[go: nahoru, domu]

nLab topological photonics (changes)

Showing changes from revision #4 to #5: Added | Removed | Changed

Contents

Idea

The field of topological photonics deals with electromagnetic phenomena (specifically the propagation of light in suitable materials) which mimic the behaviour of electrons in topological insulator materials: photonic crystals.

References

(For more see the references at photonic crystal.)

Original proposal:

  • Duncan Haldane, S. Raghu, Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry, Phys. Rev. Lett. 100 (2008) 013904 [[doi:10.1103/PhysRevLett.100.013904](https://doi.org/10.1103/PhysRevLett.100.013904)]

  • Z. Wang, Y. D. Chong, J. D. Joannopoulos, M. Soljačić, Reflection-free one-way edge modes in a gyromagnetic photonic crystal, Phys. Rev. Lett., vol. 100, no. 1, p. 013905, 2008 (doi:10.1103/physrevlett.100.013905)

First realizations:

  • Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, Observation of unidirectional backscattering-immune topological electromagnetic states, Nature, vol. 461, no. 7265, pp. 772–775, 2009 (doi:10.1038/nature08293)

  • M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, et al., Photonic Floquet topological insulators, Nature, vol. 496, no. 7444, pp. 196–200, 2013 (doi:10.1038/nature12066)

Review:

  • Ling Lu, John D. Joannopoulos, Marin Soljačić, Topological photonics, Nature Photonics 8 (2014) 821–829 [[nphoton:2014.248](https://www.nature.com/articles/nphoton.2014.248)]

  • Tomoki Ozawa, et al., Topological photonics, Rev. Mod. Phys. 91, 015006 2019 (doi:10.1103/RevModPhys.91.015006)

  • Mordechai Segev, Miguel A. Bandres, Topological photonics: Where do we go from here?, De Gruyter 2020 (doi:10.1515/nanoph-2020-0441)

  • Charles Choi, Topological Photonics: What It Is and Why We Need It, IEEE Spectrum, Mar 2020 (web)

Last revised on September 11, 2022 at 14:45:47. See the history of this page for a list of all contributions to it.