[go: nahoru, domu]

Jump to content

2MASX J22550681+0058396

From Wikipedia, the free encyclopedia
2MASX J22550681+0058396
Hubble Space Telescope image of 2MASX J22550681+0058396 (located right)
Observation data (J2000 epoch)
ConstellationPisces
Right ascension22h 55m 06.80s
Declination+00° 58′ 40.10″
Redshift0.053301
Heliocentric radial velocity15,979 km/s
Distance733 Mly (224.7 Mpc)
Apparent magnitude (V)15.7
Characteristics
TypeE-S0, S0, LINER
Size95,000 ly
Apparent size (V)0.50 x 0.39 arcmin
Other designations
SDSS J225506.72+005839.9, PGC 1180817, ASK 024736.0, 2MASS J22550679+0058401, NSA 005287, MaNGA 01-028337, 2CXO J225506.8+005839, NPM1G +00.0615, SSTSL J225506.80+005840.4, LEDA 1180817

2MASX J22550681+0058396 or known as PGC 1180817, is a type E-S0[1] lenticular galaxy located in constellation Pisces. It is located 733 million light-years from the Solar System and has an approximate diameter of 95,000 light-years.[2]

Characteristics

[edit]

2MASX J22550681+0058396 has an active galactic nucleus (AGN). It is a LINER galaxy[2][3] whose nucleus presents an emission spectrum characterized by broad lines of weak ion atoms.[2] This is an interesting object since not only it represents the most numerous active galactic nuclei population but the link between normal and active galaxies suggested by low-X-ray luminosity.[4]

Moreover, 2MASX J22550681+0058396 is also a post-starburst galaxy (E+A).[5][6] This was caused by galaxy mergers,[7][8] drives up gas towards the center to create new stars, of which the brightest are visible in the remanent galaxy's core.[7] The carbon monoxide gas of the galaxy is said to show a disturbed morphology with most of the emission inside the bright core.[9] It also has a dust mass of log MDust 7.13 ± 0.17 and a total infrared-based star formation rate of 0.78 M yr-1.[6]

A large shell structure is seen surrounding 2MASX J22550681+0058396, suggesting it was formed through radial merger events. It also shows a tidal cloud with two jets are seen emerging from it which contains super star clusters.[10] Tails are also show indicating they are remnants of circular merger infall, suggesting orbital angular momentum plays a crucial role in transforming the host galaxy.[11]

References

[edit]
  1. ^ "HyperLeda -object description". atlas.obs-hp.fr. Retrieved 2024-05-08.
  2. ^ a b c "Your NED Search Results". ned.ipac.caltech.edu. Retrieved 2024-05-08.
  3. ^ Coldwell, Georgina V.; Alonso, Sol; Duplancic, Fernanda; Mesa, Valeria (2018-05-11). "LINER galaxy properties and the local environment". Monthly Notices of the Royal Astronomical Society. 476 (2): 2457–2464. arXiv:1803.00946. doi:10.1093/mnras/sty395. ISSN 0035-8711.
  4. ^ Márquez, Isabel; Masegosa, Josefa; González-Martin, Omaira; Hernández-Garcia, Lorena; Pović, Mirjana; Netzer, Hagai; Cazzoli, Sara; del Olmo, Ascensión (2017). "The AGN Nature of LINER Nuclear Sources". Frontiers in Astronomy and Space Sciences. 4: 34. Bibcode:2017FrASS...4...34M. doi:10.3389/fspas.2017.00034. ISSN 2296-987X.
  5. ^ Pawlik, M. M.; McAlpine, S.; Trayford, J. W.; Wild, V.; Bower, R.; Crain, R. A.; Schaller, M.; Schaye, J. (May 2019). "The diverse evolutionary pathways of post-starburst galaxies". Nature Astronomy. 3 (5): 440–446. arXiv:1903.11050. Bibcode:2019NatAs...3..440P. doi:10.1038/s41550-019-0725-z. ISSN 2397-3366.
  6. ^ a b Smercina, A.; Smith, J. D. T.; Dale, D. A.; French, K. D.; Croxall, K. V.; Zhukovska, S.; Togi, A.; Bell, E. F.; Crocker, A. F.; Draine, B. T.; Jarrett, T. H.; Tremonti, C.; Yang, Yujin; Zabludoff, A. I. (2018-03-01). "After the Fall: The Dust and Gas in E+A Post-starburst Galaxies". The Astrophysical Journal. 855 (1): 51. arXiv:1802.04798. Bibcode:2018ApJ...855...51S. doi:10.3847/1538-4357/aaafcd. ISSN 0004-637X.
  7. ^ a b information@eso.org. "Cosmic Wonderland". www.spacetelescope.org. Retrieved 2024-05-08.
  8. ^ "Astronomers discover how galaxies form through mergers". Astronomers discover how galaxies form through mergers. Retrieved 2024-05-08.
  9. ^ Smercina, Adam; Smith, John-David T.; French, K. Decker; Bell, Eric F.; Dale, Daniel A.; Medling, Anne M.; Nyland, Kristina; Privon, George C.; Rowlands, Kate; Walter, Fabian; Zabludoff, Ann I. (2022-04-01). "After The Fall: Resolving the Molecular Gas in Post-starburst Galaxies". The Astrophysical Journal. 929 (2): 154. arXiv:2108.03231. Bibcode:2022ApJ...929..154S. doi:10.3847/1538-4357/ac5d5f. ISSN 0004-637X.
  10. ^ De Propris, Roberto; Melnick, Jorge (2014-02-19). "A panchromatic survey of post-starburst mergers: searching for feedback". Monthly Notices of the Royal Astronomical Society. 439 (3): 2837–2847. doi:10.1093/mnras/stu141. ISSN 1365-2966.
  11. ^ Valenzuela, Lucas M.; Remus, Rhea-Silvia (2023-05-15), "A stream come true: Connecting tidal tails, shells, streams, and planes with galaxy kinematics and formation history", Astronomy & Astrophysics, 686: A182, arXiv:2208.08443, doi:10.1051/0004-6361/202244758