[go: nahoru, domu]

login
A117487
G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5))^2.
5
1, 2, 5, 10, 20, 36, 63, 104, 169, 264, 405, 604, 888, 1278, 1815, 2536, 3502, 4772, 6437, 8586, 11352, 14866, 19315, 24890, 31851, 40466, 51089, 64092, 79952, 99172, 122386, 150264, 183639, 223394, 270605, 326422, 392225, 469490, 559970, 665542, 788412
OFFSET
1,2
COMMENTS
Molien series for S_5 X S_5, cf. A001401.
Molien series for S_k X S_k approaches A000712 as k increases.
Column 5 of table A115994.
Note that a(5) is 20, the scalar product of (1 1 2 3 5) and (5 3 2 1 1 ). a(6) is 36, the scalar product of (1 1 2 3 5 7) and (7 5 3 2 1 1 ).
LINKS
MAPLE
# adapted from A115994 kmax := 120 : qmax := kmax/2 : g:=sum(t^k*q^(k^2)/product((1-q^j)^2, j=1..k), k=1..kmax): gser:=series(g, q=0, qmax): for n from 25 to qmax-1 do P :=coeff(gser, q^n) : printf("%a, ", coeff(P, t^5)); od: # R. J. Mathar, Apr 07 2006
MATHEMATICA
CoefficientList[Series[1/(Product[(1-x^j), {j, 5}])^2, {x, 0, 45}], x] (* G. C. Greubel, Jan 01 2020 *)
PROG
(Magma) n:=5; G:=SymmetricGroup(n); H:=DirectProduct(G, G); MolienSeries(H); // N. J. A. Sloane
(PARI) my(x='x+O('x^45)); Vec( 1/(prod(j=1, 5, 1-x^j))^2 ) \\ G. C. Greubel, Jan 01 2020
(Sage)
def A117487_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/(product(1-x^j for j in (1..5)))^2 ).list()
A117487_list(45) # G. C. Greubel, Jan 01 2020
KEYWORD
nonn
AUTHOR
Alford Arnold, Mar 22 2006
EXTENSIONS
More terms from R. J. Mathar, Apr 07 2006
Entry revised by N. J. A. Sloane, Mar 10 2007
STATUS
approved