[go: nahoru, domu]

login
A001896
Numerators of cosecant numbers -2*(2^(2*n - 1) - 1)*Bernoulli(2*n); also of Bernoulli(2*n, 1/2) and Bernoulli(2*n, 1/4).
(Formerly M4403 N1858)
26
1, -1, 7, -31, 127, -2555, 1414477, -57337, 118518239, -5749691557, 91546277357, -1792042792463, 1982765468311237, -286994504449393, 3187598676787461083, -4625594554880206790555, 16555640865486520478399, -22142170099387402072897
OFFSET
0,3
COMMENTS
|A001896(n)|*Pi^(2n)/A001897(n) is the value of the multi zeta function z(2,2,...,2) with n 2's, where z(k_l,k_2,...,k_n) = Sum_{i_n >= i_(n-1) >= ... >= i_1 >= 1}1/((i_1)^k_1 (i_2)^k_2 ... (i_n)^k_n). The proof is simple: start with the product expansion sin(Pi x)/(Pi x) = Product_{r>=1}(1-x^2/r^2), take reciprocals, and expand the right side. The coefficient of x^(2n) is seen to be z(2,2,...,2) with n 2's. - David Callan, Aug 27 2014
See A062715 for a method of obtaining the cosecant numbers from the square of Pascal's triangle. - Peter Bala, Jul 18 2013
REFERENCES
H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 187.
S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51.
N. E. Nörlund, Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin, 1924, p. 458.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Hector Blandin and Rafael Diaz, Compositional Bernoulli numbers, arXiv:0708.0809 [math.CO], 2007-2008; Page 7, 3rd table, (B^sin)_1,n is identical to |A001896| / A001897.
S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51. [Annotated scanned copy of pages 38-51 only, plus notes]
Masanobu Kaneko, Maneka Pallewatta, and Hirofumi Tsumura, On Polycosecant Numbers, J. Integer Seq. 23 (2020), no. 6, 17 pp. See line k=1 of Table 1 p. 3.
D. H. Lehmer, Lacunary recurrence formulas for the numbers of Bernoulli and Euler, Annals Math., 36 (1935), 637-649.
N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924 [Annotated scanned copy of pages 144-151 and 456-463]
FORMULA
a(n) = numerator((-Pi^2)^(-n)*Integral_{x=0..1} (log(x/(1-x)))^2*n). - Groux Roland, Nov 10 2009
a(n) = numerator((-1)^(n+1)*(2*Pi)^(-2*n)*(2*n)!*Li_{2*n}(-1)). - Peter Luschny, Jun 29 2012
E.g.f. 2*x*exp(x)/(exp(2*x) - 1) = 1 - 1/3*x^2/2! + 7/15*x^4/4! - 31/21*x^6/6! + .... = Sum_{n >= 0} a(n)/A001897(n)*x^(2*n)/(2*n)!. - Peter Bala, Jul 18 2013
a(n) = numerator((-1)^n*I(n)), where I(n) = 2*Pi*Integral_{z=-oo..oo} (z^n / (exp(-Pi*z) + exp(Pi*z)))^2. - Peter Luschny, Jul 25 2021
EXAMPLE
1, -1/12, 7/240, -31/1344, 127/3840, -2555/33792, 1414477/5591040, -57337/49152, 118518239/16711680, ... = a(n)/A033469(n).
Cosecant numbers {-2*(2^(2*n-1)-1)*Bernoulli(2*n)} are 1, -1/3, 7/15, -31/21, 127/15, -2555/33, 1414477/1365, -57337/3, 118518239/255, -5749691557/399, 91546277357/165, -1792042792463/69, 1982765468311237/1365, -286994504449393/3, 3187598676787461083/435, ... = a(n)/A001897(n).
MAPLE
seq(numer(bernoulli(2*n, 1/2)), n=0..20);
MATHEMATICA
a[n_] := -2*(2^(2*n-1)-1)*BernoulliB[2*n]; Table[a[n], {n, 0, 20}] // Numerator (* Jean-François Alcover, Sep 11 2013 *)
PROG
(PARI) a(n) = numerator(-2*(2^(2*n-1)-1)*bernfrac(2*n)); \\ Michel Marcus, Mar 01 2015
(Sage)
def A001896_list(len):
R, C = [1], [1]+[0]*(len-1)
for n in (1..len-1):
for k in range(n, 0, -1):
C[k] = C[k-1] / (8*k*(2*k+1))
C[0] = -sum(C[k] for k in (1..n))
R.append((C[0]*factorial(2*n)).numerator())
return R
A001896_list(18) # Peter Luschny, Feb 20 2016
CROSSREFS
Cf. A001897 (denominators), A033469, A036280, A062715, A145901.
Sequence in context: A282898 A036282 A033474 * A262630 A282857 A296573
KEYWORD
sign,frac
STATUS
approved