[go: nahoru, domu]

Skip to content

Releases: tensorflow/tensorflow

TensorFlow 1.0.1

08 Mar 01:01
Compare
Choose a tag to compare

Bug Fixes and Other Changes

  • Change GraphConstructor to not increase the version when importing, but instead take the min of all versions.
  • Google Cloud Storage fixes.
  • Removed tf.core and tf.python modules from the API. These were never intended to be exposed. Please use the same objects through top-level tf module instead.

TensorFlow 1.0.0

15 Feb 17:46
Compare
Choose a tag to compare

Major Features and Improvements

  • XLA (experimental): initial release of XLA, a domain-specific compiler for TensorFlow graphs, that targets CPUs and GPUs.
  • TensorFlow Debugger (tfdbg): command-line interface and API.
  • New python 3 docker images added.
  • Made pip packages pypi compliant. TensorFlow can now be installed by pip install tensorflow command.
  • Several python API calls have been changed to resemble NumPy more closely.
  • New (experimental) Java API.
  • Android: new person detection + tracking demo implementing "Scalable Object Detection using Deep Neural Networks" (with additional YOLO object detector support)
  • Android: new camera-based image stylization demo based on "A Learned Representation For Artistic Style"

Breaking Changes to the API

To help you upgrade your existing TensorFlow Python code to match the API changes below, we have prepared a conversion script.

  • TensorFlow/models have been moved to a separate github repository.
  • Division and modulus operators (/, //, %) now match Python (flooring)
    semantics. This applies to tf.div and tf.mod as well. To obtain forced
    integer truncation based behaviors you can use tf.truncatediv
    and tf.truncatemod.
  • tf.divide() is now the recommended division function. tf.div() will
    remain, but its semantics do not respond to Python 3 or from future
    mechanisms.
  • tf.reverse() now takes indices of axes to be reversed. E.g.
    tf.reverse(a, [True, False, True]) must now be written as
    tf.reverse(a, [0, 2]). tf.reverse_v2() will remain until 1.0 final.
  • tf.mul, tf.sub and tf.neg are deprecated in favor of tf.multiply,
    tf.subtract and tf.negative.
  • tf.pack and tf.unpack are deprecated in favor of tf.stack and
    tf.unstack.
  • TensorArray.pack and TensorArray.unpack are getting deprecated in favor of
    TensorArray.stack and TensorArray.unstack.
  • The following Python functions have had their arguments changed to use axis
    when referring to specific dimensions. We have kept the old keyword arguments
    for compatibility currently, but we will be removing them well before the
    final 1.0.
    • tf.argmax: dimension becomes axis
    • tf.argmin: dimension becomes axis
    • tf.count_nonzero: reduction_indices becomes axis
    • tf.expand_dims: dim becomes axis
    • tf.reduce_all: reduction_indices becomes axis
    • tf.reduce_any: reduction_indices becomes axis
    • tf.reduce_join: reduction_indices becomes axis
    • tf.reduce_logsumexp: reduction_indices becomes axis
    • tf.reduce_max: reduction_indices becomes axis
    • tf.reduce_mean: reduction_indices becomes axis
    • tf.reduce_min: reduction_indices becomes axis
    • tf.reduce_prod: reduction_indices becomes axis
    • tf.reduce_sum: reduction_indices becomes axis
    • tf.reverse_sequence: batch_dim becomes batch_axis, seq_dim becomes seq_axis
    • tf.sparse_concat: concat_dim becomes axis
    • tf.sparse_reduce_sum: reduction_axes becomes axis
    • tf.sparse_reduce_sum_sparse: reduction_axes becomes axis
    • tf.sparse_split: split_dim becomes axis
  • tf.listdiff has been renamed to tf.setdiff1d to match NumPy naming.
  • tf.inv has been renamed to be tf.reciprocal (component-wise reciprocal)
    to avoid confusion with np.inv which is matrix inversion
  • tf.round now uses banker's rounding (round to even) semantics to match NumPy.
  • tf.split now takes arguments in a reversed order and with different
    keywords. In particular, we now match NumPy order as
    tf.split(value, num_or_size_splits, axis).
  • tf.sparse_split now takes arguments in reversed order and with different
    keywords. In particular we now match NumPy order as
    tf.sparse_split(sp_input, num_split, axis). NOTE: we have temporarily
    made tf.sparse_split require keyword arguments.
  • tf.concat now takes arguments in reversed order and with different keywords. In particular we now match NumPy order as tf.concat(values, axis, name).
  • tf.image.decode_jpeg by default uses the faster DCT method, sacrificing
    a little fidelity for improved speed. One can revert to the old
    behavior by specifying the attribute dct_method='INTEGER_ACCURATE'.
  • tf.complex_abs has been removed from the Python interface. tf.abs
    supports complex tensors and should be used instead.
  • Template.var_scope property renamed to .variable_scope
  • SyncReplicasOptimizer is removed and SyncReplicasOptimizerV2 renamed to SyncReplicasOptimizer.
  • tf.zeros_initializer() and tf.ones_initializer() now return a callable
    that must be called with initializer arguments, in your code replace
    tf.zeros_initializer with tf.zeros_initializer().
  • SparseTensor.shape has been renamed to SparseTensor.dense_shape. Same for
    SparseTensorValue.shape.
  • Replace tf.scalar_summary, tf.histogram_summary, tf.audio_summary, tf.image_summary with tf.summary.scalar, tf.summary.histogram, tf.summary.audio, tf.summary.image, respectively. The new summary ops take name rather than tag as their first argument, meaning summary ops now respect TensorFlow name scopes.
  • Replace tf.train.SummaryWriter and tf.train.SummaryWriterCache with tf.summary.FileWriter and tf.summary.FileWriterCache.
  • Removes RegisterShape from public API. Use C++ shape function registration
    instead.
  • Deprecated _ref dtypes from the python API.
  • In the C++ API (in tensorflow/cc), Input, Output, etc. have moved
    from the tensorflow::ops namespace to tensorflow.
  • Change arg order for {softmax,sparse_softmax,sigmoid}_cross_entropy_with_logits to be (labels, predictions), and force use of named args.
  • tf.nn.rnn_cell.* and most functions in tf.nn.rnn.* (with the exception of dynamic_rnn and raw_rnn) are temporarily in tf.contrib.rnn. They will be moved back into core for TF 1.1.

Bug Fixes and Other Changes

  • Numerous C++ API updates.
  • New op: parallel_stack.
  • Introducing common tf io compression options constants for
    RecordReader/RecordWriter.
  • Add sparse_column_with_vocabulary_file, to specify a feature column that
    transform string features to IDs, where the mapping is defined by a vocabulary
    file.
  • Added index_to_string_table which returns a lookup table that maps indices to
    strings.
  • Add string_to_index_table, which returns a lookup table that matches strings
    to indices.
  • Add a ParallelForWithWorkerId function.
  • Add string_to_index_table, which returns a lookup table that matches strings
    to indices.
  • Support restore session from checkpoint files in v2 in contrib/session_bundle.
  • Added a tf.contrib.image.rotate function for arbitrary angles.
  • Added tf.contrib.framework.filter_variables as a convenience function to
    filter lists of variables based on regular expressions.
  • make_template() takes an optional custom_getter_ param.
  • Added comment about how existing directories are handled by
    recursive_create_dir.
  • Added an op for QR factorizations.
  • Divides and mods in Python API now use flooring (Python) semantics.
  • Android: pre-built libs are now built nightly.
  • Android: cmake/gradle build for TensorFlow Inference library under
    contrib/android/cmake
  • Android: Much more robust Session initialization code.
  • Android: TF stats now exposed directly in demo and log when debug mode is
    active
  • Android: new/better README.md documentation
  • saved_model is available as tf.saved_model.
  • Empty op is now stateful.
  • Improve speed of scatter_update on the cpu for ASSIGN operations.
  • Change reduce_join to treat reduction_indices in the same way as other reduce_ ops.
  • Move TensorForestEstimator to contrib/tensor_forest.
  • Enable compiler optimizations by default and allow configuration in configure.
  • tf.divide now honors the name field.
  • Make metrics weight broadcasting more strict.
  • Add new queue-like StagingArea and new ops: stage and unstage.
  • Enable inplace update ops for strings on CPU. Speed up string concat.

Thanks to our Contributors

This release contains contributions from many people at Google, as well as:

Aaron Hu, Abhishek Aggarwal, Adam Michael, Adriano Carmezim, @AfirSraftGarrier,
Alexander Novikov, Alexander Rosenberg Johansen, Andrew Gibiansky, Andrew Hundt,
Anish Shah, Anton Loss, @b0noI, @BoyuanJiang, Carl Thomé, Chad Kennedy, Comic
Chang, Connor Braa, Daniel N. Lang, Daniel Trebbien,
@danielgordon10, Darcy Liu, Darren Garvey, Dmitri Lapin, Eron Wright, Evan
Cofer, Fabrizio Milo, Finbarr Timbers, Franck Dernoncourt, Garrett Smith,
@guschmue, Hao Wei, Henrik Holst, Huazuo Gao, @ian, @issac, Jacob Israel,
Jangsoo Park, Jin Kim, Jingtian Peng, John Pope, Kye Bostelmann, Liangliang He,
Ling Zhang, Luheng He, Luke Iwanski, @lvli, Michael Basilyan, Mihir Patel,
Mikalai Drabovich, Morten Just, @newge, Nick Butlin, Nishant Shukla,
Pengfei Ni, Przemyslaw Tredak, @rasbt, @ronny, Rudolf Rosa, @RustingSword,
Sam Abrahams, Sam Putnam, @seongahjo, Shi Jiaxin, @skavulya, Steffen MüLler,
@TheUSER123, @tiriplicamihai, @vhasanov, Victor Costan, Vit Stepanovs,
Wangda Tan, Wenjian Huang, Xingdong Zuo, Yaroslav Bulatov, Yota Toyama,
Yuan (Terry) Tang, Yuxin Wu

We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.

TensorFlow 1.0.0-rc2

09 Feb 02:39
Compare
Choose a tag to compare
TensorFlow 1.0.0-rc2 Pre-release
Pre-release

Major Features and Improvements

  • XLA (experimental): initial release of XLA, a domain-specific compiler for TensorFlow graphs, that targets CPUs and GPUs.
  • TensorFlow Debugger (tfdbg): command-line interface and API.
  • New python 3 docker images added.
  • Made pip packages pypi compliant. TensorFlow can now be installed by pip install tensorflow command.
  • Several python API calls have been changed to resemble NumPy more closely.
  • New (experimental) Java API.
  • Android: new person detection + tracking demo implementing "Scalable Object Detection using Deep Neural Networks" (with additional YOLO object detector support)
  • Android: new camera-based image stylization demo based on "A Learned Representation For Artistic Style"

Breaking Changes to the API

To help you upgrade your existing TensorFlow Python code to match the API changes below, we have prepared a conversion script.

  • TensorFlow/models have been moved to a separate github repository.
  • Division and modulus operators (/, //, %) now match Python (flooring)
    semantics. This applies to tf.div and tf.mod as well. To obtain forced
    integer truncation based behaviors you can use tf.truncatediv
    and tf.truncatemod.
  • tf.divide() is now the recommended division function. tf.div() will
    remain, but its semantics do not respond to Python 3 or from future
    mechanisms.
  • tf.reverse() now takes indices of axes to be reversed. E.g.
    tf.reverse(a, [True, False, True]) must now be written as
    tf.reverse(a, [0, 2]). tf.reverse_v2() will remain until 1.0 final.
  • tf.mul, tf.sub and tf.neg are deprecated in favor of tf.multiply,
    tf.subtract and tf.negative.
  • tf.pack and tf.unpack are deprecated in favor of tf.stack and
    tf.unstack.
  • TensorArray.pack and TensorArray.unpack are getting deprecated in favor of
    TensorArray.stack and TensorArray.unstack.
  • The following Python functions have had their arguments changed to use axis
    when referring to specific dimensions. We have kept the old keyword arguments
    for compatibility currently, but we will be removing them well before the
    final 1.0.
    • tf.argmax: dimension becomes axis
    • tf.argmin: dimension becomes axis
    • tf.count_nonzero: reduction_indices becomes axis
    • tf.expand_dims: dim becomes axis
    • tf.reduce_all: reduction_indices becomes axis
    • tf.reduce_any: reduction_indices becomes axis
    • tf.reduce_join: reduction_indices becomes axis
    • tf.reduce_logsumexp: reduction_indices becomes axis
    • tf.reduce_max: reduction_indices becomes axis
    • tf.reduce_mean: reduction_indices becomes axis
    • tf.reduce_min: reduction_indices becomes axis
    • tf.reduce_prod: reduction_indices becomes axis
    • tf.reduce_sum: reduction_indices becomes axis
    • tf.reverse_sequence: batch_dim becomes batch_axis, seq_dim becomes seq_axis
    • tf.sparse_concat: concat_dim becomes axis
    • tf.sparse_reduce_sum: reduction_axes becomes axis
    • tf.sparse_reduce_sum_sparse: reduction_axes becomes axis
    • tf.sparse_split: split_dim becomes axis
  • tf.listdiff has been renamed to tf.setdiff1d to match NumPy naming.
  • tf.inv has been renamed to be tf.reciprocal (component-wise reciprocal)
    to avoid confusion with np.inv which is matrix inversion
  • tf.round now uses banker's rounding (round to even) semantics to match NumPy.
  • tf.split now takes arguments in a reversed order and with different
    keywords. In particular, we now match NumPy order as
    tf.split(value, num_or_size_splits, axis).
  • tf.sparse_split now takes arguments in reversed order and with different
    keywords. In particular we now match NumPy order as
    tf.sparse_split(sp_input, num_split, axis). NOTE: we have temporarily
    made tf.sparse_split require keyword arguments.
  • tf.concat now takes arguments in reversed order and with different keywords. In particular we now match NumPy order as tf.concat(values, axis, name).
  • tf.image.decode_jpeg by default uses the faster DCT method, sacrificing
    a little fidelity for improved speed. One can revert to the old
    behavior by specifying the attribute dct_method='INTEGER_ACCURATE'.
  • tf.complex_abs has been removed from the Python interface. tf.abs
    supports complex tensors and should be used instead.
  • Template.var_scope property renamed to .variable_scope
  • SyncReplicasOptimizer is removed and SyncReplicasOptimizerV2 renamed to SyncReplicasOptimizer.
  • tf.zeros_initializer() and tf.ones_initializer() now return a callable
    that must be called with initializer arguments, in your code replace
    tf.zeros_initializer with tf.zeros_initializer().
  • SparseTensor.shape has been renamed to SparseTensor.dense_shape. Same for
    SparseTensorValue.shape.
  • Replace tf.scalar_summary, tf.histogram_summary, tf.audio_summary, tf.image_summary with tf.summary.scalar, tf.summary.histogram, tf.summary.audio, tf.summary.image, respectively. The new summary ops take name rather than tag as their first argument, meaning summary ops now respect TensorFlow name scopes.
  • Replace tf.train.SummaryWriter and tf.train.SummaryWriterCache with tf.summary.FileWriter and tf.summary.FileWriterCache.
  • Removes RegisterShape from public API. Use C++ shape function registration
    instead.
  • Deprecated _ref dtypes from the python API.
  • In the C++ API (in tensorflow/cc), Input, Output, etc. have moved
    from the tensorflow::ops namespace to tensorflow.
  • Change arg order for {softmax,sparse_softmax,sigmoid}_cross_entropy_with_logits to be (labels, predictions), and force use of named args.

Bug Fixes and Other Changes

  • New op: parallel_stack.
  • Introducing common tf io compression options constants for
    RecordReader/RecordWriter.
  • Add sparse_column_with_vocabulary_file, to specify a feature column that
    transform string features to IDs, where the mapping is defined by a vocabulary
    file.
  • Added index_to_string_table which returns a lookup table that maps indices to
    strings.
  • Add string_to_index_table, which returns a lookup table that matches strings
    to indices.
  • Add a ParallelForWithWorkerId function.
  • Add string_to_index_table, which returns a lookup table that matches strings
    to indices.
  • Support restore session from checkpoint files in v2 in contrib/session_bundle.
  • Added a tf.contrib.image.rotate function for arbitrary angles.
  • Added tf.contrib.framework.filter_variables as a convenience function to
    filter lists of variables based on regular expressions.
  • make_template() takes an optional custom_getter_ param.
  • Added comment about how existing directories are handled by
    recursive_create_dir.
  • Added an op for QR factorizations.
  • Divides and mods in Python API now use flooring (Python) semantics.
  • Android: pre-built libs are now built nightly.
  • Android: cmake/gradle build for TensorFlow Inference library under
    contrib/android/cmake
  • Android: Much more robust Session initialization code.
  • Android: TF stats now exposed directly in demo and log when debug mode is
    active
  • Android: new/better README.md documentation
  • saved_model is available as tf.saved_model.
  • Empty op is now stateful.
  • Improve speed of scatter_update on the cpu for ASSIGN operations.
  • Change reduce_join to treat reduction_indices in the same way as other reduce_ ops.
  • Move TensorForestEstimator to contrib/tensor_forest.
  • Enable compiler optimizations by default and allow configuration in configure.
  • tf.divide now honors the name field.
  • Make metrics weight broadcasting more strict.
  • Add new queue-like StagingArea and new ops: stage and unstage.

Thanks to our Contributors

This release contains contributions from many people at Google, as well as:

Aaron Hu, Abhishek Aggarwal, Adam Michael, Adriano Carmezim, @AfirSraftGarrier,
Alexander Novikov, Alexander Rosenberg Johansen, Andrew Gibiansky, Andrew Hundt,
Anish Shah, Anton Loss, @b0noI, @BoyuanJiang, Carl Thomé, Chad Kennedy, Comic
Chang, Connor Braa, Daniel N. Lang, Daniel Trebbien,
@danielgordon10, Darcy Liu, Darren Garvey, Dmitri Lapin, Eron Wright, Evan
Cofer, Fabrizio Milo, Finbarr Timbers, Franck Dernoncourt, Garrett Smith,
@guschmue, Hao Wei, Henrik Holst, Huazuo Gao, @ian, @issac, Jacob Israel,
Jangsoo Park, Jin Kim, Jingtian Peng, John Pope, Kye Bostelmann, Liangliang He,
Ling Zhang, Luheng He, Luke Iwanski, @lvli, Michael Basilyan, Mihir Patel,
Mikalai Drabovich, Morten Just, @newge, Nick Butlin, Nishant Shukla,
Pengfei Ni, Przemyslaw Tredak, @rasbt, @ronny, Rudolf Rosa, @RustingSword,
Sam Abrahams, Sam Putnam, @seongahjo, Shi Jiaxin, @skavulya, Steffen MüLler,
@TheUSER123, @tiriplicamihai, @vhasanov, Victor Costan, Vit Stepanovs,
Wangda Tan, Wenjian Huang, Xingdong Zuo, Yaroslav Bulatov, Yota Toyama,
Yuan (Terry) Tang, Yuxin Wu

We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.

TensorFlow 1.0.0-rc1

04 Feb 02:29
Compare
Choose a tag to compare
TensorFlow 1.0.0-rc1 Pre-release
Pre-release

Major Features and Improvements

  • XLA (experimental): initial release of XLA, a domain-specific compiler for TensorFlow graphs, that targets CPUs and GPUs.
  • TensorFlow Debugger (tfdbg): command-line interface and API.
  • New python 3 docker images added.
  • Made pip packages pypi compliant. TensorFlow can now be installed by pip install tensorflow command.
  • Several python API calls have been changed to resemble NumPy more closely.
  • New (experimental) Java API.
  • Android: new person detection + tracking demo implementing "Scalable Object Detection using Deep Neural Networks" (with additional YOLO object detector support)
  • Android: new camera-based image stylization demo based on "A Learned Representation For Artistic Style"

Breaking Changes to the API

To help you upgrade your existing TensorFlow Python code to match the API changes below, we have prepared a conversion script.

  • TensorFlow/models have been moved to a separate github repository.
  • Division and modulus operators (/, //, %) now match Python (flooring)
    semantics. This applies to tf.div and tf.mod as well. To obtain forced
    integer truncation based behaviors you can use tf.truncatediv
    and tf.truncatemod.
  • tf.divide() is now the recommended division function. tf.div() will
    remain, but its semantics do not respond to Python 3 or from future
    mechanisms.
  • tf.reverse() now takes indices of axes to be reversed. E.g.
    tf.reverse(a, [True, False, True]) must now be written as
    tf.reverse(a, [0, 2]). tf.reverse_v2() will remain until 1.0 final.
  • tf.mul, tf.sub and tf.neg are deprecated in favor of tf.multiply,
    tf.subtract and tf.negative.
  • tf.pack and tf.unpack are deprecated in favor of tf.stack and
    tf.unstack.
  • TensorArray.pack and TensorArray.unpack are getting deprecated in favor of
    TensorArray.stack and TensorArray.unstack.
  • The following Python functions have had their arguments changed to use axis
    when referring to specific dimensions. We have kept the old keyword arguments
    for compatibility currently, but we will be removing them well before the
    final 1.0.
    • tf.argmax: dimension becomes axis
    • tf.argmin: dimension becomes axis
    • tf.count_nonzero: reduction_indices becomes axis
    • tf.expand_dims: dim becomes axis
    • tf.reduce_all: reduction_indices becomes axis
    • tf.reduce_any: reduction_indices becomes axis
    • tf.reduce_join: reduction_indices becomes axis
    • tf.reduce_logsumexp: reduction_indices becomes axis
    • tf.reduce_max: reduction_indices becomes axis
    • tf.reduce_mean: reduction_indices becomes axis
    • tf.reduce_min: reduction_indices becomes axis
    • tf.reduce_prod: reduction_indices becomes axis
    • tf.reduce_sum: reduction_indices becomes axis
    • tf.reverse_sequence: batch_dim becomes batch_axis, seq_dim becomes seq_axis
    • tf.sparse_concat: concat_dim becomes axis
    • tf.sparse_reduce_sum: reduction_axes becomes axis
    • tf.sparse_reduce_sum_sparse: reduction_axes becomes axis
    • tf.sparse_split: split_dim becomes axis
  • tf.listdiff has been renamed to tf.setdiff1d to match NumPy naming.
  • tf.inv has been renamed to be tf.reciprocal (component-wise reciprocal)
    to avoid confusion with np.inv which is matrix inversion
  • tf.round now uses banker's rounding (round to even) semantics to match NumPy.
  • tf.split now takes arguments in a reversed order and with different
    keywords. In particular, we now match NumPy order as
    tf.split(value, num_or_size_splits, axis).
  • tf.sparse_split now takes arguments in reversed order and with different
    keywords. In particular we now match NumPy order as
    tf.sparse_split(sp_input, num_split, axis). NOTE: we have temporarily
    made tf.sparse_split require keyword arguments.
  • tf.concat now takes arguments in reversed order and with different keywords. In particular we now match NumPy order as tf.concat(values, axis, name).
  • tf.image.decode_jpeg by default uses the faster DCT method, sacrificing
    a little fidelity for improved speed. One can revert to the old
    behavior by specifying the attribute dct_method='INTEGER_ACCURATE'.
  • tf.complex_abs has been removed from the Python interface. tf.abs
    supports complex tensors and should be used instead.
  • Template.var_scope property renamed to .variable_scope
  • SyncReplicasOptimizer is removed and SyncReplicasOptimizerV2 renamed to SyncReplicasOptimizer.
  • tf.zeros_initializer() and tf.ones_initializer() now return a callable
    that must be called with initializer arguments, in your code replace
    tf.zeros_initializer with tf.zeros_initializer().
  • SparseTensor.shape has been renamed to SparseTensor.dense_shape. Same for
    SparseTensorValue.shape.
  • Replace tf.scalar_summary, tf.histogram_summary, tf.audio_summary, tf.image_summary with tf.summary.scalar, tf.summary.histogram, tf.summary.audio, tf.summary.image, respectively. The new summary ops take name rather than tag as their first argument, meaning summary ops now respect TensorFlow name scopes.
  • Replace tf.train.SummaryWriter and tf.train.SummaryWriterCache with tf.summary.FileWriter and tf.summary.FileWriterCache.
  • Removes RegisterShape from public API. Use C++ shape function registration
    instead.
  • Deprecated _ref dtypes from the python API.
  • In the C++ API (in tensorflow/cc), Input, Output, etc. have moved
    from the tensorflow::ops namespace to tensorflow.
  • Change arg order for {softmax,sparse_softmax,sigmoid}_cross_entropy_with_logits to be (labels, predictions), and force use of named args.

Bug Fixes and Other Changes

  • New op: parallel_stack.
  • Introducing common tf io compression options constants for
    RecordReader/RecordWriter.
  • Add sparse_column_with_vocabulary_file, to specify a feature column that
    transform string features to IDs, where the mapping is defined by a vocabulary
    file.
  • Added index_to_string_table which returns a lookup table that maps indices to
    strings.
  • Add string_to_index_table, which returns a lookup table that matches strings
    to indices.
  • Add a ParallelForWithWorkerId function.
  • Add string_to_index_table, which returns a lookup table that matches strings
    to indices.
  • Support restore session from checkpoint files in v2 in contrib/session_bundle.
  • Added a tf.contrib.image.rotate function for arbitrary angles.
  • Added tf.contrib.framework.filter_variables as a convenience function to
    filter lists of variables based on regular expressions.
  • make_template() takes an optional custom_getter_ param.
  • Added comment about how existing directories are handled by
    recursive_create_dir.
  • Added an op for QR factorizations.
  • Divides and mods in Python API now use flooring (Python) semantics.
  • Android: pre-built libs are now built nightly.
  • Android: cmake/gradle build for TensorFlow Inference library under
    contrib/android/cmake
  • Android: Much more robust Session initialization code.
  • Android: TF stats now exposed directly in demo and log when debug mode is
    active
  • Android: new/better README.md documentation
  • saved_model is available as tf.saved_model.
  • Empty op is now stateful.
  • Improve speed of scatter_update on the cpu for ASSIGN operations.
  • Change reduce_join to treat reduction_indices in the same way as other reduce_ ops.
  • Move TensorForestEstimator to contrib/tensor_forest.
  • Enable compiler optimizations by default and allow configuration in configure.
  • tf.divide now honors the name field.
  • Make metrics weight broadcasting more strict.
  • Add new queue-like StagingArea and new ops: stage and unstage.

Thanks to our Contributors

This release contains contributions from many people at Google, as well as:

Aaron Hu, Abhishek Aggarwal, Adam Michael, Adriano Carmezim, @AfirSraftGarrier,
Alexander Novikov, Alexander Rosenberg Johansen, Andrew Gibiansky, Andrew Hundt,
Anish Shah, Anton Loss, @b0noI, @BoyuanJiang, Carl Thomé, Chad Kennedy, Comic
Chang, Connor Braa, Daniel N. Lang, Daniel Trebbien,
@danielgordon10, Darcy Liu, Darren Garvey, Dmitri Lapin, Eron Wright, Evan
Cofer, Fabrizio Milo, Finbarr Timbers, Franck Dernoncourt, Garrett Smith,
@guschmue, Hao Wei, Henrik Holst, Huazuo Gao, @ian, @issac, Jacob Israel,
Jangsoo Park, Jin Kim, Jingtian Peng, John Pope, Kye Bostelmann, Liangliang He,
Ling Zhang, Luheng He, Luke Iwanski, @lvli, Michael Basilyan, Mihir Patel,
Mikalai Drabovich, Morten Just, @newge, Nick Butlin, Nishant Shukla,
Pengfei Ni, Przemyslaw Tredak, @rasbt, @ronny, Rudolf Rosa, @RustingSword,
Sam Abrahams, Sam Putnam, @seongahjo, Shi Jiaxin, @skavulya, Steffen MüLler,
@TheUSER123, @tiriplicamihai, @vhasanov, Victor Costan, Vit Stepanovs,
Wangda Tan, Wenjian Huang, Xingdong Zuo, Yaroslav Bulatov, Yota Toyama,
Yuan (Terry) Tang, Yuxin Wu

We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.

TensorFlow 1.0.0-rc0

26 Jan 20:47
Compare
Choose a tag to compare
TensorFlow 1.0.0-rc0 Pre-release
Pre-release

Major Features and Improvements

  • XLA (experimental): initial release of XLA, a domain-specific compiler for TensorFlow graphs, that targets CPUs and GPUs.
  • TensorFlow Debugger (tfdbg): command-line interface and API.
  • New python 3 docker images added.
  • Made pip packages pypi compliant. TensorFlow can now be installed by pip install tensorflow command.
  • Several python API calls have been changed to resemble NumPy more closely.
  • New (experimental) Java API.
  • Android: new person detection + tracking demo implementing "Scalable Object Detection using Deep Neural Networks" (with additional YOLO object detector support)
  • Android: new camera-based image stylization demo based on "A Learned Representation For Artistic Style"

Breaking Changes to the API

To help you upgrade your existing TensorFlow Python code to match the API changes below, we have prepared a conversion script.

  • TensorFlow/models have been moved to a separate github repository.
  • Division and modulus operators (/, //, %) now match Python (flooring)
    semantics. This applies to tf.div and tf.mod as well. To obtain forced
    integer truncation based behaviors you can use tf.truncatediv
    and tf.truncatemod.
  • tf.divide() is now the recommended division function. tf.div() will
    remain, but its semantics do not respond to Python 3 or from future
    mechanisms.
  • tf.reverse() now takes indices of axes to be reversed. E.g.
    tf.reverse(a, [True, False, True]) must now be written as
    tf.reverse(a, [0, 2]). tf.reverse_v2() will remain until 1.0 final.
  • tf.mul, tf.sub and tf.neg are deprecated in favor of tf.multiply,
    tf.subtract and tf.negative.
  • tf.pack and tf.unpack are deprecated in favor of tf.stack and
    tf.unstack.
  • TensorArray.pack and TensorArray.unpack are getting deprecated in favor of
    TensorArray.stack and TensorArray.unstack.
  • The following Python functions have had their arguments changed to use axis
    when referring to specific dimensions. We have kept the old keyword arguments
    for compatibility currently, but we will be removing them well before the
    final 1.0.
    • tf.argmax: dimension becomes axis
    • tf.argmin: dimension becomes axis
    • tf.count_nonzero: reduction_indices becomes axis
    • tf.expand_dims: dim becomes axis
    • tf.reduce_all: reduction_indices becomes axis
    • tf.reduce_any: reduction_indices becomes axis
    • tf.reduce_join: reduction_indices becomes axis
    • tf.reduce_logsumexp: reduction_indices becomes axis
    • tf.reduce_max: reduction_indices becomes axis
    • tf.reduce_mean: reduction_indices becomes axis
    • tf.reduce_min: reduction_indices becomes axis
    • tf.reduce_prod: reduction_indices becomes axis
    • tf.reduce_sum: reduction_indices becomes axis
    • tf.reverse_sequence: batch_dim becomes batch_axis, seq_dim becomes seq_axis
    • tf.sparse_concat: concat_dim becomes axis
    • tf.sparse_reduce_sum: reduction_axes becomes axis
    • tf.sparse_reduce_sum_sparse: reduction_axes becomes axis
    • tf.sparse_split: split_dim becomes axis
  • tf.listdiff has been renamed to tf.setdiff1d to match NumPy naming.
  • tf.inv has been renamed to be tf.reciprocal (component-wise reciprocal)
    to avoid confusion with np.inv which is matrix inversion
  • tf.round now uses banker's rounding (round to even) semantics to match NumPy.
  • tf.split now takes arguments in a reversed order and with different
    keywords. In particular, we now match NumPy order as
    tf.split(value, num_or_size_splits, axis).
  • tf.sparse_split now takes arguments in reversed order and with different
    keywords. In particular we now match NumPy order as
    tf.sparse_split(sp_input, num_split, axis). NOTE: we have temporarily
    made tf.sparse_split require keyword arguments.
  • tf.concat now takes arguments in reversed order and with different keywords. In particular we now match NumPy order as tf.concat(values, axis, name).
  • tf.image.decode_jpeg by default uses the faster DCT method, sacrificing
    a little fidelity for improved speed. One can revert to the old
    behavior by specifying the attribute dct_method='INTEGER_ACCURATE'.
  • tf.complex_abs has been removed from the Python interface. tf.abs
    supports complex tensors and should be used instead.
  • Template.var_scope property renamed to .variable_scope
  • SyncReplicasOptimizer is removed and SyncReplicasOptimizerV2 renamed to SyncReplicasOptimizer.
  • tf.zeros_initializer() and tf.ones_initializer() now return a callable
    that must be called with initializer arguments, in your code replace
    tf.zeros_initializer with tf.zeros_initializer().
  • SparseTensor.shape has been renamed to SparseTensor.dense_shape. Same for
    SparseTensorValue.shape.
  • Replace tf.scalar_summary, tf.histogram_summary, tf.audio_summary, tf.image_summary with tf.summary.scalar, tf.summary.histogram, tf.summary.audio, tf.summary.image, respectively. The new summary ops take name rather than tag as their first argument, meaning summary ops now respect TensorFlow name scopes.
  • Replace tf.train.SummaryWriter and tf.train.SummaryWriterCache with tf.summary.FileWriter and tf.summary.FileWriterCache.
  • Removes RegisterShape from public API. Use C++ shape function registration
    instead.
  • Deprecated _ref dtypes from the python API.
  • In the C++ API (in tensorflow/cc), Input, Output, etc. have moved
    from the tensorflow::ops namespace to tensorflow.
  • Change arg order for {softmax,sparse_softmax,sigmoid}_cross_entropy_with_logits to be (labels, predictions), and force use of named args.

Bug Fixes and Other Changes

  • New op: parallel_stack.
  • Introducing common tf io compression options constants for
    RecordReader/RecordWriter.
  • Add sparse_column_with_vocabulary_file, to specify a feature column that
    transform string features to IDs, where the mapping is defined by a vocabulary
    file.
  • Added index_to_string_table which returns a lookup table that maps indices to
    strings.
  • Add string_to_index_table, which returns a lookup table that matches strings
    to indices.
  • Add a ParallelForWithWorkerId function.
  • Add string_to_index_table, which returns a lookup table that matches strings
    to indices.
  • Support restore session from checkpoint files in v2 in contrib/session_bundle.
  • Added a tf.contrib.image.rotate function for arbitrary angles.
  • Added tf.contrib.framework.filter_variables as a convenience function to
    filter lists of variables based on regular expressions.
  • make_template() takes an optional custom_getter_ param.
  • Added comment about how existing directories are handled by
    recursive_create_dir.
  • Added an op for QR factorizations.
  • Divides and mods in Python API now use flooring (Python) semantics.
  • Android: pre-built libs are now built nightly.
  • Android: cmake/gradle build for TensorFlow Inference library under
    contrib/android/cmake
  • Android: Much more robust Session initialization code.
  • Android: TF stats now exposed directly in demo and log when debug mode is
    active
  • Android: new/better README.md documentation
  • saved_model is available as tf.saved_model.
  • Empty op is now stateful.
  • Improve speed of scatter_update on the cpu for ASSIGN operations.
  • Change reduce_join to treat reduction_indices in the same way as other reduce_ ops.
  • Move TensorForestEstimator to contrib/tensor_forest.
  • Enable compiler optimizations by default and allow configuration in configure.
  • tf.divide now honors the name field.
  • Make metrics weight broadcasting more strict.
  • Add new queue-like StagingArea and new ops: stage and unstage.

Thanks to our Contributors

This release contains contributions from many people at Google, as well as:

Aaron Hu, Abhishek Aggarwal, Adam Michael, Adriano Carmezim, @AfirSraftGarrier,
Alexander Novikov, Alexander Rosenberg Johansen, Andrew Gibiansky, Andrew Hundt,
Anish Shah, Anton Loss, @b0noI, @BoyuanJiang, Carl Thomé, Chad Kennedy, Comic
Chang, Connor Braa, Daniel N. Lang, Daniel Trebbien,
@danielgordon10, Darcy Liu, Darren Garvey, Dmitri Lapin, Eron Wright, Evan
Cofer, Fabrizio Milo, Finbarr Timbers, Franck Dernoncourt, Garrett Smith,
@guschmue, Hao Wei, Henrik Holst, Huazuo Gao, @ian, @issac, Jacob Israel,
Jangsoo Park, Jin Kim, Jingtian Peng, John Pope, Kye Bostelmann, Liangliang He,
Ling Zhang, Luheng He, Luke Iwanski, @lvli, Michael Basilyan, Mihir Patel,
Mikalai Drabovich, Morten Just, @newge, Nick Butlin, Nishant Shukla,
Pengfei Ni, Przemyslaw Tredak, @rasbt, @ronny, Rudolf Rosa, @RustingSword,
Sam Abrahams, Sam Putnam, @seongahjo, Shi Jiaxin, @skavulya, Steffen MüLler,
@TheUSER123, @tiriplicamihai, @vhasanov, Victor Costan, Vit Stepanovs,
Wangda Tan, Wenjian Huang, Xingdong Zuo, Yaroslav Bulatov, Yota Toyama,
Yuan (Terry) Tang, Yuxin Wu

We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.

TensorFlow 1.0.0-alpha

10 Jan 00:59
Compare
Choose a tag to compare
Pre-release

Major Features and Improvements

  • TensorFlow Debugger (tfdbg): command-line interface and API.
  • New python 3 docker images added.
  • Made pip packages pypi compliant. TensorFlow can now be installed by pip install tensorflow command.
  • Android: person detection + tracking demo implementing Scalable Object
    Detection using Deep Neural Networks.
  • Android: pre-built libs are now built nightly.
  • New (experimental) Java API.

Breaking Changes to the API

  • TensorFlow/models have been moved to a separate github repository.
  • Division and modulus operators (/, //, %) now match Python (flooring)
    semantics. This applies to tf.div and tf.mod as well. To obtain forced
    integer truncation based behaviors you can use tf.truncatediv
    and tf.truncatemod.
  • tf.divide() is now the recommended division function. tf.div() will
    remain, but its semantics do not respond to Python 3 or from future
    mechanisms.
  • tf.reverse() now takes indices of axes to be reversed. E.g.
    tf.reverse(a, [True, False, True]) must now be written as
    tf.reverse(a, [0, 2]). tf.reverse_v2() will remain until 1.0 final.
  • tf.mul, tf.sub and tf.neg are deprecated in favor of tf.multiply,
    tf.subtract and tf.negative.
  • tf.pack and tf.unpack are deprecated in favor of tf.stack and
    tf.unstack.
  • TensorArray.pack and TensorArray.unpack are getting deprecated in favor of
    TensorArray.stack and TensorArray.unstack.
  • The following Python functions have had their arguments changed to use axis
    when referring to specific dimensions. We have kept the old keyword arguments
    for compatibility currently, but we will be removing them well before the
    final 1.0.
    • tf.argmax: dimension becomes axis
    • tf.argmin: dimension becomes axis
    • tf.count_nonzero: reduction_indices becomes axis
    • tf.expand_dims: dim becomes axis
    • tf.reduce_all: reduction_indices becomes axis
    • tf.reduce_any: reduction_indices becomes axis
    • tf.reduce_join: reduction_indices becomes axis
    • tf.reduce_logsumexp: reduction_indices becomes axis
    • tf.reduce_max: reduction_indices becomes axis
    • tf.reduce_mean: reduction_indices becomes axis
    • tf.reduce_min: reduction_indices becomes axis
    • tf.reduce_prod: reduction_indices becomes axis
    • tf.reduce_sum: reduction_indices becomes axis
    • tf.reverse_sequence: batch_dim becomes batch_axis, seq_dim becomes seq_axis
    • tf.sparse_concat: concat_dim becomes axis
    • tf.sparse_reduce_sum: reduction_axes becomes axis
    • tf.sparse_reduce_sum_sparse: reduction_axes becomes axis
    • tf.sparse_split: split_dim becomes axis
  • tf.listdiff has been renamed to tf.setdiff1d to match NumPy naming.
  • tf.inv has been renamed to be tf.reciprocal (component-wise reciprocal)
    to avoid confusion with np.inv which is matrix inversion
  • tf.round now uses banker's rounding (round to even) semantics to match NumPy.
  • tf.split now takes arguments in a reversed order and with different
    keywords. In particular, we now match NumPy order as
    tf.split(value, num_or_size_splits, axis).
  • tf.sparse_split now takes arguments in reversed order and with different
    keywords. In particular we now match NumPy order as
    tf.sparse_split(sp_input, num_split, axis). NOTE: we have temporarily
    made tf.sparse_split require keyword arguments.
  • Deprecated tf.concat operator. Please switch to use tf.concat_v2 for now.
    In the Beta release, we will update tf.concat to match argument order of
    tf.concat_v2.
  • tf.image.decode_jpeg by default uses the faster DCT method, sacrificing
    a little fidelity for improved speed. One can revert to the old
    behavior by specifying the attribute dct_method='INTEGER_ACCURATE'.
  • tf.complex_abs has been removed from the Python interface. tf.abs
    supports complex tensors and should be used instead.
  • Template.var_scope property renamed to .variable_scope
  • SyncReplicasOptimizer is removed and SyncReplicasOptimizerV2 renamed to SyncReplicasOptimizer.
  • tf.zeros_initializer() and tf.ones_initializer() now return a callable
    that must be called with initializer arguments, in your code replace
    tf.zeros_initializer with tf.zeros_initializer().
  • SparseTensor.shape has been renamed to SparseTensor.dense_shape. Same for
    SparseTensorValue.shape.
  • Remove old tf summary ops, like tf.scalar_summary and tf.histogram_summary.
    Use tf.summary.scalar and tf.summary.histogram instead.
  • Remove tf.train.SummaryWriter and tf.train.SummaryWriterCache.
  • Removes RegisterShape from public API. Use C++ shape function registration
    instead.
  • Deprecated _ref dtypes from the python API.

Bug Fixes and Other Changes

  • New op: parallel_stack.
  • Introducing common tf io compression options constants for
    RecordReader/RecordWriter.
  • Add sparse_column_with_vocabulary_file, to specify a feature column that
    transform string features to IDs, where the mapping is defined by a vocabulary
    file.
  • Added index_to_string_table which returns a lookup table that maps indices to
    strings.
  • Add string_to_index_table, which returns a lookup table that matches strings
    to indices.
  • Add a ParallelForWithWorkerId function.
  • Add string_to_index_table, which returns a lookup table that matches strings
    to indices.
  • Support restore session from checkpoint files in v2 in contrib/session_bundle.
  • Added a tf.contrib.image.rotate function for arbitrary angles.
  • Added tf.contrib.framework.filter_variables as a convenience function to
    filter lists of variables based on regular expressions.
  • Remove old tf summary ops, like tf.scalar_summary and tf.histogram_summary.
    Use tf.summary.scalar and tf.summary.histogram instead.
  • make_template() takes an optional custom_getter_ param.
  • Added comment about how existing directories are handled by
    recursive_create_dir.
  • Added an op for QR factorizations.
  • Divides and mods in Python API now use flooring (Python) semantics.
  • Android: cmake/gradle build for TensorFlow Inference library under
    contrib/android/cmake
  • Android: Much more robust Session initialization code.
  • Android: TF stats now exposed directly in demo and log when debug mode is
    active
  • Android: new/better README.md documentation

Thanks to our Contributors

This release contains contributions from many people at Google, as well as:

Aaron Hu, Abhishek Aggarwal, Adam Michael, Adriano Carmezim, @AfirSraftGarrier,
Alexander Novikov, Alexander Rosenberg Johansen, Andrew Gibiansky, Andrew Hundt,
Anish Shah, Anton Loss, @b0noI, @BoyuanJiang, Carl Thomé, Chad Kennedy, Comic
Chang, Connor Braa, Daniel N. Lang, Daniel Trebbien,
@danielgordon10, Darcy Liu, Darren Garvey, Dmitri Lapin, Eron Wright, Evan
Cofer, Fabrizio Milo, Finbarr Timbers, Franck Dernoncourt, Garrett Smith,
@guschmue, Hao Wei, Henrik Holst, Huazuo Gao, @ian, @issac, Jacob Israel,
Jangsoo Park, Jin Kim, Jingtian Peng, John Pope, Kye Bostelmann, Liangliang He,
Ling Zhang, Luheng He, Luke Iwanski, @lvli, Michael Basilyan, Mihir Patel,
Mikalai Drabovich, Morten Just, @newge, Nick Butlin, Nishant Shukla,
Pengfei Ni, Przemyslaw Tredak, @rasbt, @ronny, Rudolf Rosa, @RustingSword,
Sam Abrahams, Sam Putnam, @seongahjo, Shi Jiaxin, @skavulya, Steffen MüLler,
@TheUSER123, @tiriplicamihai, @vhasanov, Victor Costan, Vit Stepanovs,
Wangda Tan, Wenjian Huang, Xingdong Zuo, Yaroslav Bulatov, Yota Toyama,
Yuan (Terry) Tang, Yuxin Wu

We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.

TensorFlow v0.12.1

29 Dec 23:13
Compare
Choose a tag to compare

Bug fixes and minor changes.

TensorFlow v0.12.0

20 Dec 21:56
Compare
Choose a tag to compare

Bug fixes and minor changes.

TensorFlow v0.12.0 RC1

12 Dec 18:32
Compare
Choose a tag to compare
Pre-release

Bug fixes and minor changes.

TensorFlow v0.12.0 RC0

29 Nov 02:08
Compare
Choose a tag to compare
Pre-release

Release 0.12.0

Major Features and Improvements

  • TensorFlow now builds and runs on Microsoft Windows (tested on Windows 10,
    Windows 7, and Windows Server 2016). Supported languages include Python (via a
    pip package) and C++. CUDA 8.0 and cuDNN 5.1 are supported for GPU
    acceleration. Known limitations include: It is not currently possible to load
    a custom op library. The GCS and HDFS file systems are not currently
    supported. The following ops are not currently implemented:
    DepthwiseConv2dNative, DepthwiseConv2dNativeBackpropFilter,
    DepthwiseConv2dNativeBackpropInput, Dequantize, Digamma, Erf, Erfc, Igamma,
    Igammac, Lgamma, Polygamma, QuantizeAndDequantize, QuantizedAvgPool,
    QuantizedBatchNomWithGlobalNormalization, QuantizedBiasAdd, QuantizedConcat,
    QuantizedConv2D, QuantizedMatmul, QuantizedMaxPool,
    QuantizeDownAndShrinkRange, QuantizedRelu, QuantizedRelu6, QuantizedReshape,
    QuantizeV2, RequantizationRange, and Requantize.
  • Go: Experimental API in Go to create and execute graphs
    (https://godoc.org/github.com/tensorflow/tensorflow/tensorflow/go)
  • New checkpoint format becomes the default in tf.train.Saver. Old V1
    checkpoints continue to be readable; controlled by the write_version
    argument, tf.train.Saver now by default writes out in the new V2
    format. It significantly reduces the peak memory required and latency
    incurred during restore.
  • Added a new library for library of matrix-free (iterative) solvers for linear
    equations, linear least-squares, eigenvalues and singular values in
    tensorflow/contrib/solvers. Initial version has lanczos bidiagonalization,
    conjugate gradients and CGLS.
  • Added gradients for matrix_solve_ls and self_adjoint_eig.
  • Large cleanup to add second order gradient for ops with C++ gradients and
    improve existing gradients such that most ops can now be differentiated
    multiple times.
  • Added a solver for ordinary differential equations,
    tf.contrib.integrate.odeint.
  • New contrib module for tensors with named axes, tf.contrib.labeled_tensor.
  • Visualization of embeddings in TensorBoard.

Breaking Changes to the API

  • BusAdjacency enum replaced with a protocol buffer DeviceLocality. PCI bus
    indexing now starts from 1 instead of 0, and bus_id==0 is used where
    previously BUS_ANY was used.
  • Env::FileExists and FileSystem::FileExists now return a
    tensorflow::Status intead of a bool. Any callers to this function can be
    converted to a bool by adding .ok() to the call.
  • C API: Type TF_SessionWithGraph has been renamed to TF_Session, indicating
    its preferred use in language bindings for TensorFlow. What was previously
    TF_Session has been renamed to TF_DeprecatedSession.
  • C API: Renamed TF_Port to TF_Output.
  • C API: The caller retains ownership of TF_Tensor objects provided to
    TF_Run, TF_SessionRun, TF_SetAttrTensor etc.
  • Renamed tf.image.per_image_whitening() to
    tf.image.per_image_standardization()
  • Move Summary protobuf constructors to tf.summary submodule.
  • Deprecate histogram_summary, audio_summary, scalar_summary,
    image_summary, merge_summary, and merge_all_summaries.
  • Combined batch_* and regular version of linear algebra and FFT ops. The
    regular op now handles batches as well. All batch_* Python interfaces were
    removed.
  • tf.all_variables, tf.VARIABLES and tf.initialize_all_variables renamed
    to tf.global_variables, tf.GLOBAL_VARIABLES and
    tf.global_variable_initializers respectively.

Bug Fixes and Other Changes

  • Use threadsafe version of lgamma function.
  • Fix tf.sqrt handling of negative arguments.
  • Fixed bug causing incorrect number of threads to be used for multi-threaded
    benchmarks.
  • Performance optimizations for batch_matmul on multi-core CPUs.
  • Improve trace, matrix_set_diag, matrix_diag_part and their gradients to
    work for rectangular matrices.
  • Support for SVD of complex valued matrices.

Thanks to our Contributors

This release contains contributions from many people at Google, as well as:

@a7744hsc, Abhi Agg, @admcrae, Adriano Carmezim, Aki Sukegawa, Alex Kendall,
Alexander Rosenberg Johansen, @amcrae, Amlan Kar, Andre Simpelo, Andreas Eberle,
Andrew Hundt, Arnaud Lenglet, @b0noI, Balachander Ramachandran, Ben Barsdell,
Ben Guidarelli, Benjamin Mularczyk, Burness Duan, @c0g, Changming Sun,
@chanis, Corey Wharton, Dan J, Daniel Trebbien, Darren Garvey, David Brailovsky,
David Jones, Di Zeng, @DjangoPeng, Dr. Kashif Rasul, @Drag0, Fabrizio (Misto)
Milo, FabríCio Ceschin, @fp, @Ghedeon, @guschmue, Gökçen Eraslan, Haosdent
Huang, Haroen Viaene, Harold Cooper, Henrik Holst, @hoangmit, Ivan Ukhov, Javier
Dehesa, Jingtian Peng, Jithin Odattu, Joan Pastor, Johan Mathe, Johannes Mayer,
Jongwook Choi, Justus Schwabedal, Kai Wolf, Kamil Hryniewicz, Kamran Amini,
Karen Brems, Karl Lattimer, @kborer, Ken Shirriff, Kevin Rose, Larissa Laich,
Laurent Mazare, Leonard Lee, Liang-Chi Hsieh, Liangliang He, Luke Iwanski,
Marek Kolodziej, Moustafa Alzantot, @MrQianJinSi, @nagachika, Neil Han, Nick
Meehan, Niels Ole Salscheider, Nikhil Mishra, @nschuc, Ondrej Skopek, OndřEj
Filip, @OscarDPan, Pablo Moyano, Przemyslaw Tredak, @qitaishui, @Quarazy,
@raix852, Philipp Helo, Sam Abrahams, @SriramRamesh, Till Hoffmann, Tushar Soni,
@tvn, @tyfkda, Uwe Schmidt, Victor Villas, Vit Stepanovs, Vladislav Gubarev,
@wujingyue, Xuesong Yang, Yi Liu, Yilei Yang, @youyou3, Yuan (Terry) Tang,
Yuming Wang, Zafar Takhirov, @zhongyuk, Ziming Dong, @guotong1988

We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.