[go: nahoru, domu]

blob: 8731cb0ba735788c990b024b7a0a9a9de50ab2b1 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/base/delayed_unique_notifier.h"
#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/containers/circular_deque.h"
#include "base/test/test_pending_task.h"
#include "base/test/test_simple_task_runner.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace cc {
namespace {
class TestNotifier : public DelayedUniqueNotifier {
public:
TestNotifier(base::SequencedTaskRunner* task_runner,
const base::Closure& closure,
const base::TimeDelta& delay)
: DelayedUniqueNotifier(task_runner, closure, delay) {}
~TestNotifier() override = default;
// Overridden from DelayedUniqueNotifier:
base::TimeTicks Now() const override { return now_; }
void SetNow(base::TimeTicks now) { now_ = now; }
private:
base::TimeTicks now_;
};
class DelayedUniqueNotifierTest : public testing::Test {
public:
DelayedUniqueNotifierTest() : notification_count_(0) {}
void SetUp() override {
notification_count_ = 0;
task_runner_ = base::MakeRefCounted<base::TestSimpleTaskRunner>();
}
void Notify() { ++notification_count_; }
int NotificationCount() const { return notification_count_; }
base::circular_deque<base::TestPendingTask> TakePendingTasks() {
return task_runner_->TakePendingTasks();
}
protected:
int notification_count_;
scoped_refptr<base::TestSimpleTaskRunner> task_runner_;
};
TEST_F(DelayedUniqueNotifierTest, ZeroDelay) {
base::TimeDelta delay; // Zero delay.
TestNotifier notifier(
task_runner_.get(),
base::Bind(&DelayedUniqueNotifierTest::Notify, base::Unretained(this)),
delay);
EXPECT_EQ(0, NotificationCount());
// Basic schedule for |delay| from now.
base::TimeTicks schedule_time =
base::TimeTicks() + base::TimeDelta::FromMicroseconds(10);
notifier.SetNow(schedule_time);
notifier.Schedule();
base::circular_deque<base::TestPendingTask> tasks = TakePendingTasks();
ASSERT_EQ(1u, tasks.size());
EXPECT_EQ(base::TimeTicks() + delay, tasks[0].GetTimeToRun());
std::move(tasks[0].task).Run();
EXPECT_EQ(1, NotificationCount());
// 5 schedules should result in only one run.
for (int i = 0; i < 5; ++i)
notifier.Schedule();
tasks = TakePendingTasks();
ASSERT_EQ(1u, tasks.size());
EXPECT_EQ(base::TimeTicks() + delay, tasks[0].GetTimeToRun());
std::move(tasks[0].task).Run();
EXPECT_EQ(2, NotificationCount());
}
TEST_F(DelayedUniqueNotifierTest, SmallDelay) {
base::TimeDelta delay = base::TimeDelta::FromMicroseconds(20);
TestNotifier notifier(
task_runner_.get(),
base::Bind(&DelayedUniqueNotifierTest::Notify, base::Unretained(this)),
delay);
EXPECT_EQ(0, NotificationCount());
// Basic schedule for |delay| from now (now: 30, run time: 50).
base::TimeTicks schedule_time =
base::TimeTicks() + base::TimeDelta::FromMicroseconds(30);
notifier.SetNow(schedule_time);
notifier.Schedule();
base::circular_deque<base::TestPendingTask> tasks = TakePendingTasks();
ASSERT_EQ(1u, tasks.size());
EXPECT_EQ(base::TimeTicks() + delay, tasks[0].GetTimeToRun());
// It's not yet time to run, so we expect no notifications.
std::move(tasks[0].task).Run();
EXPECT_EQ(0, NotificationCount());
tasks = TakePendingTasks();
ASSERT_EQ(1u, tasks.size());
// Now the time should be delay minus whatever the value of now happens to be
// (now: 30, run time: 50).
base::TimeTicks scheduled_run_time = notifier.Now() + delay;
base::TimeTicks scheduled_delay =
base::TimeTicks() + (scheduled_run_time - notifier.Now());
EXPECT_EQ(scheduled_delay, tasks[0].GetTimeToRun());
// Move closer to the run time (time: 49, run time: 50).
notifier.SetNow(notifier.Now() + base::TimeDelta::FromMicroseconds(19));
// It's not yet time to run, so we expect no notifications.
std::move(tasks[0].task).Run();
EXPECT_EQ(0, NotificationCount());
tasks = TakePendingTasks();
ASSERT_EQ(1u, tasks.size());
// Now the time should be delay minus whatever the value of now happens to be.
scheduled_delay = base::TimeTicks() + (scheduled_run_time - notifier.Now());
EXPECT_EQ(scheduled_delay, tasks[0].GetTimeToRun());
// Move to exactly the run time (time: 50, run time: 50).
notifier.SetNow(notifier.Now() + base::TimeDelta::FromMicroseconds(1));
// It's time to run!
std::move(tasks[0].task).Run();
EXPECT_EQ(1, NotificationCount());
tasks = TakePendingTasks();
EXPECT_EQ(0u, tasks.size());
}
TEST_F(DelayedUniqueNotifierTest, RescheduleDelay) {
base::TimeDelta delay = base::TimeDelta::FromMicroseconds(20);
TestNotifier notifier(
task_runner_.get(),
base::Bind(&DelayedUniqueNotifierTest::Notify, base::Unretained(this)),
delay);
base::TimeTicks schedule_time;
// Move time 19 units forward and reschedule, expecting that we still need to
// run in |delay| time and we don't get a notification.
for (int i = 0; i < 10; ++i) {
EXPECT_EQ(0, NotificationCount());
// Move time forward 19 units.
schedule_time = notifier.Now() + base::TimeDelta::FromMicroseconds(19);
notifier.SetNow(schedule_time);
notifier.Schedule();
base::circular_deque<base::TestPendingTask> tasks = TakePendingTasks();
ASSERT_EQ(1u, tasks.size());
EXPECT_EQ(base::TimeTicks() + delay, tasks[0].GetTimeToRun());
// It's not yet time to run, so we expect no notifications.
std::move(tasks[0].task).Run();
EXPECT_EQ(0, NotificationCount());
}
// Move time forward 20 units, expecting a notification.
schedule_time = notifier.Now() + base::TimeDelta::FromMicroseconds(20);
notifier.SetNow(schedule_time);
base::circular_deque<base::TestPendingTask> tasks = TakePendingTasks();
ASSERT_EQ(1u, tasks.size());
EXPECT_EQ(base::TimeTicks() + delay, tasks[0].GetTimeToRun());
// Time to run!
std::move(tasks[0].task).Run();
EXPECT_EQ(1, NotificationCount());
}
TEST_F(DelayedUniqueNotifierTest, CancelAndHasPendingNotification) {
base::TimeDelta delay = base::TimeDelta::FromMicroseconds(20);
TestNotifier notifier(
task_runner_.get(),
base::Bind(&DelayedUniqueNotifierTest::Notify, base::Unretained(this)),
delay);
EXPECT_EQ(0, NotificationCount());
// Schedule for |delay| seconds from now.
base::TimeTicks schedule_time =
notifier.Now() + base::TimeDelta::FromMicroseconds(10);
notifier.SetNow(schedule_time);
notifier.Schedule();
EXPECT_TRUE(notifier.HasPendingNotification());
// Cancel the run.
notifier.Cancel();
EXPECT_FALSE(notifier.HasPendingNotification());
base::circular_deque<base::TestPendingTask> tasks = TakePendingTasks();
ASSERT_EQ(1u, tasks.size());
EXPECT_EQ(base::TimeTicks() + delay, tasks[0].GetTimeToRun());
// Time to run, but a canceled task!
std::move(tasks[0].task).Run();
EXPECT_EQ(0, NotificationCount());
EXPECT_FALSE(notifier.HasPendingNotification());
tasks = TakePendingTasks();
EXPECT_EQ(0u, tasks.size());
notifier.Schedule();
EXPECT_TRUE(notifier.HasPendingNotification());
tasks = TakePendingTasks();
ASSERT_EQ(1u, tasks.size());
EXPECT_EQ(base::TimeTicks() + delay, tasks[0].GetTimeToRun());
// Advance the time.
notifier.SetNow(notifier.Now() + delay);
// This should run since it wasn't canceled.
std::move(tasks[0].task).Run();
EXPECT_EQ(1, NotificationCount());
EXPECT_FALSE(notifier.HasPendingNotification());
for (int i = 0; i < 10; ++i) {
notifier.Schedule();
EXPECT_TRUE(notifier.HasPendingNotification());
notifier.Cancel();
EXPECT_FALSE(notifier.HasPendingNotification());
}
tasks = TakePendingTasks();
ASSERT_EQ(1u, tasks.size());
EXPECT_EQ(base::TimeTicks() + delay, tasks[0].GetTimeToRun());
// Time to run, but a canceled task!
notifier.SetNow(notifier.Now() + delay);
std::move(tasks[0].task).Run();
EXPECT_EQ(1, NotificationCount());
tasks = TakePendingTasks();
EXPECT_EQ(0u, tasks.size());
EXPECT_FALSE(notifier.HasPendingNotification());
}
TEST_F(DelayedUniqueNotifierTest, ShutdownWithScheduledTask) {
base::TimeDelta delay = base::TimeDelta::FromMicroseconds(20);
TestNotifier notifier(
task_runner_.get(),
base::Bind(&DelayedUniqueNotifierTest::Notify, base::Unretained(this)),
delay);
EXPECT_EQ(0, NotificationCount());
// Schedule for |delay| seconds from now.
base::TimeTicks schedule_time =
notifier.Now() + base::TimeDelta::FromMicroseconds(10);
notifier.SetNow(schedule_time);
notifier.Schedule();
EXPECT_TRUE(notifier.HasPendingNotification());
// Shutdown the notifier.
notifier.Shutdown();
// The task is still there, but...
base::circular_deque<base::TestPendingTask> tasks = TakePendingTasks();
ASSERT_EQ(1u, tasks.size());
// Running the task after shutdown does nothing since it's cancelled.
std::move(tasks[0].task).Run();
EXPECT_EQ(0, NotificationCount());
tasks = TakePendingTasks();
EXPECT_EQ(0u, tasks.size());
// We are no longer able to schedule tasks.
notifier.Schedule();
tasks = TakePendingTasks();
ASSERT_EQ(0u, tasks.size());
// Verify after the scheduled time happens there is still no task.
notifier.SetNow(notifier.Now() + delay);
tasks = TakePendingTasks();
ASSERT_EQ(0u, tasks.size());
}
TEST_F(DelayedUniqueNotifierTest, ShutdownPreventsSchedule) {
base::TimeDelta delay = base::TimeDelta::FromMicroseconds(20);
TestNotifier notifier(
task_runner_.get(),
base::Bind(&DelayedUniqueNotifierTest::Notify, base::Unretained(this)),
delay);
EXPECT_EQ(0, NotificationCount());
// Schedule for |delay| seconds from now.
base::TimeTicks schedule_time =
notifier.Now() + base::TimeDelta::FromMicroseconds(10);
notifier.SetNow(schedule_time);
// Shutdown the notifier.
notifier.Shutdown();
// Scheduling a task no longer does anything.
notifier.Schedule();
base::circular_deque<base::TestPendingTask> tasks = TakePendingTasks();
ASSERT_EQ(0u, tasks.size());
// Verify after the scheduled time happens there is still no task.
notifier.SetNow(notifier.Now() + delay);
tasks = TakePendingTasks();
ASSERT_EQ(0u, tasks.size());
}
} // namespace
} // namespace cc