This project aims to provide clean implementations of imitation and reward learning algorithms. Currently we have implementations of Behavioral Cloning, DAgger (with synthetic examples), density-based reward modeling, Maximum Causal Entropy Inverse Reinforcement Learning, Adversarial Inverse Reinforcement Learning, Generative Adversarial Imitation Learning and Deep RL from Human Preferences.
pip install imitation
git clone http://github.com/HumanCompatibleAI/imitation
cd imitation
pip install -e .
Follow instructions to install mujoco_py v1.5 here.
We provide several CLI scripts as a front-end to the algorithms implemented in imitation
. These use Sacred for configuration and replicability.
# Train PPO agent on pendulum and collect expert demonstrations. Tensorboard logs saved in quickstart/rl/
python -m imitation.scripts.train_rl with pendulum common.fast train.fast rl.fast fast common.log_dir=quickstart/rl/
# Train GAIL from demonstrations. Tensorboard logs saved in output/ (default log directory).
python -m imitation.scripts.train_adversarial gail with pendulum common.fast demonstrations.fast train.fast rl.fast fast demonstrations.rollout_path=quickstart/rl/rollouts/final.pkl
# Train AIRL from demonstrations. Tensorboard logs saved in output/ (default log directory).
python -m imitation.scripts.train_adversarial airl with pendulum common.fast demonstrations.fast train.fast rl.fast fast demonstrations.rollout_path=quickstart/rl/rollouts/final.pkl
Tips:
- Remove the "fast" options from the commands above to allow training run to completion.
python -m imitation.scripts.train_rl print_config
will list Sacred script options. These configuration options are documented in each script's docstrings.
For more information on how to configure Sacred CLI options, see the Sacred docs.
See examples/quickstart.py for an example script that loads CartPole-v1 demonstrations and trains BC, GAIL, and AIRL models on that data.
We also implement a density-based reward baseline. You can find an example notebook here.
@misc{wang2020imitation,
author = {Wang, Steven and Toyer, Sam and Gleave, Adam and Emmons, Scott},
title = {The {\tt imitation} Library for Imitation Learning and Inverse Reinforcement Learning},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/HumanCompatibleAI/imitation}},
}
See CONTRIBUTING.md.