[go: nahoru, domu]

login
Search: a007529 -id:a007529
     Sort: relevance | references | number | modified | created      Format: long | short | data
(A007529(n) + A098415(n)) / 4.
+20
3
4, 5, 7, 8, 10, 20, 22, 35, 50, 52, 53, 55, 97, 98, 113, 115, 140, 155, 157, 175, 230, 232, 308, 322, 412, 413, 428, 430, 440, 442, 545, 547, 640, 650, 652, 713, 715, 725, 742, 743, 745, 805, 833, 848, 893, 935, 937, 938, 998, 1000, 1042, 1043, 1070, 1120, 1135
OFFSET
1,1
COMMENTS
(A007529(n),2*a(n)+A098417(n), A098415(n)) is a prime triple (p,q,r) with p<q<r=p+6.
LINKS
Eric Weisstein's World of Mathematics, Prime Triplet
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Sep 07 2004
STATUS
approved
A098414(n) - (A007529(n) + A098415(n))/2.
+20
3
-1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1
OFFSET
1,1
COMMENTS
(A007529(n),2*A098416(n)+a(n), A098415(n)) is a prime triple (p,q,r) with p<q<r=p+6.
LINKS
Eric Weisstein's World of Mathematics, Prime Triplet
KEYWORD
sign
AUTHOR
Reinhard Zumkeller, Sep 07 2004
STATUS
approved
Primes p such that p + 6 is also prime. (Lesser of a pair of sexy primes.)
+10
117
5, 7, 11, 13, 17, 23, 31, 37, 41, 47, 53, 61, 67, 73, 83, 97, 101, 103, 107, 131, 151, 157, 167, 173, 191, 193, 223, 227, 233, 251, 257, 263, 271, 277, 307, 311, 331, 347, 353, 367, 373, 383, 433, 443, 457, 461, 503, 541, 557, 563, 571, 587, 593, 601, 607, 613, 641, 647
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Sexy Primes. [The definition in this webpage is unsatisfactory, because it defines a "sexy prime" as a pair of primes.- N. J. A. Sloane, Mar 07 2021].
FORMULA
From M. F. Hasler, Jan 02 2020: (Start)
a(n) = A046117(n) - 6 = A087695(n) - 3.
A023201 = { p = A000040(k) | A000040(k+1) = p+6 or A000040(k+2) = p+6 } = A031924 U A007529. (End)
MAPLE
A023201 := proc(n)
option remember;
if n = 1 then
5;
else
for a from procname(n-1)+2 by 2 do
if isprime(a) and isprime(a+6) then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, May 28 2013
MATHEMATICA
Select[Range[10^2], PrimeQ[ # ]&&PrimeQ[ #+6] &] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
Select[Prime[Range[120]], PrimeQ[#+6]&] (* Harvey P. Dale, Mar 20 2018 *)
PROG
(Magma) [n: n in [0..40000] | IsPrime(n) and IsPrime(n+6)] // Vincenzo Librandi, Aug 04 2010
(Haskell)
a023201 n = a023201_list !! (n-1)
a023201_list = filter ((== 1) . a010051 . (+ 6)) a000040_list
-- Reinhard Zumkeller, Feb 25 2013
(PARI) is(n)=isprime(n+6)&&isprime(n) \\ Charles R Greathouse IV, Mar 20 2013
CROSSREFS
A031924 (primes starting a gap of 6) and A007529 together give this (A023201).
Cf. A046117 (a(n)+6), A087695 (a(n)+3), A098428, A000040, A010051, A006489 (subsequence).
KEYWORD
nonn,easy
STATUS
approved
Initial members of prime triples (p, p+2, p+6).
+10
81
5, 11, 17, 41, 101, 107, 191, 227, 311, 347, 461, 641, 821, 857, 881, 1091, 1277, 1301, 1427, 1481, 1487, 1607, 1871, 1997, 2081, 2237, 2267, 2657, 2687, 3251, 3461, 3527, 3671, 3917, 4001, 4127, 4517, 4637, 4787, 4931, 4967, 5231, 5477
OFFSET
1,1
COMMENTS
Subsequence of A001359. - R. J. Mathar, Feb 10 2013
All terms are congruent to 5 (mod 6). - Matt C. Anderson, May 22 2015
Intersection of A001359 and A023201. - Zak Seidov, Mar 12 2016
LINKS
Matt C. Anderson Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
T. Forbes and Norman Luhn, Prime k-tuplets
R. J. Mathar, Table of Prime Gap Constellations (2013,2024), 275 pages (no not print...)
P. Pollack, Analytic and Combinatorial Number Theory, Course Notes, p. 132, ex. 3.4.3. [Broken link?]
P. Pollack, Analytic and Combinatorial Number Theory, Course Notes, p. 132, ex. 3.4.3.
Eric Weisstein's World of Mathematics, Prime Triplet
MAPLE
A022004 := proc(n)
if n= 1 then
5;
else
for a from procname(n-1)+2 by 2 do
if isprime(a) and isprime(a+2) and isprime(a+6) then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, Jul 11 2012
MATHEMATICA
Select[Prime[Range[1000]], PrimeQ[#+2] && PrimeQ[#+6]&] (* Vladimir Joseph Stephan Orlovsky, Mar 30 2011 *)
Transpose[Select[Partition[Prime[Range[1000]], 3, 1], Differences[#]=={2, 4}&]][[1]] (* Harvey P. Dale, Dec 24 2011 *)
PROG
(Magma) [ p: p in PrimesUpTo(10000) | IsPrime(p+2) and IsPrime(p+6) ] // Vincenzo Librandi, Nov 19 2010
(PARI) is(n)=isprime(n)&&isprime(n+2)&&isprime(n+6) \\ Charles R Greathouse IV, Jul 01 2013
(Python)
from sympy import primerange
def aupto(limit):
p, q, alst = 2, 3, []
for r in primerange(5, limit+7):
if p+2 == q and p+6 == r: alst.append(p)
p, q = q, r
return alst
print(aupto(5477)) # Michael S. Branicky, May 11 2021
CROSSREFS
Cf. A073648, A098412, A372247 (subsequence).
Subsequence of A007529.
KEYWORD
nonn,easy
STATUS
approved
Initial members of prime triples (p, p+4, p+6).
+10
61
7, 13, 37, 67, 97, 103, 193, 223, 277, 307, 457, 613, 823, 853, 877, 1087, 1297, 1423, 1447, 1483, 1663, 1693, 1783, 1867, 1873, 1993, 2083, 2137, 2377, 2683, 2707, 2797, 3163, 3253, 3457, 3463, 3847, 4153, 4513, 4783, 5227, 5413, 5437, 5647, 5653, 5737, 6547
OFFSET
1,1
COMMENTS
Subsequence of A029710. - R. J. Mathar, May 06 2017
All terms are congruent to 1 (modulo 6). - Matt C. Anderson, May 22 2015
LINKS
Matt C. Anderson, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe).
Tony Forbes and Norman Luhn, Prime k-tuplets.
Eric Weisstein's World of Mathematics, Prime Triplet.
MATHEMATICA
Select[Table[Prime[n], {n, 2000}], PrimeQ[# + 4] && PrimeQ[# + 6] &] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)
PROG
(Magma) [p: p in PrimesUpTo(10000) | IsPrime(p+4) and IsPrime(p+6)]; // Vincenzo Librandi, Aug 23 2015
(PARI) select(p->isprime(p+4) && isprime(p+6), primes(1000)) \\ Charles R Greathouse IV, Mar 17 2023
CROSSREFS
Subsequence of A029710 and hence of A002476.
Subsequence of A007529.
KEYWORD
nonn,easy
STATUS
approved
Primes followed by a gap of 6, i.e., next prime is p + 6.
+10
58
23, 31, 47, 53, 61, 73, 83, 131, 151, 157, 167, 173, 233, 251, 257, 263, 271, 331, 353, 367, 373, 383, 433, 443, 503, 541, 557, 563, 571, 587, 593, 601, 607, 647, 653, 677, 727, 733, 751, 941, 947, 971, 977, 991, 1013, 1033, 1063, 1097, 1103, 1117, 1123, 1181
OFFSET
1,1
COMMENTS
Original name: Lower prime of a difference of 6 between consecutive primes.
Conjecture: The sequence is infinite and for every n >= 7746, a(n+1) < a(n)^(1+1/n). Namely for n >= 7746, a(n)^(1/n) is a strictly decreasing function of n (See comment lines of the sequence A248855). - Jahangeer Kholdi and Farideh Firoozbakht, Nov 29 2014
EXAMPLE
23 is a term as the next prime 29 = 23 + 6.
MAPLE
A031924 := proc(n)
option remember;
if n = 1 then
return 23;
else
p := nextprime(procname(n-1)) ;
q := nextprime(p) ;
while q-p <> 6 do
p := q ;
q := nextprime(p) ;
end do:
return p;
end if;
end proc: # R. J. Mathar, Jan 23 2013
MATHEMATICA
Transpose[Select[Partition[Prime[Range[200]], 2, 1], Last[#] - First[#] == 6 &]][[1]] (* Bruno Berselli, Apr 09 2013 *)
PROG
(PARI) is(n)=isprime(n)&&nextprime(n+1)-n==6 \\ Charles R Greathouse IV, Mar 21 2013
(PARI) apply( A031924(n, p=2, show=0, g=6)={forprime(q=p+1, , p+g!=(p=q) || (show&&print1(p-g", ")) || n-- || return(p-g))}, [1..99]) \\ Use nxt(p)=A031924(1, p) to get the term following p, use show=1 to print all a(1..n), g to select a different gap. - M. F. Hasler, Jan 02 2020
(Magma) [p: p in PrimesUpTo(1200) | NextPrime(p)-p eq 6]; // Bruno Berselli, Apr 09 2013
(GAP) P:=Filtered([1..1200], IsPrime);;
List(Filtered([1..Length(P)-1], i->P[i+1]-P[i]=6), k->P[k]); # Muniru A Asiru, Jan 30 2019
CROSSREFS
Cf. A001359, A023201, A031925; A031924 and A007529 together give A023201.
KEYWORD
nonn
AUTHOR
EXTENSIONS
New name from M. F. Hasler, Jan 02 2020
STATUS
approved
Primes p such that three (the maximum number) primes occur between p and p+12.
+10
31
5, 7, 11, 97, 101, 1481, 1867, 3457, 5647, 15727, 16057, 16061, 19417, 19421, 21011, 22271, 43777, 43781, 55331, 79687, 88807, 101107, 144161, 165701, 166841, 195731, 201821, 225341, 247601, 257857, 266677, 268811, 276037, 284737, 326141, 340927
OFFSET
1,1
COMMENTS
p+12 must be a prime. - Harvey P. Dale, Jun 11 2015
A086140 is the union of A022006 and A022007. By merging the two b-files I have extended the current b-file up to n=10000 (nearly n=20000 would have been possible). I add a comparison (see Links) between the frequency of prime 5-tuples and an asymptotic approximation, which is unproven but likely to be true, and based on a conjecture first published by Hardy and Littlewood in 1923. Twins, triples and quadruplets are treated as well. - Gerhard Kirchner, Dec 07 2016
LINKS
Harvey P. Dale and Gerhard Kirchner, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harvey P. Dale)
EXAMPLE
There are two types of prime 5-tuples, and both are represented in this sequence. (11, 13, 17, 19, 23) is a prime 5-tuple of the form (p, p+2, p+6, p+8, p+12), so 11 is in the sequence, and (97, 101, 103, 107, 109) is a prime 5-tuple of the form (p, p+4, p+6, p+10, p+12), so 97 is in the sequence. - Michael B. Porter, Dec 19 2016
MATHEMATICA
cp[x_, y_] := Count[Table[PrimeQ[i], {i, x, y}], True] {d=12, k=0}; Do[s=Prime[n]; s1=Prime[n+1]; If[PrimeQ[s+d]&&Equal[cp[s+1, s+d-1], 3], k=k+1; Print[s]], {n, 1, 100000}]
(* Second program: *)
Transpose[Select[Partition[Prime[Range[30000]], 5, 1], #[[5]]-#[[1]] == 12&]][[1]] (* Harvey P. Dale, Jun 11 2015 *)
CROSSREFS
Cf. A031930, A046133, A086139, A086136, A022006, A022007, A001359 (twins), A007529 (triples), A007530 (quadruplets).
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 29 2003
STATUS
approved
Initial members of prime septuplets.
+10
29
11, 5639, 88799, 165701, 284729, 626609, 855719, 1068701, 1146779, 6560999, 7540439, 8573429, 11900501, 15760091, 17843459, 18504371, 19089599, 21036131, 24001709, 25658441, 39431921, 42981929, 43534019, 45002591, 67816361, 69156539, 74266259, 79208399, 80427029, 84104549, 86818211, 87988709, 93625991, 124066079
OFFSET
1,1
LINKS
Tim Johannes Ohrtmann, Table of n, a(n) for n = 1..1990
Tony Forbes, k-tuplets
FORMULA
Disjoint union of A022009 and A022010. - M. F. Hasler, Aug 04 2021
CROSSREFS
Initial members of all of the first prime k-tuplets:
twin primes: A001359.
prime triples: A007529 out of A022004, A022005.
prime quadruplets: A007530.
prime 5-tuples: A086140 out of A022007, A022006.
prime sextuplets: A022008.
prime septuplets: this sequence out of A022009, A022010.
prime octuplets: A065706 out of A022011, A022012, A022013.
prime nonuplets: A257125 out of A022547, A022548, A022545, A022546.
prime decaplets: A257127 out of A027569, A027570.
prime 11-tuplets: A257129 out of A213646, A213647.
prime 12-tuplets: A257131 out of A213601, A213645.
prime 13-tuplets: A257135 out of A214947, A257137, A257138, A257139, A257140, A257141.
prime 14-tuplets: A257166 out of A257167, A257168.
prime 15-tuplets: A257169 out of A257304, A257305, A257306, A257307.
prime 16-tuplets: A257308 out of A257369, A257370.
prime 17-tuplets: A257373 out of A257374, A257375, A257376, A257377.
Cf. A343637 (distance from 10^n to the next septuplet).
Cf. A100418.
KEYWORD
nonn
AUTHOR
STATUS
approved
Initial members of prime 9-tuplets (or nonuplets).
+10
28
7, 11, 13, 17, 1277, 88789, 113143, 113147, 855709, 74266249, 182403491, 226449521, 252277007, 408936947, 521481197, 626927443, 910935911, 964669609, 1042090781, 1116452627, 1209950867, 1422475909, 1459270271, 1645175087, 2117861719, 2335215973, 2558211559, 2843348351, 2873599429, 2966003057, 3447123283, 3947480417
OFFSET
1,1
COMMENTS
Primes prime(m) such that prime(m+8) = prime(m) + 30. - Zak Seidov, Jul 06 2015
LINKS
Zak Seidov, Table of n, a(n) for n = 1..651 (Essentially original b-file by Tim Johannes Ohrtmann, just added a(1)=7 and corrected EndOfFile)
Tony Forbes and Norman Luhn, Smallest Prime k-tuplets
MATHEMATICA
{p, q, r, s, t, u, v, w, x} = Prime@ Range@ 9; lst = {}; While[p < 1000000001, If[p + 30 == x, AppendTo[lst, p]; Print@ p]; {p, q, r, s, t, u, v, w, x} = {q, r, s, t, u, v, w, x, NextPrime@ x}]; lst (* Robert G. Wilson v, Jul 06 2015 *)
Select[Partition[Prime[Range[5 10^6]], 9, 1], #[[1]]+30==#[[9]]&][[;; , 1]] (* The program generates the first 10 terms of the sequence. To generate more, increase the Range constant. *) (* Harvey P. Dale, Jul 01 2024 *)
PROG
(PARI) main(size)=v=vector(size); i=0; m=1; while(i<size, if(prime(m)+30===prime(m+8), v[i++]=prime(m)); m++; ); v \\ Anders Hellström, Jul 08 2015
(Magma) [NthPrime(n): n in [0..2*10^4] | NthPrime(n+8) eq (NthPrime(n) + 30)]; // Vincenzo Librandi, Jul 08 2015
CROSSREFS
Initial members of all of the first prime k-tuplets:
twin primes: A001359.
prime triples: A007529 out of A022004, A022005.
prime quadruplets: A007530.
prime 5-tuples: A086140 out of A022007, A022006.
prime sextuplets: A022008.
prime septuplets: A257124 out of A022009, A022010.
prime octuplets: A065706 out of A022011, A022012, A022013.
prime nonuplets: this sequence out of A022547, A022548, A022545, A022546.
prime decaplets: A257127 out of A027569, A027570.
prime 11-tuplets: A257129 out of A213646, A213647.
prime 12-tuplets: A257131 out of A213601, A213645.
prime 13-tuplets: A257135 out of A214947, A257137, A257138, A257139, A257140, A257141.
prime 14-tuplets: A257166 out of A257167, A257168.
prime 15-tuplets: A257169 out of A257304, A257305, A257306, A257307.
prime 16-tuplets: A257308 out of A257369, A257370.
prime 17-tuplets: A257373 out of A257374, A257375, A257376, A257377.
KEYWORD
nonn
AUTHOR
STATUS
approved
Initial members of prime 10-tuplets (or decaplets).
+10
28
11, 9853497737, 21956291867, 22741837817, 33081664151, 83122625471, 164444511587, 179590045487, 217999764107, 231255798857, 242360943257, 294920291201, 573459229151, 663903555851, 666413245007, 688697679401, 696391309697, 730121110331, 867132039857, 974275568237, 976136848847, 1002263588297
OFFSET
1,1
LINKS
M. F. Hasler, Table of n, a(n) for n = 1..10000 (first 101 terms from Tim Johannes Ohrtmann), Mar 01 2022
Tony Forbes and Norman Luhn Prime k-tuplets
Norman Luhn, The big database of "The smallest prime k-tuplets", section "10-tuplets": up to 10^20 as of March 2022.
CROSSREFS
Initial members of all of the first prime k-tuplets:
twin primes: A001359.
prime triples: A007529 out of A022004, A022005.
prime quadruplets: A007530.
prime quintuplets: A086140 out of A022007, A022006.
prime sextuplets: A022008.
prime septuplets: A257124 out of A022009, A022010.
prime octuplets: A065706 out of A022011, A022012, A022013.
prime nonuplets: A257125 out of A022547, A022548, A022545, A022546.
prime decaplets: this sequence out of A027569, A027570.
prime 11-tuplets: A257129 out of A213646, A213647.
prime 12-tuplets: A257131 out of A213601, A213645.
prime 13-tuplets: A257135 out of A214947, A257137, A257138, A257139, A257140, A257141.
prime 14-tuplets: A257166 out of A257167, A257168.
prime 15-tuplets: A257169 out of A257304, A257305, A257306, A257307.
prime 16-tuplets: A257308 out of A257369, A257370.
prime 17-tuplets: A257373 out of A257374, A257375, A257376, A257377.
KEYWORD
nonn
AUTHOR
STATUS
approved

Search completed in 0.050 seconds