Beweisarchiv: Geometrie: Planimetrie: Kreis: Sehnentangentenwinkel
Erscheinungsbild
- Schwerpunktsätze von Leibniz
- Planimetrie
- Kreis: Mittelpunktswinkel-Umfangswinkel · Satz des Ptolemäus · Sehnensatz · Sehnentangentenwinkel · Sehnenviereck · Sekantensatz · Tangentenviereck · Japanischer Satz für konzyklische Vierecke · Satz des Thales
- Rechtwinkliges Dreieck: Satz des Pythagoras
- Ellipse: Satz vom Flüstergewölbe · Konjugierte Durchmesser
- Regelmäßige Vielecke: Dreieck · Viereck · Fünfeck · Sechseck ·
- Inzidenzgeometrie ·
- Trigonometrie
- Additionstheoreme: Sinus · Kosinus · Tangens · Kotangens
- Trigonometriesätze: Sinussatz · Kosinussatz · Neue Folgerungen aus dem Projektionssatz der Dreiecksgeometrie
- Trigonometrie in der komplexen Ebene: Tangens und Kotangens in rechtwinkligen Dreiecken aus komplexen Zahlen
Sehnentangentenwinkelsatz
[Bearbeiten]Der Sehnentangentenwinkel eines Kreisbogens ist so groß wie der zugehörigen Umfangswinkel (Peripheriewinkel) und halb so groß wie der zugehörige Mittelpunktswinkel (Zentriwinkel).
Nachweis, dass der Sehnentangentenwinkel gleich dem Umfangswinkel ist:
(Siehe Skizze)
Der Mittelpunktswinkel ist doppelt so groß wie der Umfangswinkel (siehe weiter oben):
Winkelsumme im gleichschenkligen :
Sehnentangentenwinkel: