OFFSET
1,1
COMMENTS
Intersection of A002145 (primes of form 4n+3) and A003627 (primes of form 3n-1). So these are both Gaussian primes with no imaginary part and Eisenstein primes with no imaginary part. - Alonso del Arte, Mar 29 2007
Is this the same sequence as A141187 (apart from the initial 3)?
If p is prime of the form 2*a(n)^k + 1, then p divides a cyclotomic number Phi(a(n)^k, 2). - Arkadiusz Wesolowski, Jun 14 2013
Also a(n) = primes p dividing A014138((p-3)/2), where A014138(n) = Partial sums of (Catalan numbers starting 1,2,5,...), cf. A000108. - Alexander Adamchuk, Dec 27 2013
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
MATHEMATICA
Select[Prime/@Range[250], Mod[ #, 12]==11&]
Select[Range[11, 1500, 12], PrimeQ] (* Harvey P. Dale, Sep 15 2023 *)
PROG
(PARI) for(i=1, 250, if(prime(i)%12==11, print(prime(i))))
(Magma) [p: p in PrimesUpTo(1500) | p mod 12 eq 11 ]; // Vincenzo Librandi, Aug 14 2012
(MATLAB)
%4n-1 and 6n-1 primes
n = 1:10000;
n2 = 4*n-1;
n3 = 3*n-1;
p = primes(max(n2));
Res = intersect(n2, n3);
Res2 = intersect(Res, p);
% Jesse H. Crotts, Sep 25 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Ferenc Adorjan (fadorjan(AT)freemail.hu), Feb 22 2002
EXTENSIONS
Edited by Dean Hickerson, Feb 27 2002
STATUS
approved