[go: nahoru, domu]

blob: ef110a37aa244f90cffee495dae91ab8d9549563 [file] [log] [blame]
// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/gpu/v4l2/v4l2_slice_video_decoder.h"
#include <algorithm>
#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/task/post_task.h"
#include "media/base/scopedfd_helper.h"
#include "media/gpu/accelerated_video_decoder.h"
#include "media/gpu/chromeos/dmabuf_video_frame_pool.h"
#include "media/gpu/gpu_video_decode_accelerator_helpers.h"
#include "media/gpu/macros.h"
#include "media/gpu/v4l2/v4l2_h264_accelerator.h"
#include "media/gpu/v4l2/v4l2_vp8_accelerator.h"
#include "media/gpu/v4l2/v4l2_vp9_accelerator.h"
#include "media/gpu/video_frame_converter.h"
namespace media {
namespace {
// See http://crbug.com/255116.
constexpr int k1080pArea = 1920 * 1088;
// Input bitstream buffer size for up to 1080p streams.
constexpr size_t kInputBufferMaxSizeFor1080p = 1024 * 1024;
// Input bitstream buffer size for up to 4k streams.
constexpr size_t kInputBufferMaxSizeFor4k = 4 * kInputBufferMaxSizeFor1080p;
constexpr size_t kNumInputBuffers = 16;
constexpr size_t kNumInputPlanes = 1;
// Input format V4L2 fourccs this class supports.
constexpr uint32_t kSupportedInputFourccs[] = {
V4L2_PIX_FMT_H264_SLICE,
V4L2_PIX_FMT_VP8_FRAME,
V4L2_PIX_FMT_VP9_FRAME,
};
// Checks an underlying video frame buffer of |frame| is valid for VIDIOC_DQBUF
// that requires |target_num_fds| fds.
bool IsValidFrameForQueueDMABuf(const VideoFrame* frame,
size_t target_num_fds) {
DCHECK(frame);
if (frame->DmabufFds().size() < target_num_fds) {
VLOGF(1) << "The count of dmabuf fds (" << frame->DmabufFds().size()
<< ") are not enough, needs " << target_num_fds << " fds.";
return false;
}
const std::vector<VideoFrameLayout::Plane>& planes = frame->layout().planes();
for (size_t i = frame->DmabufFds().size() - 1; i >= target_num_fds; --i) {
// Assume that an fd is a duplicate of a previous plane's fd if offset != 0.
// Otherwise, if offset == 0, return error as surface_it may be pointing to
// a new plane.
if (planes[i].offset == 0) {
VLOGF(1) << "Additional dmabuf fds point to a new buffer.";
return false;
}
}
return true;
}
} // namespace
struct V4L2SliceVideoDecoder::OutputRequest {
enum OutputRequestType {
// The surface to be outputted.
kSurface,
// The fence to indicate the flush request.
kFlushFence,
// The fence to indicate resolution change request.
kChangeResolutionFence,
};
// The type of the request.
const OutputRequestType type;
// The surface to be outputted.
scoped_refptr<V4L2DecodeSurface> surface;
static OutputRequest Surface(scoped_refptr<V4L2DecodeSurface> s) {
return OutputRequest(std::move(s));
}
static OutputRequest FlushFence() { return OutputRequest(kFlushFence); }
static OutputRequest ChangeResolutionFence() {
return OutputRequest(kChangeResolutionFence);
}
bool IsReady() const {
return (type != OutputRequestType::kSurface) || surface->decoded();
}
// Allow move, but not copy.
OutputRequest(OutputRequest&&) = default;
private:
explicit OutputRequest(scoped_refptr<V4L2DecodeSurface> s)
: type(kSurface), surface(std::move(s)) {}
explicit OutputRequest(OutputRequestType t) : type(t) {}
DISALLOW_COPY_AND_ASSIGN(OutputRequest);
};
// static
std::unique_ptr<VideoDecoder> V4L2SliceVideoDecoder::Create(
scoped_refptr<base::SequencedTaskRunner> client_task_runner,
std::unique_ptr<DmabufVideoFramePool> frame_pool,
std::unique_ptr<VideoFrameConverter> frame_converter) {
DCHECK(client_task_runner->RunsTasksInCurrentSequence());
DCHECK(frame_pool);
DCHECK(frame_converter);
scoped_refptr<V4L2Device> device = V4L2Device::Create();
if (!device) {
VLOGF(1) << "Failed to create V4L2 device.";
return nullptr;
}
return base::WrapUnique<VideoDecoder>(new V4L2SliceVideoDecoder(
std::move(client_task_runner), std::move(device), std::move(frame_pool),
std::move(frame_converter)));
}
// static
SupportedVideoDecoderConfigs V4L2SliceVideoDecoder::GetSupportedConfigs() {
scoped_refptr<V4L2Device> device = V4L2Device::Create();
if (!device)
return SupportedVideoDecoderConfigs();
return ConvertFromSupportedProfiles(
device->GetSupportedDecodeProfiles(base::size(kSupportedInputFourccs),
kSupportedInputFourccs),
false);
}
V4L2SliceVideoDecoder::V4L2SliceVideoDecoder(
scoped_refptr<base::SequencedTaskRunner> client_task_runner,
scoped_refptr<V4L2Device> device,
std::unique_ptr<DmabufVideoFramePool> frame_pool,
std::unique_ptr<VideoFrameConverter> frame_converter)
: device_(std::move(device)),
frame_pool_(std::move(frame_pool)),
frame_converter_(std::move(frame_converter)),
client_task_runner_(std::move(client_task_runner)),
decoder_task_runner_(base::CreateSequencedTaskRunnerWithTraits(
{base::WithBaseSyncPrimitives(), base::TaskPriority::USER_VISIBLE})),
device_poll_thread_("V4L2SliceVideoDecoderDevicePollThread"),
state_(State::kUninitialized),
weak_this_factory_(this) {
DETACH_FROM_SEQUENCE(client_sequence_checker_);
DETACH_FROM_SEQUENCE(decoder_sequence_checker_);
VLOGF(2);
weak_this_ = weak_this_factory_.GetWeakPtr();
frame_pool_->set_parent_task_runner(decoder_task_runner_);
frame_converter_->set_parent_task_runner(decoder_task_runner_);
}
V4L2SliceVideoDecoder::~V4L2SliceVideoDecoder() {
// We might be called from either the client or the decoder sequence.
DETACH_FROM_SEQUENCE(client_sequence_checker_);
DETACH_FROM_SEQUENCE(decoder_sequence_checker_);
VLOGF(2);
}
std::string V4L2SliceVideoDecoder::GetDisplayName() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(client_sequence_checker_);
return "V4L2SliceVideoDecoder";
}
bool V4L2SliceVideoDecoder::IsPlatformDecoder() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(client_sequence_checker_);
return true;
}
int V4L2SliceVideoDecoder::GetMaxDecodeRequests() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(client_sequence_checker_);
return 4;
}
bool V4L2SliceVideoDecoder::NeedsBitstreamConversion() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(client_sequence_checker_);
return needs_bitstream_conversion_;
}
bool V4L2SliceVideoDecoder::CanReadWithoutStalling() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(client_sequence_checker_);
return frame_pool_ && !frame_pool_->IsExhausted();
}
void V4L2SliceVideoDecoder::Destroy() {
DCHECK_CALLED_ON_VALID_SEQUENCE(client_sequence_checker_);
VLOGF(2);
decoder_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2SliceVideoDecoder::DestroyTask, weak_this_));
}
void V4L2SliceVideoDecoder::DestroyTask() {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
DVLOGF(2);
if (avd_) {
avd_->Reset();
avd_ = nullptr;
}
// Call all pending decode callback.
ClearPendingRequests(DecodeStatus::ABORTED);
// Stop and Destroy device.
StopStreamV4L2Queue();
input_queue_->DeallocateBuffers();
output_queue_->DeallocateBuffers();
DCHECK(surfaces_at_device_.empty());
weak_this_factory_.InvalidateWeakPtrs();
delete this;
VLOGF(2) << "Destroyed";
}
void V4L2SliceVideoDecoder::Initialize(const VideoDecoderConfig& config,
bool low_delay,
CdmContext* cdm_context,
InitCB init_cb,
const OutputCB& output_cb,
const WaitingCB& /* waiting_cb */) {
DCHECK_CALLED_ON_VALID_SEQUENCE(client_sequence_checker_);
VLOGF(2) << "config: " << config.AsHumanReadableString();
if (!config.IsValidConfig()) {
VLOGF(1) << "config is not valid";
std::move(init_cb).Run(false);
return;
}
if (cdm_context) {
VLOGF(1) << "cdm_context is not supported.";
std::move(init_cb).Run(false);
return;
}
decoder_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2SliceVideoDecoder::InitializeTask, weak_this_, config,
std::move(init_cb), std::move(output_cb)));
}
void V4L2SliceVideoDecoder::InitializeTask(const VideoDecoderConfig& config,
InitCB init_cb,
const OutputCB& output_cb) {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
DCHECK(state_ == State::kUninitialized || state_ == State::kDecoding);
DVLOGF(3);
if (!output_request_queue_.empty() || flush_cb_ || current_decode_request_ ||
!decode_request_queue_.empty()) {
VLOGF(1) << "Should not call Initialize() during pending decode";
client_task_runner_->PostTask(FROM_HERE,
base::BindOnce(std::move(init_cb), false));
return;
}
// Reset V4L2 device and queue if reinitializing decoder.
if (state_ != State::kUninitialized) {
if (!StopStreamV4L2Queue()) {
client_task_runner_->PostTask(FROM_HERE,
base::BindOnce(std::move(init_cb), false));
return;
}
input_queue_->DeallocateBuffers();
output_queue_->DeallocateBuffers();
input_queue_ = nullptr;
output_queue_ = nullptr;
device_ = V4L2Device::Create();
if (!device_) {
VLOGF(1) << "Failed to create V4L2 device.";
client_task_runner_->PostTask(FROM_HERE,
base::BindOnce(std::move(init_cb), false));
return;
}
if (avd_) {
avd_->Reset();
avd_ = nullptr;
}
SetState(State::kUninitialized);
}
// Open V4L2 device.
VideoCodecProfile profile = config.profile();
uint32_t input_format_fourcc =
V4L2Device::VideoCodecProfileToV4L2PixFmt(profile, true);
if (!device_->Open(V4L2Device::Type::kDecoder, input_format_fourcc)) {
VLOGF(1) << "Failed to open device for profile: " << profile
<< " fourcc: " << FourccToString(input_format_fourcc);
client_task_runner_->PostTask(FROM_HERE,
base::BindOnce(std::move(init_cb), false));
return;
}
struct v4l2_capability caps;
const __u32 kCapsRequired = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING;
if (device_->Ioctl(VIDIOC_QUERYCAP, &caps) ||
(caps.capabilities & kCapsRequired) != kCapsRequired) {
VLOGF(1) << "ioctl() failed: VIDIOC_QUERYCAP, "
<< "caps check failed: 0x" << std::hex << caps.capabilities;
client_task_runner_->PostTask(FROM_HERE,
base::BindOnce(std::move(init_cb), false));
return;
}
// Create codec-specific AcceleratedVideoDecoder.
// TODO(akahuang): Check the profile is supported.
if (profile >= H264PROFILE_MIN && profile <= H264PROFILE_MAX) {
avd_.reset(new H264Decoder(
std::make_unique<V4L2H264Accelerator>(this, device_.get())));
} else if (profile >= VP8PROFILE_MIN && profile <= VP8PROFILE_MAX) {
avd_.reset(new VP8Decoder(
std::make_unique<V4L2VP8Accelerator>(this, device_.get())));
} else if (profile >= VP9PROFILE_MIN && profile <= VP9PROFILE_MAX) {
avd_.reset(new VP9Decoder(
std::make_unique<V4L2VP9Accelerator>(this, device_.get())));
} else {
VLOGF(1) << "Unsupported profile " << GetProfileName(profile);
client_task_runner_->PostTask(FROM_HERE,
base::BindOnce(std::move(init_cb), false));
return;
}
needs_bitstream_conversion_ = (config.codec() == kCodecH264);
// Setup input format.
if (!SetupInputFormat(input_format_fourcc)) {
VLOGF(1) << "Failed to setup input format.";
client_task_runner_->PostTask(FROM_HERE,
base::BindOnce(std::move(init_cb), false));
return;
}
// Setup output format.
uint32_t output_format_fourcc = NegotiateOutputFormat();
num_output_planes_ =
V4L2Device::GetNumPlanesOfV4L2PixFmt(output_format_fourcc);
if (!SetupOutputFormat(output_format_fourcc)) {
VLOGF(1) << "Failed to setup output format.";
client_task_runner_->PostTask(FROM_HERE,
base::BindOnce(std::move(init_cb), false));
return;
}
// Setup frame pool.
VideoPixelFormat output_format =
V4L2Device::V4L2PixFmtToVideoPixelFormat(output_format_fourcc);
frame_layout_ = VideoFrameLayout::Create(output_format, config.coded_size());
if (!frame_layout_) {
VLOGF(1) << "Failed to create video frame layout.";
client_task_runner_->PostTask(FROM_HERE,
base::BindOnce(std::move(init_cb), false));
return;
}
visible_rect_ = config.visible_rect();
natural_size_ = config.natural_size();
frame_pool_->SetFrameFormat(*frame_layout_, visible_rect_, natural_size_);
// Create Input/Output V4L2Queue
input_queue_ = device_->GetQueue(V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
output_queue_ = device_->GetQueue(V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
if (!input_queue_ || !output_queue_) {
VLOGF(1) << "Failed to create V4L2 queue.";
client_task_runner_->PostTask(FROM_HERE,
base::BindOnce(std::move(init_cb), false));
return;
}
if (input_queue_->AllocateBuffers(kNumInputBuffers, V4L2_MEMORY_MMAP) == 0) {
VLOGF(1) << "Failed to allocate input buffer.";
client_task_runner_->PostTask(FROM_HERE,
base::BindOnce(std::move(init_cb), false));
return;
}
// Call init_cb
output_cb_ = output_cb;
SetState(State::kDecoding);
client_task_runner_->PostTask(FROM_HERE,
base::BindOnce(std::move(init_cb), true));
}
bool V4L2SliceVideoDecoder::SetupInputFormat(uint32_t input_format_fourcc) {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
DCHECK_EQ(state_, State::kUninitialized);
// Check if the format is supported.
std::vector<uint32_t> formats = device_->EnumerateSupportedPixelformats(
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
if (std::find(formats.begin(), formats.end(), input_format_fourcc) ==
formats.end()) {
DVLOGF(3) << "Input fourcc " << input_format_fourcc
<< " not supported by device.";
return false;
}
// Determine the input buffer size.
gfx::Size max_size, min_size;
device_->GetSupportedResolution(input_format_fourcc, &min_size, &max_size);
size_t input_size = max_size.GetArea() > k1080pArea
? kInputBufferMaxSizeFor4k
: kInputBufferMaxSizeFor1080p;
// Setup the input format.
struct v4l2_format format;
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
format.fmt.pix_mp.pixelformat = input_format_fourcc;
format.fmt.pix_mp.plane_fmt[0].sizeimage = input_size;
format.fmt.pix_mp.num_planes = kNumInputPlanes;
if (device_->Ioctl(VIDIOC_S_FMT, &format) != 0) {
VPLOGF(1) << "Failed to call IOCTL to set input format.";
return false;
}
DCHECK_EQ(format.fmt.pix_mp.pixelformat, input_format_fourcc);
return true;
}
uint32_t V4L2SliceVideoDecoder::NegotiateOutputFormat() {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
const std::vector<uint32_t> formats = device_->EnumerateSupportedPixelformats(
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
DCHECK(!formats.empty());
for (const auto format : formats) {
if (device_->CanCreateEGLImageFrom(format)) {
return format;
}
}
// TODO(akahuang): Use ImageProcessor in this case.
VLOGF(2) << "WARNING: Cannot find format that can create EGL image. "
<< "We need ImageProcessor to convert pixel format.";
return formats[0];
}
bool V4L2SliceVideoDecoder::SetupOutputFormat(uint32_t output_format_fourcc) {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
DVLOGF(3) << "output_format_fourcc = " << output_format_fourcc;
// Only set fourcc for output; resolution, etc., will come from the
// driver once surface_it extracts surface_it from the stream.
struct v4l2_format format;
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
format.fmt.pix_mp.pixelformat = output_format_fourcc;
format.fmt.pix_mp.num_planes = num_output_planes_;
if (device_->Ioctl(VIDIOC_S_FMT, &format) != 0) {
VPLOGF(1) << "Failed to call IOCTL to set output format.";
return false;
}
DCHECK_EQ(format.fmt.pix_mp.pixelformat, output_format_fourcc);
return true;
}
void V4L2SliceVideoDecoder::Reset(base::OnceClosure closure) {
DCHECK_CALLED_ON_VALID_SEQUENCE(client_sequence_checker_);
DVLOGF(3);
decoder_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2SliceVideoDecoder::ResetTask, weak_this_,
std::move(closure)));
}
void V4L2SliceVideoDecoder::ResetTask(base::OnceClosure closure) {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
DVLOGF(3);
if (avd_)
avd_->Reset();
// Call all pending decode callback.
ClearPendingRequests(DecodeStatus::ABORTED);
// Streamoff V4L2 queues to drop input and output buffers.
// If the queues are streaming before reset, then we need to start streaming
// them after stopping.
bool poll_thread_running = device_poll_thread_.IsRunning();
if (!StopStreamV4L2Queue())
return;
if (poll_thread_running) {
if (!StartStreamV4L2Queue())
return;
}
client_task_runner_->PostTask(FROM_HERE, std::move(closure));
}
void V4L2SliceVideoDecoder::ClearPendingRequests(DecodeStatus status) {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
DVLOGF(3);
// Clear output_request_queue_.
while (!output_request_queue_.empty())
output_request_queue_.pop();
if (flush_cb_)
RunDecodeCB(std::move(flush_cb_), status);
// Clear current_decode_request_ and decode_request_queue_.
if (current_decode_request_) {
RunDecodeCB(std::move(current_decode_request_->decode_cb), status);
current_decode_request_ = base::nullopt;
}
while (!decode_request_queue_.empty()) {
auto request = std::move(decode_request_queue_.front());
decode_request_queue_.pop();
RunDecodeCB(std::move(request.decode_cb), status);
}
}
void V4L2SliceVideoDecoder::Decode(scoped_refptr<DecoderBuffer> buffer,
DecodeCB decode_cb) {
DCHECK_CALLED_ON_VALID_SEQUENCE(client_sequence_checker_);
decoder_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2SliceVideoDecoder::EnqueueDecodeTask, weak_this_,
DecodeRequest(std::move(buffer), std::move(decode_cb),
GetNextBitstreamId())));
}
void V4L2SliceVideoDecoder::EnqueueDecodeTask(DecodeRequest request) {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
DCHECK(state_ == State::kDecoding || state_ == State::kPause);
decode_request_queue_.push(std::move(request));
// If we are already decoding, then we don't need to pump again.
if (!current_decode_request_)
PumpDecodeTask();
}
void V4L2SliceVideoDecoder::PumpDecodeTask() {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
DCHECK(state_ == State::kDecoding || state_ == State::kPause);
DVLOGF(3) << "state_:" << static_cast<int>(state_)
<< " Number of Decode requests: " << decode_request_queue_.size();
if (state_ == State::kPause)
return;
while (true) {
switch (avd_->Decode()) {
case AcceleratedVideoDecoder::kAllocateNewSurfaces:
DVLOGF(3) << "Need to change resolution. Pause decoding.";
SetState(State::kPause);
output_request_queue_.push(OutputRequest::ChangeResolutionFence());
PumpOutputSurfaces();
return;
case AcceleratedVideoDecoder::kRanOutOfStreamData:
// Current decode request is finished processing.
if (current_decode_request_) {
DCHECK(current_decode_request_->decode_cb);
RunDecodeCB(std::move(current_decode_request_->decode_cb),
DecodeStatus::OK);
current_decode_request_ = base::nullopt;
}
// Process next decodee request.
if (decode_request_queue_.empty())
return;
current_decode_request_ = std::move(decode_request_queue_.front());
decode_request_queue_.pop();
if (current_decode_request_->buffer->end_of_stream()) {
if (!avd_->Flush()) {
VLOGF(1) << "Failed flushing the decoder.";
SetState(State::kError);
return;
}
// Put the decoder in an idle state, ready to resume.
avd_->Reset();
SetState(State::kPause);
DCHECK(!flush_cb_);
flush_cb_ = std::move(current_decode_request_->decode_cb);
output_request_queue_.push(OutputRequest::FlushFence());
PumpOutputSurfaces();
current_decode_request_ = base::nullopt;
return;
}
avd_->SetStream(current_decode_request_->bitstream_id,
current_decode_request_->buffer->data(),
current_decode_request_->buffer->data_size());
break;
case AcceleratedVideoDecoder::kRanOutOfSurfaces:
DVLOGF(3) << "Ran out of surfaces. Resume when buffer is returned.";
return;
case AcceleratedVideoDecoder::kNeedContextUpdate:
DVLOGF(3) << "Awaiting context update";
return;
case AcceleratedVideoDecoder::kDecodeError:
DVLOGF(3) << "Error decoding stream";
SetState(State::kError);
return;
case AcceleratedVideoDecoder::kTryAgain:
NOTREACHED() << "Should not reach here unless this class accepts "
"encrypted streams.";
DVLOGF(4) << "No key for decoding stream.";
SetState(State::kError);
return;
}
}
}
void V4L2SliceVideoDecoder::PumpOutputSurfaces() {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
DVLOGF(3) << "state_: " << static_cast<int>(state_)
<< " Number of display surfaces: " << output_request_queue_.size();
bool resume_decode = false;
while (!output_request_queue_.empty()) {
if (!output_request_queue_.front().IsReady()) {
DVLOGF(3) << "The first surface is not ready yet.";
break;
}
OutputRequest request = std::move(output_request_queue_.front());
output_request_queue_.pop();
switch (request.type) {
case OutputRequest::kFlushFence:
DCHECK(output_request_queue_.empty());
DVLOGF(2) << "Flush finished.";
RunDecodeCB(std::move(flush_cb_), DecodeStatus::OK);
resume_decode = true;
break;
case OutputRequest::kChangeResolutionFence:
DCHECK(output_request_queue_.empty());
if (!ChangeResolution()) {
SetState(State::kError);
return;
}
resume_decode = true;
break;
case OutputRequest::kSurface:
scoped_refptr<V4L2DecodeSurface> surface = std::move(request.surface);
DCHECK(surface->video_frame());
RunOutputCB(surface->video_frame());
break;
}
}
if (resume_decode) {
SetState(State::kDecoding);
decoder_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2SliceVideoDecoder::PumpDecodeTask, weak_this_));
}
}
bool V4L2SliceVideoDecoder::ChangeResolution() {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
DCHECK_EQ(state_, State::kPause);
// We change resolution after outputting all pending surfaces, there should
// be no V4L2DecodeSurface left.
DCHECK(surfaces_at_device_.empty());
DCHECK_EQ(input_queue_->QueuedBuffersCount(), 0u);
DCHECK_EQ(output_queue_->QueuedBuffersCount(), 0u);
DCHECK(output_request_queue_.empty());
if (!StopStreamV4L2Queue())
return false;
// Set the new resolution.
gfx::Size pic_size = avd_->GetPicSize();
DCHECK(!pic_size.IsEmpty());
DVLOGF(3) << "Change resolution to " << pic_size.width() << "x"
<< pic_size.height();
struct v4l2_format format;
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
if (device_->Ioctl(VIDIOC_G_FMT, &format) != 0) {
VLOGF(1) << "Failed getting output format.";
return false;
}
format.fmt.pix_mp.width = pic_size.width();
format.fmt.pix_mp.height = pic_size.height();
if (device_->Ioctl(VIDIOC_S_FMT, &format) != 0) {
VLOGF(1) << "Failed setting resolution.";
return false;
}
// Update frame layout.
gfx::Size coded_size(base::checked_cast<int>(format.fmt.pix_mp.width),
base::checked_cast<int>(format.fmt.pix_mp.height));
DCHECK_EQ(coded_size.width() % 16, 0);
DCHECK_EQ(coded_size.height() % 16, 0);
if (!gfx::Rect(coded_size).Contains(gfx::Rect(pic_size))) {
VLOGF(1) << "Got invalid adjusted coded size: " << coded_size.ToString();
return false;
}
frame_layout_ = VideoFrameLayout::Create(frame_layout_->format(), coded_size);
frame_pool_->SetFrameFormat(*frame_layout_, visible_rect_, natural_size_);
// Allocate new output buffers.
size_t num_output_frames = avd_->GetRequiredNumOfPictures();
DCHECK_GT(num_output_frames, 0u);
if (output_queue_->AllocateBuffers(num_output_frames, V4L2_MEMORY_DMABUF) ==
0) {
VLOGF(1) << "Failed to request output buffers.";
return false;
}
if (output_queue_->AllocatedBuffersCount() != num_output_frames) {
VLOGF(1) << "Could not allocate requested number of output buffers.";
return false;
}
frame_pool_->SetMaxNumFrames(num_output_frames);
if (!StartStreamV4L2Queue())
return false;
SetState(State::kDecoding);
return true;
}
scoped_refptr<V4L2DecodeSurface> V4L2SliceVideoDecoder::CreateSurface() {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
DVLOGF(4);
// Request VideoFrame.
scoped_refptr<VideoFrame> frame = frame_pool_->GetFrame();
if (!frame) {
// We allocate the same number of output buffer slot in V4L2 device and the
// output VideoFrame. If there is free output buffer slot but no free
// VideoFrame, surface_it means the VideoFrame is not released at client
// side. Post PumpDecodeTask when the pool has available frames.
DVLOGF(3) << "There is no available VideoFrame.";
frame_pool_->NotifyWhenFrameAvailable(base::BindOnce(
base::IgnoreResult(&base::SequencedTaskRunner::PostTask),
decoder_task_runner_, FROM_HERE,
base::BindOnce(&V4L2SliceVideoDecoder::PumpDecodeTask, weak_this_)));
return nullptr;
}
frame->set_timestamp(current_decode_request_->buffer->timestamp());
// Request V4L2 input and output buffers.
V4L2WritableBufferRef input_buf = input_queue_->GetFreeBuffer();
V4L2WritableBufferRef output_buf = output_queue_->GetFreeBuffer();
if (!input_buf.IsValid() || !output_buf.IsValid()) {
DVLOGF(3) << "There is no free V4L2 buffer.";
return nullptr;
}
return scoped_refptr<V4L2DecodeSurface>(new V4L2ConfigStoreDecodeSurface(
std::move(input_buf), std::move(output_buf), std::move(frame),
base::DoNothing()));
}
void V4L2SliceVideoDecoder::ReuseOutputBuffer(V4L2ReadableBufferRef buffer) {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
DVLOGF(3) << "Reuse output surface #" << buffer->BufferId();
// Resume decoding in case of ran out of surface.
if (state_ == State::kDecoding) {
decoder_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2SliceVideoDecoder::PumpDecodeTask, weak_this_));
}
}
bool V4L2SliceVideoDecoder::SubmitSlice(
const scoped_refptr<V4L2DecodeSurface>& dec_surface,
const uint8_t* data,
size_t size) {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
DVLOGF(3);
size_t plane_size = dec_surface->input_buffer().GetPlaneSize(0);
size_t bytes_used = dec_surface->input_buffer().GetPlaneBytesUsed(0);
if (size > plane_size - bytes_used) {
VLOGF(1) << "The size of submitted slice(" << size
<< ") is larger than the remaining buffer size("
<< plane_size - bytes_used << "). Plane size is " << plane_size;
SetState(State::kError);
return false;
}
void* mapping = dec_surface->input_buffer().GetPlaneMapping(0);
memcpy(reinterpret_cast<uint8_t*>(mapping) + bytes_used, data, size);
dec_surface->input_buffer().SetPlaneBytesUsed(0, bytes_used + size);
return true;
}
void V4L2SliceVideoDecoder::DecodeSurface(
const scoped_refptr<V4L2DecodeSurface>& dec_surface) {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
DVLOGF(3);
// Enqueue input_buf and output_buf
dec_surface->input_buffer().PrepareQueueBuffer(dec_surface);
if (!std::move(dec_surface->input_buffer()).QueueMMap()) {
SetState(State::kError);
return;
}
if (!IsValidFrameForQueueDMABuf(dec_surface->video_frame().get(),
num_output_planes_)) {
SetState(State::kError);
return;
}
if (!std::move(dec_surface->output_buffer())
.QueueDMABuf(dec_surface->video_frame()->DmabufFds())) {
SetState(State::kError);
return;
}
if (!dec_surface->Submit()) {
VLOGF(1) << "Error while submitting frame for decoding!";
SetState(State::kError);
return;
}
surfaces_at_device_.push(std::move(dec_surface));
SchedulePollTaskIfNeeded();
}
void V4L2SliceVideoDecoder::SurfaceReady(
const scoped_refptr<V4L2DecodeSurface>& dec_surface,
int32_t bitstream_id,
const gfx::Rect& visible_rect,
const VideoColorSpace& /* color_space */) {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
DVLOGF(3);
// TODO(akahuang): Update visible_rect at the output frame.
dec_surface->SetVisibleRect(visible_rect);
output_request_queue_.push(OutputRequest::Surface(std::move(dec_surface)));
PumpOutputSurfaces();
}
bool V4L2SliceVideoDecoder::StartStreamV4L2Queue() {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
DVLOGF(3);
if (!device_poll_thread_.IsRunning()) {
if (!device_poll_thread_.Start()) {
VLOGF(1) << "Failed to start device poll thread.";
SetState(State::kError);
return false;
}
}
if (!input_queue_->Streamon() || !output_queue_->Streamon()) {
VLOGF(1) << "Failed to streamon V4L2 queue.";
SetState(State::kError);
return false;
}
SchedulePollTaskIfNeeded();
return true;
}
bool V4L2SliceVideoDecoder::StopStreamV4L2Queue() {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
DCHECK_NE(state_, State::kUninitialized);
DVLOGF(3);
if (!device_poll_thread_.IsRunning())
return true;
if (!device_->SetDevicePollInterrupt()) {
VLOGF(1) << "Failed to interrupt device poll.";
SetState(State::kError);
return false;
}
DVLOGF(3) << "Stop device poll thead";
device_poll_thread_.Stop();
if (!device_->ClearDevicePollInterrupt()) {
VLOGF(1) << "Failed to clear interrupting device poll.";
SetState(State::kError);
return false;
}
// Streamoff input queue.
if (input_queue_->IsStreaming())
input_queue_->Streamoff();
// Streamoff output queue.
if (output_queue_->IsStreaming())
output_queue_->Streamoff();
while (!surfaces_at_device_.empty())
surfaces_at_device_.pop();
return true;
}
// Poke when we want to dequeue buffer from V4L2 device
void V4L2SliceVideoDecoder::SchedulePollTaskIfNeeded() {
DVLOGF(3);
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
DCHECK(input_queue_->IsStreaming() && output_queue_->IsStreaming());
if (!device_poll_thread_.IsRunning()) {
DVLOGF(4) << "Device poll thread stopped, will not schedule poll";
return;
}
if (input_queue_->QueuedBuffersCount() == 0 &&
output_queue_->QueuedBuffersCount() == 0) {
DVLOGF(4) << "No buffers queued, will not schedule poll";
return;
}
device_poll_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2SliceVideoDecoder::DevicePollTask,
base::Unretained(this)));
}
void V4L2SliceVideoDecoder::DevicePollTask() {
DCHECK(device_poll_thread_.task_runner()->RunsTasksInCurrentSequence());
DVLOGF(3);
bool event_pending;
if (!device_->Poll(true, &event_pending)) {
decoder_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2SliceVideoDecoder::SetState, weak_this_,
State::kError));
return;
}
decoder_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2SliceVideoDecoder::ServiceDeviceTask, weak_this_));
}
void V4L2SliceVideoDecoder::ServiceDeviceTask() {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
DVLOGF(3) << "Number of queued input buffers: "
<< input_queue_->QueuedBuffersCount()
<< ", Number of queued output buffers: "
<< output_queue_->QueuedBuffersCount();
// Dequeue V4L2 output buffer first to reduce output latency.
bool success;
V4L2ReadableBufferRef dequeued_buffer;
while (output_queue_->QueuedBuffersCount() > 0) {
std::tie(success, dequeued_buffer) = output_queue_->DequeueBuffer();
if (!success) {
SetState(State::kError);
return;
}
if (!dequeued_buffer)
break;
// Mark the output buffer decoded, and try to output surface.
DCHECK(!surfaces_at_device_.empty());
auto surface = std::move(surfaces_at_device_.front());
DCHECK_EQ(static_cast<size_t>(surface->output_record()),
dequeued_buffer->BufferId());
surfaces_at_device_.pop();
surface->SetDecoded();
// Keep a reference to the V4L2 buffer until the buffer is reused. The
// reason for this is that the config store uses V4L2 buffer IDs to
// reference frames, therefore we cannot reuse the same V4L2 buffer ID for
// another decode operation until all references to that frame are gone.
// Request API does not have this limitation, so we can probably remove this
// after config store is gone.
surface->SetReleaseCallback(
base::BindOnce(&V4L2SliceVideoDecoder::ReuseOutputBuffer, weak_this_,
std::move(dequeued_buffer)));
PumpOutputSurfaces();
}
// Dequeue V4L2 input buffer.
while (input_queue_->QueuedBuffersCount() > 0) {
std::tie(success, dequeued_buffer) = input_queue_->DequeueBuffer();
if (!success) {
SetState(State::kError);
return;
}
if (!dequeued_buffer)
break;
}
SchedulePollTaskIfNeeded();
}
int32_t V4L2SliceVideoDecoder::GetNextBitstreamId() {
DCHECK_CALLED_ON_VALID_SEQUENCE(client_sequence_checker_);
next_bitstream_buffer_id_ = (next_bitstream_buffer_id_ + 1) & 0x7FFFFFFF;
return next_bitstream_buffer_id_;
}
void V4L2SliceVideoDecoder::RunDecodeCB(DecodeCB cb, DecodeStatus status) {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
client_task_runner_->PostTask(FROM_HERE,
base::BindOnce(std::move(cb), status));
}
void V4L2SliceVideoDecoder::RunOutputCB(scoped_refptr<VideoFrame> frame) {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
frame->metadata()->SetBoolean(VideoFrameMetadata::POWER_EFFICIENT, true);
scoped_refptr<VideoFrame> converted_frame =
frame_converter_->ConvertFrame(std::move(frame));
if (!converted_frame) {
VLOGF(1) << "Converter return null frame.";
SetState(State::kError);
return;
}
// Although the document of VideoDecoder says "should run |output_cb| as soon
// as possible (without thread trampolining)", MojoVideoDecoderService still
// assumes the callback is called at original thread.
// TODO(akahuang): call the callback directly after updating MojoVDService.
client_task_runner_->PostTask(
FROM_HERE, base::BindOnce(output_cb_, std::move(converted_frame)));
}
void V4L2SliceVideoDecoder::SetState(State new_state) {
DCHECK_CALLED_ON_VALID_SEQUENCE(decoder_sequence_checker_);
DVLOGF(3) << "Change state from " << static_cast<int>(state_) << " to "
<< static_cast<int>(new_state);
if (state_ == new_state)
return;
if (state_ == State::kError) {
DVLOGF(3) << "Already in kError state.";
return;
}
// Check if the state transition is valid.
switch (new_state) {
case State::kUninitialized:
if (state_ != State::kDecoding) {
VLOGF(1) << "Should not set to kUninitialized.";
new_state = State::kError;
}
break;
case State::kDecoding:
break;
case State::kPause:
if (state_ != State::kDecoding) {
VLOGF(1) << "kPause should only be set when kDecoding.";
new_state = State::kError;
}
break;
case State::kError:
break;
}
if (new_state == State::kError) {
VLOGF(1) << "Error occurred.";
ClearPendingRequests(DecodeStatus::DECODE_ERROR);
return;
}
state_ = new_state;
return;
}
} // namespace media