| // Copyright 2011 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/rand_util.h" |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <limits> |
| #include <memory> |
| #include <vector> |
| |
| #include "base/logging.h" |
| #include "base/time/time.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| namespace base { |
| |
| namespace { |
| |
| const int kIntMin = std::numeric_limits<int>::min(); |
| const int kIntMax = std::numeric_limits<int>::max(); |
| |
| } // namespace |
| |
| TEST(RandUtilTest, RandInt) { |
| EXPECT_EQ(base::RandInt(0, 0), 0); |
| EXPECT_EQ(base::RandInt(kIntMin, kIntMin), kIntMin); |
| EXPECT_EQ(base::RandInt(kIntMax, kIntMax), kIntMax); |
| |
| // Check that the DCHECKS in RandInt() don't fire due to internal overflow. |
| // There was a 50% chance of that happening, so calling it 40 times means |
| // the chances of this passing by accident are tiny (9e-13). |
| for (int i = 0; i < 40; ++i) |
| base::RandInt(kIntMin, kIntMax); |
| } |
| |
| TEST(RandUtilTest, RandDouble) { |
| // Force 64-bit precision, making sure we're not in a 80-bit FPU register. |
| volatile double number = base::RandDouble(); |
| EXPECT_GT(1.0, number); |
| EXPECT_LE(0.0, number); |
| } |
| |
| TEST(RandUtilTest, RandFloat) { |
| // Force 32-bit precision, making sure we're not in an 80-bit FPU register. |
| volatile float number = base::RandFloat(); |
| EXPECT_GT(1.f, number); |
| EXPECT_LE(0.f, number); |
| } |
| |
| TEST(RandUtilTest, RandTimeDelta) { |
| { |
| const auto delta = |
| base::RandTimeDelta(-base::Seconds(2), -base::Seconds(1)); |
| EXPECT_GE(delta, -base::Seconds(2)); |
| EXPECT_LT(delta, -base::Seconds(1)); |
| } |
| |
| { |
| const auto delta = base::RandTimeDelta(-base::Seconds(2), base::Seconds(2)); |
| EXPECT_GE(delta, -base::Seconds(2)); |
| EXPECT_LT(delta, base::Seconds(2)); |
| } |
| |
| { |
| const auto delta = base::RandTimeDelta(base::Seconds(1), base::Seconds(2)); |
| EXPECT_GE(delta, base::Seconds(1)); |
| EXPECT_LT(delta, base::Seconds(2)); |
| } |
| } |
| |
| TEST(RandUtilTest, RandTimeDeltaUpTo) { |
| const auto delta = base::RandTimeDeltaUpTo(base::Seconds(2)); |
| EXPECT_FALSE(delta.is_negative()); |
| EXPECT_LT(delta, base::Seconds(2)); |
| } |
| |
| TEST(RandUtilTest, BitsToOpenEndedUnitInterval) { |
| // Force 64-bit precision, making sure we're not in an 80-bit FPU register. |
| volatile double all_zeros = BitsToOpenEndedUnitInterval(0x0); |
| EXPECT_EQ(0.0, all_zeros); |
| |
| // Force 64-bit precision, making sure we're not in an 80-bit FPU register. |
| volatile double smallest_nonzero = BitsToOpenEndedUnitInterval(0x1); |
| EXPECT_LT(0.0, smallest_nonzero); |
| |
| for (uint64_t i = 0x2; i < 0x10; ++i) { |
| // Force 64-bit precision, making sure we're not in an 80-bit FPU register. |
| volatile double number = BitsToOpenEndedUnitInterval(i); |
| EXPECT_EQ(i * smallest_nonzero, number); |
| } |
| |
| // Force 64-bit precision, making sure we're not in an 80-bit FPU register. |
| volatile double all_ones = BitsToOpenEndedUnitInterval(UINT64_MAX); |
| EXPECT_GT(1.0, all_ones); |
| } |
| |
| TEST(RandUtilTest, BitsToOpenEndedUnitIntervalF) { |
| // Force 32-bit precision, making sure we're not in an 80-bit FPU register. |
| volatile float all_zeros = BitsToOpenEndedUnitIntervalF(0x0); |
| EXPECT_EQ(0.f, all_zeros); |
| |
| // Force 32-bit precision, making sure we're not in an 80-bit FPU register. |
| volatile float smallest_nonzero = BitsToOpenEndedUnitIntervalF(0x1); |
| EXPECT_LT(0.f, smallest_nonzero); |
| |
| for (uint64_t i = 0x2; i < 0x10; ++i) { |
| // Force 32-bit precision, making sure we're not in an 80-bit FPU register. |
| volatile float number = BitsToOpenEndedUnitIntervalF(i); |
| EXPECT_EQ(i * smallest_nonzero, number); |
| } |
| |
| // Force 32-bit precision, making sure we're not in an 80-bit FPU register. |
| volatile float all_ones = BitsToOpenEndedUnitIntervalF(UINT64_MAX); |
| EXPECT_GT(1.f, all_ones); |
| } |
| |
| TEST(RandUtilTest, RandBytes) { |
| const size_t buffer_size = 50; |
| char buffer[buffer_size]; |
| memset(buffer, 0, buffer_size); |
| base::RandBytes(buffer, buffer_size); |
| std::sort(buffer, buffer + buffer_size); |
| // Probability of occurrence of less than 25 unique bytes in 50 random bytes |
| // is below 10^-25. |
| EXPECT_GT(std::unique(buffer, buffer + buffer_size) - buffer, 25); |
| } |
| |
| // Verify that calling base::RandBytes with an empty buffer doesn't fail. |
| TEST(RandUtilTest, RandBytes0) { |
| base::RandBytes(nullptr, 0); |
| } |
| |
| TEST(RandUtilTest, RandBytesAsString) { |
| std::string random_string = base::RandBytesAsString(1); |
| EXPECT_EQ(1U, random_string.size()); |
| random_string = base::RandBytesAsString(145); |
| EXPECT_EQ(145U, random_string.size()); |
| char accumulator = 0; |
| for (auto i : random_string) |
| accumulator |= i; |
| // In theory this test can fail, but it won't before the universe dies of |
| // heat death. |
| EXPECT_NE(0, accumulator); |
| } |
| |
| // Make sure that it is still appropriate to use RandGenerator in conjunction |
| // with std::random_shuffle(). |
| TEST(RandUtilTest, RandGeneratorForRandomShuffle) { |
| EXPECT_EQ(base::RandGenerator(1), 0U); |
| EXPECT_LE(std::numeric_limits<ptrdiff_t>::max(), |
| std::numeric_limits<int64_t>::max()); |
| } |
| |
| TEST(RandUtilTest, RandGeneratorIsUniform) { |
| // Verify that RandGenerator has a uniform distribution. This is a |
| // regression test that consistently failed when RandGenerator was |
| // implemented this way: |
| // |
| // return base::RandUint64() % max; |
| // |
| // A degenerate case for such an implementation is e.g. a top of |
| // range that is 2/3rds of the way to MAX_UINT64, in which case the |
| // bottom half of the range would be twice as likely to occur as the |
| // top half. A bit of calculus care of jar@ shows that the largest |
| // measurable delta is when the top of the range is 3/4ths of the |
| // way, so that's what we use in the test. |
| constexpr uint64_t kTopOfRange = |
| (std::numeric_limits<uint64_t>::max() / 4ULL) * 3ULL; |
| constexpr double kExpectedAverage = static_cast<double>(kTopOfRange / 2); |
| constexpr double kAllowedVariance = kExpectedAverage / 50.0; // +/- 2% |
| constexpr int kMinAttempts = 1000; |
| constexpr int kMaxAttempts = 1000000; |
| |
| double cumulative_average = 0.0; |
| int count = 0; |
| while (count < kMaxAttempts) { |
| uint64_t value = base::RandGenerator(kTopOfRange); |
| cumulative_average = (count * cumulative_average + value) / (count + 1); |
| |
| // Don't quit too quickly for things to start converging, or we may have |
| // a false positive. |
| if (count > kMinAttempts && |
| kExpectedAverage - kAllowedVariance < cumulative_average && |
| cumulative_average < kExpectedAverage + kAllowedVariance) { |
| break; |
| } |
| |
| ++count; |
| } |
| |
| ASSERT_LT(count, kMaxAttempts) << "Expected average was " << kExpectedAverage |
| << ", average ended at " << cumulative_average; |
| } |
| |
| TEST(RandUtilTest, RandUint64ProducesBothValuesOfAllBits) { |
| // This tests to see that our underlying random generator is good |
| // enough, for some value of good enough. |
| uint64_t kAllZeros = 0ULL; |
| uint64_t kAllOnes = ~kAllZeros; |
| uint64_t found_ones = kAllZeros; |
| uint64_t found_zeros = kAllOnes; |
| |
| for (size_t i = 0; i < 1000; ++i) { |
| uint64_t value = base::RandUint64(); |
| found_ones |= value; |
| found_zeros &= value; |
| |
| if (found_zeros == kAllZeros && found_ones == kAllOnes) |
| return; |
| } |
| |
| FAIL() << "Didn't achieve all bit values in maximum number of tries."; |
| } |
| |
| TEST(RandUtilTest, RandBytesLonger) { |
| // Fuchsia can only retrieve 256 bytes of entropy at a time, so make sure we |
| // handle longer requests than that. |
| std::string random_string0 = base::RandBytesAsString(255); |
| EXPECT_EQ(255u, random_string0.size()); |
| std::string random_string1 = base::RandBytesAsString(1023); |
| EXPECT_EQ(1023u, random_string1.size()); |
| std::string random_string2 = base::RandBytesAsString(4097); |
| EXPECT_EQ(4097u, random_string2.size()); |
| } |
| |
| // Benchmark test for RandBytes(). Disabled since it's intentionally slow and |
| // does not test anything that isn't already tested by the existing RandBytes() |
| // tests. |
| TEST(RandUtilTest, DISABLED_RandBytesPerf) { |
| // Benchmark the performance of |kTestIterations| of RandBytes() using a |
| // buffer size of |kTestBufferSize|. |
| const int kTestIterations = 10; |
| const size_t kTestBufferSize = 1 * 1024 * 1024; |
| |
| std::unique_ptr<uint8_t[]> buffer(new uint8_t[kTestBufferSize]); |
| const base::TimeTicks now = base::TimeTicks::Now(); |
| for (int i = 0; i < kTestIterations; ++i) |
| base::RandBytes(buffer.get(), kTestBufferSize); |
| const base::TimeTicks end = base::TimeTicks::Now(); |
| |
| LOG(INFO) << "RandBytes(" << kTestBufferSize |
| << ") took: " << (end - now).InMicroseconds() << "µs"; |
| } |
| |
| TEST(RandUtilTest, InsecureRandomGeneratorProducesBothValuesOfAllBits) { |
| // This tests to see that our underlying random generator is good |
| // enough, for some value of good enough. |
| uint64_t kAllZeros = 0ULL; |
| uint64_t kAllOnes = ~kAllZeros; |
| uint64_t found_ones = kAllZeros; |
| uint64_t found_zeros = kAllOnes; |
| |
| InsecureRandomGenerator generator; |
| |
| for (size_t i = 0; i < 1000; ++i) { |
| uint64_t value = generator.RandUint64(); |
| found_ones |= value; |
| found_zeros &= value; |
| |
| if (found_zeros == kAllZeros && found_ones == kAllOnes) |
| return; |
| } |
| |
| FAIL() << "Didn't achieve all bit values in maximum number of tries."; |
| } |
| |
| namespace { |
| |
| constexpr double kXp1Percent = -2.33; |
| constexpr double kXp99Percent = 2.33; |
| |
| double ChiSquaredCriticalValue(double nu, double x_p) { |
| // From "The Art Of Computer Programming" (TAOCP), Volume 2, Section 3.3.1, |
| // Table 1. This is the asymptotic value for nu > 30, up to O(1 / sqrt(nu)). |
| return nu + sqrt(2. * nu) * x_p + 2. / 3. * (x_p * x_p) - 2. / 3.; |
| } |
| |
| int ExtractBits(uint64_t value, int from_bit, int num_bits) { |
| return (value >> from_bit) & ((1 << num_bits) - 1); |
| } |
| |
| // Performs a Chi-Squared test on a subset of |num_bits| extracted starting from |
| // |from_bit| in the generated value. |
| // |
| // See TAOCP, Volume 2, Section 3.3.1, and |
| // https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test for details. |
| // |
| // This is only one of the many, many random number generator test we could do, |
| // but they are cumbersome, as they are typically very slow, and expected to |
| // fail from time to time, due to their probabilistic nature. |
| // |
| // The generator we use has however been vetted with the BigCrush test suite |
| // from Marsaglia, so this should suffice as a smoke test that our |
| // implementation is wrong. |
| bool ChiSquaredTest(InsecureRandomGenerator& gen, |
| size_t n, |
| int from_bit, |
| int num_bits) { |
| const int range = 1 << num_bits; |
| CHECK_EQ(static_cast<int>(n % range), 0) << "Makes computations simpler"; |
| std::vector<size_t> samples(range, 0); |
| |
| // Count how many samples pf each value are found. All buckets should be |
| // almost equal if the generator is suitably uniformly random. |
| for (size_t i = 0; i < n; i++) { |
| int sample = ExtractBits(gen.RandUint64(), from_bit, num_bits); |
| samples[sample] += 1; |
| } |
| |
| // Compute the Chi-Squared statistic, which is: |
| // \Sum_{k=0}^{range-1} \frac{(count - expected)^2}{expected} |
| double chi_squared = 0.; |
| double expected_count = n / range; |
| for (size_t sample_count : samples) { |
| double deviation = sample_count - expected_count; |
| chi_squared += (deviation * deviation) / expected_count; |
| } |
| |
| // The generator should produce numbers that are not too far of (chi_squared |
| // lower than a given quantile), but not too close to the ideal distribution |
| // either (chi_squared is too low). |
| // |
| // See The Art Of Computer Programming, Volume 2, Section 3.3.1 for details. |
| return chi_squared > ChiSquaredCriticalValue(range - 1, kXp1Percent) && |
| chi_squared < ChiSquaredCriticalValue(range - 1, kXp99Percent); |
| } |
| |
| } // namespace |
| |
| TEST(RandUtilTest, InsecureRandomGeneratorChiSquared) { |
| constexpr int kIterations = 50; |
| |
| // Specifically test the low bits, which are usually weaker in random number |
| // generators. We don't use them for the 32 bit number generation, but let's |
| // make sure they are still suitable. |
| for (int start_bit : {1, 2, 3, 8, 12, 20, 32, 48, 54}) { |
| int pass_count = 0; |
| for (int i = 0; i < kIterations; i++) { |
| size_t samples = 1 << 16; |
| InsecureRandomGenerator gen; |
| // Fix the seed to make the test non-flaky. |
| gen.ReseedForTesting(kIterations + 1); |
| bool pass = ChiSquaredTest(gen, samples, start_bit, 8); |
| pass_count += pass; |
| } |
| |
| // We exclude 1% on each side, so we expect 98% of tests to pass, meaning 98 |
| // * kIterations / 100. However this is asymptotic, so add a bit of leeway. |
| int expected_pass_count = (kIterations * 98) / 100; |
| EXPECT_GE(pass_count, expected_pass_count - ((kIterations * 2) / 100)) |
| << "For start_bit = " << start_bit; |
| } |
| } |
| |
| TEST(RandUtilTest, InsecureRandomGeneratorRandDouble) { |
| InsecureRandomGenerator gen; |
| |
| for (int i = 0; i < 1000; i++) { |
| volatile double x = gen.RandDouble(); |
| EXPECT_GE(x, 0.); |
| EXPECT_LT(x, 1.); |
| } |
| } |
| } // namespace base |