[go: nahoru, domu]

Zum Inhalt springen

Beweisarchiv: Geometrie: Planimetrie: Kreis: Sehnentangentenwinkel

Aus Wikibooks

Beweisarchiv: Geometrie

Schwerpunktsätze von Leibniz
Planimetrie
Kreis: Mittelpunktswinkel-Umfangswinkel · Satz des Ptolemäus · Sehnensatz · Sehnentangentenwinkel · Sehnenviereck · Sekantensatz · Tangentenviereck · Japanischer Satz für konzyklische Vierecke · Satz des Thales
Rechtwinkliges Dreieck: Satz des Pythagoras
Ellipse: Satz vom Flüstergewölbe · Konjugierte Durchmesser
Regelmäßige Vielecke: Dreieck · Viereck · Fünfeck · Sechseck ·
Dreieck: Satz des Heron · Berechnung des Flächeninhalts des Diagonalendreiecks im Quader · Elementarer Satz zur Charakterisierung des Schwerpunkts im Dreieck via Flächeninhalte
Viereck: Flächenformel von Bretschneider
Inzidenzgeometrie ·
affine Geometrie: einfache Hilfssätze · Homothetien und Translationen · Desarguesche affine Ebenen sind Vektorräume
Trigonometrie
Additionstheoreme: Sinus · Kosinus · Tangens · Kotangens
Trigonometriesätze: Sinussatz · Kosinussatz · Neue Folgerungen aus dem Projektionssatz der Dreiecksgeometrie
Trigonometrie in der komplexen Ebene: Tangens und Kotangens in rechtwinkligen Dreiecken aus komplexen Zahlen


Sehnentangentenwinkelsatz

[Bearbeiten]

Der Sehnentangentenwinkel eines Kreisbogens ist so groß wie der zugehörigen Umfangswinkel (Peripheriewinkel) und halb so groß wie der zugehörige Mittelpunktswinkel (Zentriwinkel).

Sehnentangentenwinkel


Nachweis, dass der Sehnentangentenwinkel gleich dem Umfangswinkel ist:

(Siehe Skizze)

Der Mittelpunktswinkel ist doppelt so groß wie der Umfangswinkel (siehe weiter oben):


Winkelsumme im gleichschenkligen :


Sehnentangentenwinkel: