[go: nahoru, domu]

nLab algebra over an operad (changes)

Showing changes from revision #15 to #16: Added | Removed | Changed

Context

Higher Categorical algebra

higher algebracategory theory+algebra

universal algebrainternalization and categorical algebra

Algebraic theories

universal algebra

Algebras and modules

categorical semantics

Higher algebras

Model category presentations

Geometry on formal duals of algebras

Theorems

Contents

Idea

An operad is a structure whose elements are formal operations, closed under the operation of plugging some formal operations into others. An algebra over an operad is a structure in which the formal operations are interpreted as actual operations on an object, via a suitable action.

Accordingly, there is a notion of module over an algebra over an operad.

Definition

Let MM be a closed symmetric monoidal category with monoidal unit II, and let XX be any object. There is a canonical or tautological operad Op(X)Op(X) whose n thn^{th} component is the internal hom M(X n,X)M(X^{\otimes n}, X); the operad identity is the map

1 X:IM(X,X)1_X: I \to M(X, X)

and the operad multiplication is given by the composite

M(X k,X)M(X n 1,X)M(X n k,X) 1func M(X k,X)M(X n 1++n k,X k) comp M(X n 1++n k,X)\array{ M(X^{\otimes k}, X) \otimes M(X^{\otimes n_1}, X) \otimes \ldots \otimes M(X^{\otimes n_k}, X) & \stackrel{1 \otimes func_\otimes}{\to} & M(X^{\otimes k}, X) \otimes M(X^{\otimes n_1 + \ldots + n_k}, X^{\otimes k}) \\ & \stackrel{comp}{\to} & M(X^{\otimes n_1 + \ldots + n_k}, X) }

Let OO be any operad in MM. An algebra over OO is an object XX equipped with an operad map ξ:OOp(X)\xi: O \to Op(X). Alternatively, the data of an OO-algebra is given by a sequence of maps

O(k)X kXO(k) \otimes X^{\otimes k} \to X

which specifies an action of OO via finitary operations on XX, with compatibility conditions between the operad multiplication and the structure of plugging in kk finitary operations on XX into a kk-ary operation (and compatibility with actions by permutations).

An algebra over an operad can equivalently be defined as a category over an operad which has a single object.

If MM is cocomplete, then an operad in MM may be defined as a monoid in the symmetric monoidal category (M op,)(M^{\mathbb{P}^{op}}, \circ) of permutation representations in MM, aka species in MM, with respect to the substitution product \circ. There is an actegory structure M op×MMM^{\mathbb{P}^{op}} \times M \to M which arises by restriction of the monoidal product \circ if we consider MM as fully embedded in M opM^{\mathbb{P}^{op}}:

i:MM op:X(nδ n0X)i: M \to M^{\mathbb{P}^{op}}: X \mapsto (n \mapsto \delta_{n 0} \cdot X)

(interpret XX as concentrated in the 0-ary or “constants” component), so that an operad OO induces a monad O^\hat{O} on MM via the actegory structure. As a functor, the monad may be defined by a coend formula

O^(X)= kO(k)X k\hat{O}(X) = \int^{k \in \mathbb{P}} O(k) \otimes X^{\otimes k}

An OO-algebra is the same thing as an algebra over the monad O^\hat{O}.

Remark If CC is the symmetric monoidal enriching category, OO the CC-enriched operad in question, and AObj(C)A \in Obj(C) is the single hom-object of the O-category with single object, it makes sense to write BA\mathbf{B}A for that OO-category. Compare the discussion at monoid and group, which are special cases of this.

Examples

Over single-coloured operads

Over coloured operads

  • There is a coloured operad Mod PMod_P whose algebras are pairs consisting of a PP-algebra AA and a module over AA;

  • For a single-coloured operad PP there is a coloured operad P 1P^1 whose algebras are triples consisting of two PP algebras and a morphism A 1A 2A_1 \to A_2 between them.

  • Let CC be a set. There is a CC-coloured operad whose algebras are VV-enriched categories with CC as their set of objects.

Literature

Generalizations

  • S. N. Tronin, Algebras over multicategories, Russ Math. (2016) 60: 52. doi; Rus. original: С. Н. Тронин, Об алгебрах над мультикатегориями, Изв. вузов. Матем., 2016, № 2, 62–74

Last revised on March 22, 2021 at 08:27:11. See the history of this page for a list of all contributions to it.