OFFSET
0,2
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 267, #23.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..295 (terms 0..100 from T. D. Noe)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.37.
S. Brassesco, M. A. Méndez, The asymptotic expansion for the factorial and Lagrange inversion formula, arXiv:1002.3894 [math.CA], 2010.
V. De Angelis, Stirling's series revisited, Amer. Math. Monthly, 116 (2009), 839-843.
Peter Luschny, Approximations to the factorial function.
G. Marsaglia and J. C. W. Marsaglia, A new derivation of Stirling's approximation to n!, Amer. Math. Monthly, 97 (1990), 827-829. MR1080390 (92b:41049)
T. Müller, Finite group actions and asymptotic expansion of e^P(z), Combinatorica, 17 (4) (1997), 523-554.
Richard M. Slevinsky, On the use of Hahn's asymptotic formula and stabilized recurrence for a fast, simple, and stable Chebyshev-Jacobi transform, arXiv preprint arXiv:1602.02618 [math.NA], 2016.
N. M. Temme, The asymptotic expansion of the incomplete gamma function, SIAM J. Math. Anal., 10 (1979), 757-766. [From N. J. A. Sloane, Feb 20 2012]
Nico Temme, Uniform Asymptotics for the incomplete gamma functions starting from negative values of the parameters, arXiv:math/9603218 [math.CA], 1996.
W. Wang, Unified approaches to the approximations of the gamma function, J. Number Theory (2016).
Eric Weisstein's World of Mathematics, Stirlings Series
J. W. Wrench, Jr., Concerning two series for the gamma function, Math. Comp., 22 (1968), 617-626.
FORMULA
The coefficients c_k have g.f. 1 + Sum_{k >= 1} c_k/z^k = exp( Sum_{k >= 1} B_{2k}/(2k(2k-1)z^(2k-1)) ).
Numerators/denominators: A001163(n)/A001164(n) = (6*n+1)!!/(4^n*(2*n)!) * Sum_{i=0..2*n} Sum_{j=0..i} Sum_{k=0..j} (-1)^k*2^i*k^(2*n+i+j)*C(2*n,i)* C(i,j)*C(j,k)/((2*n+2*i+1)*(2*n+i+j)!), assuming 0^0 = 1 (when n = 0), n!! = A006882(n), C(n,k) = A007318(n,k) are binomial coefficients. - Vladimir Reshetnikov, Nov 04 2015
a(n) = denominator(h(2*n)*doublefactorial(2*n-1)) where h(n) = (h(k-1)/k-Sum_{j=1..k-1}((h(k-j)*h(j))/(j+1)))/(1+1/(k+1))) and h(0)=1. - Peter Luschny, Nov 05 2015
Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence
c_0 = 1, c_n = (1/n) * Sum_{k=0..n-1} B_{n-k+1}*c_k/(n-k+1) for n > 0. Then a(n) is the denominator of c_n. - Seiichi Manyama, Sep 01 2018
EXAMPLE
Gamma(z) ~ sqrt(2 Pi) z^(z-1/2) e^(-z) (1 + 1/(12 z) + 1/(288 z^2) - 139/(51840 z^3) - 571/(2488320 z^4) + ... ), z -> infinity in |arg z| < Pi.
MAPLE
h := proc(k) option remember; local j; `if`(k=0, 1,
(h(k-1)/k-add((h(k-j)*h(j))/(j+1), j=1..k-1))/(1+1/(k+1))) end:
coeffStirling := n -> h(2*n)*doublefactorial(2*n-1):
seq(denom(coeffStirling(n)), n=0..16); # Peter Luschny, Nov 05 2015
MATHEMATICA
Denominator[ Reverse[ Drop[ CoefficientList[ Simplify[ PowerExpand[ Normal[ Series[n!, {n, Infinity, 17}]]Exp[n]/(Sqrt[2Pi n]*n^(n - 17))]], n], 1]]]
h[k_] := h[k] = If[k==0, 1, (h[k-1]/k-Sum[h[k-j]*h[j]/(j+1), {j, 1, k-1}]) / (1+1/(k+1))]; StirlingAsympt[n_] := h[2n]*2^n*Pochhammer[1/2, n]; a[n_] := StirlingAsympt[n] // Denominator; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 12 2015, after Peter Luschny *)
PROG
(PARI) a(n)=local(A, m); if(n<1, n==0, A=vector(m=2*n+1, k, 1); for(k=2, m, A[k]=(A[k-1]-sum(i=2, k-1, i*A[i]*A[k+1-i]))/(k+1)); denominator(A[m]*m!/2^n/n!)) /* Michael Somos, Jun 09 2004 */
CROSSREFS
KEYWORD
nonn,frac,nice
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Nov 14 2001
STATUS
approved