectAuth) {
P224EncryptedKeyExchange client(
P224EncryptedKeyExchange::kPeerTypeClient, kPassword);
P224EncryptedKeyExchange server(
P224EncryptedKeyExchange::kPeerTypeServer, kPassword);
EXPECT_TRUE(RunExchange(&client, &server, true));
EXPECT_EQ(client.GetKey(), server.GetKey());
}
TEST(MutualAuth, IncorrectPassword) {
P224EncryptedKeyExchange client(
P224EncryptedKeyExchange::kPeerTypeClient,
kPassword);
P224EncryptedKeyExchange server(
P224EncryptedKeyExchange::kPeerTypeServer,
"wrongpassword");
EXPECT_FALSE(RunExchange(&client, &server, false));
}
TEST(MutualAuth, ExpectedValues) {
P224EncryptedKeyExchange client(P224EncryptedKeyExchange::kPeerTypeClient,
kPassword);
client.SetXForTesting("Client x");
P224EncryptedKeyExchange server(P224EncryptedKeyExchange::kPeerTypeServer,
kPassword);
server.SetXForTesting("Server x");
std::string client_message = client.GetNextMessage();
EXPECT_EQ(
"3508EF7DECC8AB9F9C439FBB0154288BBECC0A82E8448F4CF29554EB"
"BE9D486686226255EAD1D077C635B1A41F46AC91D7F7F32CED9EC3E0",
HexEncodeString(client_message));
std::string server_message = server.GetNextMessage();
EXPECT_EQ(
"A3088C18B75D2C2B107105661AEC85424777475EB29F1DDFB8C14AFB"
"F1603D0DF38413A00F420ACF2059E7997C935F5A957A193D09A2B584",
HexEncodeString(server_message));
EXPECT_EQ(P224EncryptedKeyExchange::kResultPending,
client.ProcessMessage(server_message));
EXPECT_EQ(P224EncryptedKeyExchange::kResultPending,
server.ProcessMessage(client_message));
EXPECT_EQ(client.GetUnverifiedKey(), server.GetUnverifiedKey());
// Must stay the same. External implementations should be able to pair with.
EXPECT_EQ(
"CE7CCFC435CDA4F01EC8826788B1F8B82EF7D550A34696B371096E64"
"C487D4FE193F7D1A6FF6820BC7F807796BA3889E8F999BBDEFC32FFA",
HexEncodeString(server.GetUnverifiedKey()));
EXPECT_TRUE(RunExchange(&client, &server, true));
EXPECT_EQ(client.GetKey(), server.GetKey());
}
TEST(MutualAuth, Fuzz) {
static const unsigned kIterations = 40;
for (unsigned i = 0; i < kIterations; i++) {
P224EncryptedKeyExchange client(
P224EncryptedKeyExchange::kPeerTypeClient, kPassword);
P224EncryptedKeyExchange server(
P224EncryptedKeyExchange::kPeerTypeServer, kPassword);
// We'll only be testing small values of i, but we don't want that to bias
// the test coverage. So we disperse the value of i by multiplying by the
// FNV, 32-bit prime, producing a simplistic PRNG.
const uint32_t rand = i * 16777619;
for (unsigned round = 0;; round++) {
std::string client_message, server_message;
client_message = client.GetNextMessage();
server_message = server.GetNextMessage();
if ((rand & 1) == round) {
const bool server_or_client = rand & 2;
std::string* m = server_or_client ? &server_message : &client_message;
if (rand & 4) {
// Truncate
*m = m->substr(0, (i >> 3) % m->size());
} else {
// Corrupt
const size_t bits = m->size() * 8;
const size_t bit_to_corrupt = (rand >> 3) % bits;
const_cast<char*>(m->data())[bit_to_corrupt / 8] ^=
1 << (bit_to_corrupt % 8);
}
}
P224EncryptedKeyExchange::Result client_result, server_result;
client_result = client.ProcessMessage(server_message);
server_result = server.ProcessMessage(client_message);
// If we have corrupted anything, we expect the authentication to fail,
// although one side can succeed if we happen to corrupt the second round
// message to the other.
ASSERT_FALSE(
client_result == P224EncryptedKeyExchange::kResultSuccess &&
server_result == P224EncryptedKeyExchange::kResultSuccess);
if (client_result == P224EncryptedKeyExchange::kResultFailed ||
server_result == P224EncryptedKeyExchange::kResultFailed) {
break;
}
ASSERT_EQ(P224EncryptedKeyExchange::kResultPending,
client_result);
ASSERT_EQ(P224EncryptedKeyExchange::kResultPending,
server_result);
}
}
}
} // namespace crypto