[go: nahoru, domu]

Solar eclipse of June 30, 1935

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, June 30, 1935,[1] with a magnitude of 0.3375. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Solar eclipse of June 30, 1935
Map
Type of eclipse
NaturePartial
Gamma1.3623
Magnitude0.3375
Maximum eclipse
Coordinates65°12′N 39°06′E / 65.2°N 39.1°E / 65.2; 39.1
Times (UTC)
Greatest eclipse19:59:46
References
Saros116 (68 of 70)
Catalog # (SE5000)9365

This was the third of five solar eclipses in 1935, with the others occurring on January 5, February 3, July 30, and December 25. The next time this will occur is 2206.

A partial eclipse was visible for parts of Northern Europe, the northern Soviet Union, and Greenland.

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]

June 30, 1935 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 1935 June 30 at 18:34:28.3 UTC
Equatorial Conjunction 1935 June 30 at 19:35:14.1 UTC
Ecliptic Conjunction 1935 June 30 at 19:44:50.9 UTC
Greatest Eclipse 1935 June 30 at 19:59:46.1 UTC
Last Penumbral External Contact 1935 June 30 at 21:25:19.1 UTC
June 30, 1935 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.33754
Eclipse Obscuration 0.22087
Gamma 1.36229
Sun Right Ascension 06h35m11.8s
Sun Declination +23°12'07.1"
Sun Semi-Diameter 15'43.8"
Sun Equatorial Horizontal Parallax 08.6"
Moon Right Ascension 06h36m03.6s
Moon Declination +24°26'55.7"
Moon Semi-Diameter 15'11.3"
Moon Equatorial Horizontal Parallax 0°55'44.6"
ΔT 23.8 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of June–July 1935
June 30
Descending node (new moon)
July 16
Ascending node (full moon)
July 30
Descending node (new moon)
     
Partial solar eclipse
Solar Saros 116
Total lunar eclipse
Lunar Saros 128
Partial solar eclipse
Solar Saros 154
edit

Eclipses in 1935

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 116

edit

Inex

edit

Triad

edit

Solar eclipses of 1935–1938

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

The partial solar eclipses on February 3, 1935 and July 30, 1935 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1935 to 1938
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
111 January 5, 1935
 
Partial
−1.5381 116 June 30, 1935
 
Partial
1.3623
121 December 25, 1935
 
Annular
−0.9228 126 June 19, 1936
 
Total
0.5389
131 December 13, 1936
 
Annular
−0.2493 136
 
Totality in Kanton Island,
Kiribati
June 8, 1937
 
Total
−0.2253
141 December 2, 1937
 
Annular
0.4389 146 May 29, 1938
 
Total
−0.9607
151 November 21, 1938
 
Partial
1.1077

Saros 116

edit

This eclipse is a part of Saros series 116, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on June 23, 727 AD. It contains annular eclipses from October 10, 907 AD through May 6, 1845. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on July 22, 1971. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 51 at 12 minutes, 2 seconds on December 25, 1628. All eclipses in this series occur at the Moon’s descending node of orbit.[4]

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between September 12, 1931 and July 1, 2011
September 11–12 June 30–July 1 April 17–19 February 4–5 November 22–23
114 116 118 120 122
 
September 12, 1931
 
June 30, 1935
 
April 19, 1939
 
February 4, 1943
 
November 23, 1946
124 126 128 130 132
 
September 12, 1950
 
June 30, 1954
 
April 19, 1958
 
February 5, 1962
 
November 23, 1965
134 136 138 140 142
 
September 11, 1969
 
June 30, 1973
 
April 18, 1977
 
February 4, 1981
 
November 22, 1984
144 146 148 150 152
 
September 11, 1988
 
June 30, 1992
 
April 17, 1996
 
February 5, 2000
 
November 23, 2003
154 156
 
September 11, 2007
 
July 1, 2011

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1837 and 2200
 
April 5, 1837
(Saros 107)
 
March 5, 1848
(Saros 108)
 
February 3, 1859
(Saros 109)
 
December 2, 1880
(Saros 111)
 
August 31, 1913
(Saros 114)
 
July 31, 1924
(Saros 115)
 
June 30, 1935
(Saros 116)
 
May 30, 1946
(Saros 117)
 
April 30, 1957
(Saros 118)
 
March 28, 1968
(Saros 119)
 
February 26, 1979
(Saros 120)
 
January 26, 1990
(Saros 121)
 
December 25, 2000
(Saros 122)
 
November 25, 2011
(Saros 123)
 
October 25, 2022
(Saros 124)
 
September 23, 2033
(Saros 125)
 
August 23, 2044
(Saros 126)
 
July 24, 2055
(Saros 127)
 
June 22, 2066
(Saros 128)
 
May 22, 2077
(Saros 129)
 
April 21, 2088
(Saros 130)
 
March 21, 2099
(Saros 131)
 
February 18, 2110
(Saros 132)
 
January 19, 2121
(Saros 133)
 
December 19, 2131
(Saros 134)
 
November 17, 2142
(Saros 135)
 
October 17, 2153
(Saros 136)
 
September 16, 2164
(Saros 137)
 
August 16, 2175
(Saros 138)
 
July 16, 2186
(Saros 139)
 
June 15, 2197
(Saros 140)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
September 19, 1819
(Saros 112)
 
August 28, 1848
(Saros 113)
 
August 9, 1877
(Saros 114)
 
July 21, 1906
(Saros 115)
 
June 30, 1935
(Saros 116)
 
June 10, 1964
(Saros 117)
 
May 21, 1993
(Saros 118)
 
April 30, 2022
(Saros 119)
 
April 11, 2051
(Saros 120)
 
March 21, 2080
(Saros 121)
 
March 1, 2109
(Saros 122)
 
February 9, 2138
(Saros 123)
 
January 21, 2167
(Saros 124)
 
December 31, 2195
(Saros 125)

References

edit
  1. ^ "June 30, 1935 Partial Solar Eclipse". timeanddate. Retrieved 3 August 2024.
  2. ^ "Partial Solar Eclipse of 1935 Jun 30". EclipseWise.com. Retrieved 3 August 2024.
  3. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. ^ "NASA - Catalog of Solar Eclipses of Saros 116". eclipse.gsfc.nasa.gov.
edit