OFFSET
1,2
COMMENTS
187 is the first solution to bphi(k) = bphi(k+1) = bphi(k+2).
a(22) > 1.6*10^9, if it exists. - Amiram Eldar, Jul 16 2022
EXAMPLE
14 is in the sequence since bphi(14) = bphi(15) = 9.
MATHEMATICA
bphi[1] = 1; bphi[n_] := With[{pp = Power @@@ FactorInteger[n]}, Count[Range[n], m_ /; Intersection[pp, Power @@@ FactorInteger[m]] == {}]]; a={}; b1=0; Do[b2 = bphi[k]; If[b1 == b2, a = AppendTo[a, k - 1]]; b1 = b2, {k, 1, 10^3}]; a (* after Jean-François Alcover at A116550 *)
PROG
(PARI) udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
biuphi(n) = if (n==1, 1, sum(k=1, n-1, gcud(n, k) == 1));
isok(n) = biuphi(n) == biuphi(n+1);
lista(nn) = {x = biuphi(1); for (n=2, nn, y = biuphi(n); if (x==y, print1(n-1, ", ")); x = y; ); } \\ Michel Marcus, Nov 09 2017
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Oct 01 2017
EXTENSIONS
a(10) from Michel Marcus, Nov 11 2017
a(11) from Michel Marcus, Nov 12 2017
a(12)-a(21) from Amiram Eldar, Jul 16 2022
STATUS
approved