[go: nahoru, domu]

blob: 8e385bc34fe828bca88d781a26628dab6e7da953 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdint.h>
#include <stdio.h>
#include <limits>
#include <memory>
#include <sstream>
#include <string>
#include "base/message_loop/message_loop.h"
#include "base/run_loop.h"
#include "base/strings/string16.h"
#include "base/strings/utf_string_conversions.h"
#include "base/threading/platform_thread.h"
#include "build/build_config.h"
#include "ipc/ipc_test_base.h"
#include "testing/gtest/include/gtest/gtest.h"
// IPC messages for testing ----------------------------------------------------
#define IPC_MESSAGE_IMPL
#include "ipc/ipc_message_macros.h"
#define IPC_MESSAGE_START TestMsgStart
// Generic message class that is an int followed by a string16.
IPC_MESSAGE_CONTROL2(MsgClassIS, int, base::string16)
// Generic message class that is a string16 followed by an int.
IPC_MESSAGE_CONTROL2(MsgClassSI, base::string16, int)
// Message to create a mutex in the IPC server, using the received name.
IPC_MESSAGE_CONTROL2(MsgDoMutex, base::string16, int)
// Used to generate an ID for a message that should not exist.
IPC_MESSAGE_CONTROL0(MsgUnhandled)
// -----------------------------------------------------------------------------
namespace {
TEST(IPCMessageIntegrity, ReadBeyondBufferStr) {
// This was BUG 984408.
uint32_t v1 = std::numeric_limits<uint32_t>::max() - 1;
int v2 = 666;
IPC::Message m(0, 1, IPC::Message::PRIORITY_NORMAL);
EXPECT_TRUE(m.WriteInt(v1));
EXPECT_TRUE(m.WriteInt(v2));
base::PickleIterator iter(m);
std::string vs;
EXPECT_FALSE(iter.ReadString(&vs));
}
TEST(IPCMessageIntegrity, ReadBeyondBufferStr16) {
// This was BUG 984408.
uint32_t v1 = std::numeric_limits<uint32_t>::max() - 1;
int v2 = 777;
IPC::Message m(0, 1, IPC::Message::PRIORITY_NORMAL);
EXPECT_TRUE(m.WriteInt(v1));
EXPECT_TRUE(m.WriteInt(v2));
base::PickleIterator iter(m);
base::string16 vs;
EXPECT_FALSE(iter.ReadString16(&vs));
}
TEST(IPCMessageIntegrity, ReadBytesBadIterator) {
// This was BUG 1035467.
IPC::Message m(0, 1, IPC::Message::PRIORITY_NORMAL);
EXPECT_TRUE(m.WriteInt(1));
EXPECT_TRUE(m.WriteInt(2));
base::PickleIterator iter(m);
const char* data = NULL;
EXPECT_TRUE(iter.ReadBytes(&data, sizeof(int)));
}
TEST(IPCMessageIntegrity, ReadVectorNegativeSize) {
// A slight variation of BUG 984408. Note that the pickling of vector<char>
// has a specialized template which is not vulnerable to this bug. So here
// try to hit the non-specialized case vector<P>.
IPC::Message m(0, 1, IPC::Message::PRIORITY_NORMAL);
EXPECT_TRUE(m.WriteInt(-1)); // This is the count of elements.
EXPECT_TRUE(m.WriteInt(1));
EXPECT_TRUE(m.WriteInt(2));
EXPECT_TRUE(m.WriteInt(3));
std::vector<double> vec;
base::PickleIterator iter(m);
EXPECT_FALSE(ReadParam(&m, &iter, &vec));
}
#if defined(OS_ANDROID)
#define MAYBE_ReadVectorTooLarge1 DISABLED_ReadVectorTooLarge1
#else
#define MAYBE_ReadVectorTooLarge1 ReadVectorTooLarge1
#endif
TEST(IPCMessageIntegrity, MAYBE_ReadVectorTooLarge1) {
// This was BUG 1006367. This is the large but positive length case. Again
// we try to hit the non-specialized case vector<P>.
IPC::Message m(0, 1, IPC::Message::PRIORITY_NORMAL);
EXPECT_TRUE(m.WriteInt(0x21000003)); // This is the count of elements.
EXPECT_TRUE(m.WriteInt64(1));
EXPECT_TRUE(m.WriteInt64(2));
std::vector<int64_t> vec;
base::PickleIterator iter(m);
EXPECT_FALSE(ReadParam(&m, &iter, &vec));
}
TEST(IPCMessageIntegrity, ReadVectorTooLarge2) {
// This was BUG 1006367. This is the large but positive with an additional
// integer overflow when computing the actual byte size. Again we try to hit
// the non-specialized case vector<P>.
IPC::Message m(0, 1, IPC::Message::PRIORITY_NORMAL);
EXPECT_TRUE(m.WriteInt(0x71000000)); // This is the count of elements.
EXPECT_TRUE(m.WriteInt64(1));
EXPECT_TRUE(m.WriteInt64(2));
std::vector<int64_t> vec;
base::PickleIterator iter(m);
EXPECT_FALSE(ReadParam(&m, &iter, &vec));
}
class SimpleListener : public IPC::Listener {
public:
SimpleListener() : other_(NULL) {
}
void Init(IPC::Sender* s) {
other_ = s;
}
protected:
IPC::Sender* other_;
};
enum {
FUZZER_ROUTING_ID = 5
};
// The fuzzer server class. It runs in a child process and expects
// only two IPC calls; after that it exits the message loop which
// terminates the child process.
class FuzzerServerListener : public SimpleListener {
public:
FuzzerServerListener() : message_count_(2), pending_messages_(0) {
}
bool OnMessageReceived(const IPC::Message& msg) override {
if (msg.routing_id() == MSG_ROUTING_CONTROL) {
++pending_messages_;
IPC_BEGIN_MESSAGE_MAP(FuzzerServerListener, msg)
IPC_MESSAGE_HANDLER(MsgClassIS, OnMsgClassISMessage)
IPC_MESSAGE_HANDLER(MsgClassSI, OnMsgClassSIMessage)
IPC_END_MESSAGE_MAP()
if (pending_messages_) {
// Probably a problem de-serializing the message.
ReplyMsgNotHandled(msg.type());
}
}
return true;
}
private:
void OnMsgClassISMessage(int value, const base::string16& text) {
UseData(MsgClassIS::ID, value, text);
RoundtripAckReply(FUZZER_ROUTING_ID, MsgClassIS::ID, value);
Cleanup();
}
void OnMsgClassSIMessage(const base::string16& text, int value) {
UseData(MsgClassSI::ID, value, text);
RoundtripAckReply(FUZZER_ROUTING_ID, MsgClassSI::ID, value);
Cleanup();
}
bool RoundtripAckReply(int routing, uint32_t type_id, int reply) {
IPC::Message* message = new IPC::Message(routing, type_id,
IPC::Message::PRIORITY_NORMAL);
message->WriteInt(reply + 1);
message->WriteInt(reply);
return other_->Send(message);
}
void Cleanup() {
--message_count_;
--pending_messages_;
if (0 == message_count_)
base::MessageLoop::current()->QuitWhenIdle();
}
void ReplyMsgNotHandled(uint32_t type_id) {
RoundtripAckReply(FUZZER_ROUTING_ID, MsgUnhandled::ID, type_id);
Cleanup();
}
void UseData(int caller, int value, const base::string16& text) {
std::ostringstream os;
os << "IPC fuzzer:" << caller << " [" << value << " "
<< base::UTF16ToUTF8(text) << "]\n";
std::string output = os.str();
LOG(WARNING) << output;
}
int message_count_;
int pending_messages_;
};
class FuzzerClientListener : public SimpleListener {
public:
FuzzerClientListener() : last_msg_(NULL) {
}
bool OnMessageReceived(const IPC::Message& msg) override {
last_msg_ = new IPC::Message(msg);
base::MessageLoop::current()->QuitWhenIdle();
return true;
}
bool ExpectMessage(int value, uint32_t type_id) {
if (!MsgHandlerInternal(type_id))
return false;
int msg_value1 = 0;
int msg_value2 = 0;
base::PickleIterator iter(*last_msg_);
if (!iter.ReadInt(&msg_value1))
return false;
if (!iter.ReadInt(&msg_value2))
return false;
if ((msg_value2 + 1) != msg_value1)
return false;
if (msg_value2 != value)
return false;
delete last_msg_;
last_msg_ = NULL;
return true;
}
bool ExpectMsgNotHandled(uint32_t type_id) {
return ExpectMessage(type_id, MsgUnhandled::ID);
}
private:
bool MsgHandlerInternal(uint32_t type_id) {
base::RunLoop().Run();
if (NULL == last_msg_)
return false;
if (FUZZER_ROUTING_ID != last_msg_->routing_id())
return false;
return (type_id == last_msg_->type());
}
IPC::Message* last_msg_;
};
// Runs the fuzzing server child mode. Returns when the preset number of
// messages have been received.
DEFINE_IPC_CHANNEL_MOJO_TEST_CLIENT(FuzzServerClient) {
FuzzerServerListener listener;
Connect(&listener);
listener.Init(channel());
base::RunLoop().Run();
Close();
}
using IPCFuzzingTest = IPCChannelMojoTestBase;
// This test makes sure that the FuzzerClientListener and FuzzerServerListener
// are working properly by generating two well formed IPC calls.
TEST_F(IPCFuzzingTest, SanityTest) {
Init("FuzzServerClient");
FuzzerClientListener listener;
CreateChannel(&listener);
listener.Init(channel());
ASSERT_TRUE(ConnectChannel());
IPC::Message* msg = NULL;
int value = 43;
msg = new MsgClassIS(value, base::ASCIIToUTF16("expect 43"));
sender()->Send(msg);
EXPECT_TRUE(listener.ExpectMessage(value, MsgClassIS::ID));
msg = new MsgClassSI(base::ASCIIToUTF16("expect 44"), ++value);
sender()->Send(msg);
EXPECT_TRUE(listener.ExpectMessage(value, MsgClassSI::ID));
EXPECT_TRUE(WaitForClientShutdown());
DestroyChannel();
}
// This test uses a payload that is smaller than expected. This generates an
// error while unpacking the IPC buffer. Right after we generate another valid
// IPC to make sure framing is working properly.
TEST_F(IPCFuzzingTest, MsgBadPayloadShort) {
Init("FuzzServerClient");
FuzzerClientListener listener;
CreateChannel(&listener);
listener.Init(channel());
ASSERT_TRUE(ConnectChannel());
IPC::Message* msg = new IPC::Message(MSG_ROUTING_CONTROL, MsgClassIS::ID,
IPC::Message::PRIORITY_NORMAL);
msg->WriteInt(666);
sender()->Send(msg);
EXPECT_TRUE(listener.ExpectMsgNotHandled(MsgClassIS::ID));
msg = new MsgClassSI(base::ASCIIToUTF16("expect one"), 1);
sender()->Send(msg);
EXPECT_TRUE(listener.ExpectMessage(1, MsgClassSI::ID));
EXPECT_TRUE(WaitForClientShutdown());
DestroyChannel();
}
// This test uses a payload that has too many arguments, but so the payload size
// is big enough so the unpacking routine does not generate an error as in the
// case of MsgBadPayloadShort test. This test does not pinpoint a flaw (per se)
// as by design we don't carry type information on the IPC message.
TEST_F(IPCFuzzingTest, MsgBadPayloadArgs) {
Init("FuzzServerClient");
FuzzerClientListener listener;
CreateChannel(&listener);
listener.Init(channel());
ASSERT_TRUE(ConnectChannel());
IPC::Message* msg = new IPC::Message(MSG_ROUTING_CONTROL, MsgClassSI::ID,
IPC::Message::PRIORITY_NORMAL);
msg->WriteString16(base::ASCIIToUTF16("d"));
msg->WriteInt(0);
msg->WriteInt(0x65); // Extra argument.
sender()->Send(msg);
EXPECT_TRUE(listener.ExpectMessage(0, MsgClassSI::ID));
// Now send a well formed message to make sure the receiver wasn't
// thrown out of sync by the extra argument.
msg = new MsgClassIS(3, base::ASCIIToUTF16("expect three"));
sender()->Send(msg);
EXPECT_TRUE(listener.ExpectMessage(3, MsgClassIS::ID));
EXPECT_TRUE(WaitForClientShutdown());
DestroyChannel();
}
} // namespace