OFFSET
1,1
COMMENTS
The polynomials come in pairs: first of odd degree; second of even degree 1 greater, whose constant term is always zero. Observations: All coefficients are positive except for the linear coefficients of the first polynomial in each pair, which are always negative. From the first of one pair to the first of the next pair, the degree always grows by 4. The "standard" factors of polynomials yielding the columns of triangle A290053 (beginning with column 3) are always of the form (1/A053657(k+2))*(N + k + 2) in odd rows of this triangle A290761, and of the form (N/A053657(k+2))*(N + k + 3)^2 in even rows of this triangle, where k is the row number. See examples.
LINKS
G. G. Wojnar, D. Sz. Wojnar, and L. Q. Brin, Universal Peculiar Linear Mean Relationships in All Polynomials, arXiv:1706.08381 [math.GM], 2017.
EXAMPLE
The first rows of the triangle are parsed as follows:
3, 5, -6, 16;
1, 7, 16, 28, 0;
15, 225, 1265, 3707, 7120, 4900, -6480, 27648;
3, 83, 961, 6201, 24708, 60700, 87968, 85056, 0;
63, 2457, 41580, 404866, 2532971, 10651177, 30102338, 56577724, 72856616, 36562176, -51101568, 298598400;
9, 531, 14010, 219106, 2266137, 16325259, 83797380, 307998768, 802828704, 1433652560, 1651979520, 1239918336, 0.
The associated full polynomials giving the columns of triangle A290053 are then:
(1/24) * (N + 3) * (3*N^3 + 5*N^2 - 6*N + 16);
(N/48) * (N + 5)^2 * (1*N^3 + 7*N^2 + 16*N + 28);
(1/5760) * (N + 5) * (15*N^7 + 225*N^6 + 1265*N^5 + 3707*N^4 + 7120*N^3 + 4900*N^2 - 6480*N + 27648);
(N/11520) * (N + 7)^2 * (3*N^7 + 83*N^6 + 961*N^5 + 6201*N^4 + 24708*N^3 + 60700*N^2 + 87968*N + 85056); etc.
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Gregory Gerard Wojnar, Aug 09 2017
STATUS
approved