OFFSET
1,1
COMMENTS
Rayes et al. prove that the a(n)-th Chebyshev-T polynomial, divided by x, is irreducible over the integers.
Odd primes can be written as a sum of no more than two consecutive positive integers. Powers of 2 do not have a representation as a sum of k consecutive positive integers (other than the trivial n=n, for k=1). See A111774. - Jaap Spies, Jan 04 2007
Primes which are the sum of two consecutive numbers. - Juri-Stepan Gerasimov, Nov 07 2009
The arithmetic mean of divisors of p^3, (1+p)(1+p^2)/4, for odd primes p is an integer. - Ctibor O. Zizka, Oct 20 2009
Primes == -+ 1 (mod 4). - Juri-Stepan Gerasimov, Apr 27 2010
a(n) = A053670(A179675(n)) and a(n) <> A053670(m) for m < A179675(n). - Reinhard Zumkeller, Jul 23 2010
Triads of the form <2*a(n+1), a(n+1), 3*a(n+1)> like <6,3,9>, <10,5,15>, <14,7,21> appear in the EKG sequence A064413, see Theorem (3) there. - Paul Curtz, Feb 13 2011.
Right edge of the triangle in A065305. - Reinhard Zumkeller, Jan 30 2012
Numbers with two odd divisors. - Omar E. Pol, Mar 24 2012
Odd prime p divides some (2^k + 1) or (2^k - 1), (k>0, minimal, cf. A003558) depending on the parity of A179480((p+1)/2) = r. This is a consequence of the Quasi-order theorem and corollaries, [Hilton and Pederson, pp. 260-264]: 2^k == (-1)^r mod b, b odd; and b divides 2^k - (-1)^r, where p is a subset of b. - Gary W. Adamson, Aug 26 2012
Subset of the arithmetic numbers (A003601). - Wesley Ivan Hurt, Sep 27 2013
Odd primes p satisfy the identity: p = (product(2*cos((2*k+1)*Pi/(2*p)), k=0..(p-3)/2))^2. This follows from C(2*p, 0) = (-1)^((p-1)/2)*p, n>=2, with the minimal polynomial C(k,x) of rho(k) := 2*cos(Pi/k). See A187360 for C and the W. Lang link on the field Q(rho(n)), eqs. (20) and (37). - Wolfdieter Lang, Oct 23 2013
Numbers m > 1 such that m^2 divides (2m-1)!! + m. - Thomas Ordowski, Nov 28 2014
Numbers m such that m divides 2*(m-3)! + 1. - Thomas Ordowski, Jun 20 2015
Numbers m such that (2m-3)!! == m (mod m^2). - Thomas Ordowski, Jul 24 2016
Odd numbers m such that ((m-3)!!)^2 == +-1 (mod m). - Thomas Ordowski, Jul 27 2016
Primes of the form x^2 - y^2. - Thomas Ordowski, Feb 27 2017
Conjecture: a(n) is the smallest odd number m > prime(n) such that Sum_{k=1..prime(n)-1} k^(m-1) == prime(n)-1 (mod m). This is an extension of the Agoh-Giuga conjecture. - Thomas Ordowski, Aug 01 2018
Numbers k > 1 such that either Phi(k,x) == 1 (mod k) or Phi(k,x) == k (mod k^2) holds, where Phi(k,x) is the k-th cyclotomic polynomial. - Jianing Song, Aug 02 2018
REFERENCES
Paulo Ribenboim, The little book of big primes, Springer 1991, p. 106.
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harry J. Smith)
M. O. Rayes, V. Trevisan and P. S. Wang, Factorization of Chebyshev Polynomials, ICM Report, 1998.
M. O. Rayes, V. Trevisan and P. S. Wang, Factorization of Chebyshev Polynomials, Computers & Mathematics with Applications, Volume 50, Issues 8-9, October-November 2005, Pages 1231-1240.
Eric Weisstein's World of Mathematics, Prime Number.
FORMULA
a(n) = A000040(n+1). - M. F. Hasler, Oct 26 2013
MAPLE
A065091 := proc(n) RETURN(ithprime(n+1)) end:
MATHEMATICA
Prime[Range[2, 33]] (* Vladimir Joseph Stephan Orlovsky, Aug 22 2008 *)
PROG
(Haskell)
a065091 n = a065091_list !! (n-1)
a065091_list = tail a000040_list -- Reinhard Zumkeller, Jan 30 2012
(Sage)
def A065091_list(limit): # after Minác's formula
f = 3; P = [f]
for n in range(3, limit, 2):
if (f+1)>n*(f//n)+1: P.append(n)
f = f*n
return P
A065091_list(100) # Peter Luschny, Oct 17 2013
(PARI) forprime(p=3, 200, print1(p, ", ")) \\ Felix Fröhlich, Jun 30 2014
(Magma) [NthPrime(n): n in [2..100]]; // Vincenzo Librandi, Jun 21 2015
(Python)
from sympy import prime
def A065091(n): return prime(n+1) # Chai Wah Wu, Jul 13 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Nov 12 2001
EXTENSIONS
More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Jan 05 2002
Edited (moved contributions from A000040 to here) by M. F. Hasler, Oct 26 2013
STATUS
approved