completed codes of the lecture note of probabilistic robotics ("詳解確率ロボティクス" in Japanese)
- basic methods
- advanced methods
- kld_mcl.ipynb: MCL with KLD (Kullback–Leibler divergence) sampling
- adaptive_mcl.ipynb: Adaptive MCL
- sensor_reset_mcl.ipynb: MCL with sensor resetting
- expansion_reset_mcl.ipynb: MCL with expansion resetting
- expansion_sensor_reset_mcl.ipynb: MCL with sensor resetting and expansion resetting
- occlusion_free_mcl.ipynb: MCL with a non-Gaussian likelihood function
- fastslam1.0.ipynb: FastSLAM 1.0
- fastslam2.0.ipynb: FastSLAM 2.0
- graphbasedslam.ipynb: graph-based SLAM
- misc
- graphbasedslam_logger.ipynb: logger for graph-based SLAM
- dynamic_programming.ipynb: value iteration
- policy_agent.ipynb: agents with the result of value iteration
- q.ipynb: Q-learning
- sarsa.ipynb: simple sarsa
- nstep_sarsa.ipynb: n-step sarsa
-
sarsa_lambda.ipynb: sarsa(
$\lambda$ )
- qmdp.ipynb: Q-MDP value method
- pfc.ipynb: weighted Q-MDP value method (probabilistic flow control)
- amdp.ipynb: value iteration with an augumented MDP (an example of corstal navigation by N. Roy in another environment and setting)
- amdp_policy_agent.ipynb: agents with the result of amdp
- gauss_gamma.ipynb: Bayes inference with Gauss-gamma distribution
- variational_inference.ipynb: variational inference