[go: nahoru, domu]

login
A007529
Prime triples: p; p+2 or p+4; p+6 all prime.
(Formerly M3760)
46
5, 7, 11, 13, 17, 37, 41, 67, 97, 101, 103, 107, 191, 193, 223, 227, 277, 307, 311, 347, 457, 461, 613, 641, 821, 823, 853, 857, 877, 881, 1087, 1091, 1277, 1297, 1301, 1423, 1427, 1447, 1481, 1483, 1487, 1607, 1663, 1693, 1783, 1867, 1871, 1873, 1993, 1997
OFFSET
1,1
COMMENTS
Or, prime(m) such that prime(m+2) = prime(m)+6. - Zak Seidov, May 07 2012
REFERENCES
H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see p. 65.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
FORMULA
a(n) = A098415(n) - 6. - Zak Seidov, Apr 30 2015
MAPLE
N:= 10000: # to get all terms <= N
Primes:= select(isprime, [seq(2*i+1, i=1..floor((N+5)/2))]):locs:= select(t -> Primes[t+2]-Primes[t]=6, [$1..nops(Primes)-2]):
Primes[locs]; # Robert Israel, Apr 30 2015
MATHEMATICA
ptrsQ[n_]:=PrimeQ[n+6]&&(PrimeQ[n+2]||PrimeQ[n+4])
Select[Prime[Range[400]], ptrsQ] (* Harvey P. Dale, Mar 08 2011 *)
PROG
(Magma) [NthPrime(n): n in [1..310] | (NthPrime(n)+6) eq NthPrime(n+2)]; // Bruno Berselli, May 07 2012
(PARI) p=2; q=3; forprime(r=5, 1e4, if(r-p==6, print1(p", ")); p=q; q=r) \\ Charles R Greathouse IV, May 07 2012
CROSSREFS
KEYWORD
nonn
STATUS
approved