[go: nahoru, domu]

login
Search: a293184 -id:a293184
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers k such that iphi(k) = iphi(k+1), where iphi(k) is an infinitary analog to the Euler totient function (A091732).
+10
6
1, 20, 35, 143, 194, 208, 740, 1220, 1299, 1419, 1803, 1892, 3705, 3716, 3843, 5186, 5635, 7868, 10659, 13634, 13905, 17948, 18507, 18914, 18980, 21007, 25388, 25545, 30380, 31599, 32304, 34595, 37820, 47067, 70394, 73059, 78064, 87856, 94874, 105908, 116963
OFFSET
1,2
LINKS
EXAMPLE
20 is in the sequence since iphi(20) = iphi(21) = 12.
MATHEMATICA
f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], _?(# == 1 &)])); a[1] = 1; a[n_] := Times @@ (Flatten @(f @@@ FactorInteger[n]) - 1); a1 = 1; s = {}; Do[a2 = a[n]; If[a1 == a2, AppendTo[s, n - 1]]; a1 = a2, {n, 2, 10^5}]; s
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Sep 14 2019
STATUS
approved
Numbers k such that A072911(k) = A072911(k+1) > 1.
+10
3
80, 135, 296, 343, 375, 567, 624, 728, 783, 944, 1160, 1431, 1592, 1624, 1647, 1808, 1863, 2024, 2240, 2295, 2456, 2511, 2624, 2727, 2888, 3087, 3320, 3429, 3536, 3591, 3624, 3752, 3992, 4023, 4184, 4239, 4375, 4400, 4455, 4624, 4671, 4887, 4912, 4913, 5048, 5103
OFFSET
1,1
COMMENTS
Without the restriction that A072911(k) > 1, all the terms of A340152 would be in this sequence.
In contrast to A001274, which has only one known pair of consecutive terms (5186 and 5187), this sequence seems to have many pairs of consecutive terms. The smaller members of these pairs are 4912, 5750, 6858, ...
LINKS
EXAMPLE
80 is a term since A072911(80) = A072911(81) = 2.
MATHEMATICA
f[p_, e_] := EulerPhi[e]; ephi[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[5000], ephi[#] == ephi[# + 1] > 1 &]
CROSSREFS
Subsequence of A068140.
Similar sequences: A001274, A287055, A293184, A326403, A349308.
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 14 2021
STATUS
approved
Numbers k such that A321167(k) = A321167(k+1) > 1.
+10
3
80, 135, 296, 343, 375, 624, 728, 1160, 1431, 1592, 1624, 2240, 2295, 2456, 2511, 2624, 2727, 2888, 3429, 3591, 3624, 3752, 3992, 4023, 4184, 4671, 4887, 4913, 5048, 5144, 5264, 5319, 5480, 5696, 6183, 6344, 6375, 6591, 6615, 6776, 6858, 6859, 7479, 7624, 7640
OFFSET
1,1
COMMENTS
Without the restriction that A321167(k) > 1, all the terms of A340152 would be in this sequence.
In contrast to A001274, which has only one known pair of consecutive terms (5186 and 5187), this sequence seems to have many pairs of consecutive terms. The smaller members of these pairs are 6858, 13375, 22625, ...
LINKS
EXAMPLE
80 is a term since A321167(80) = A321167(81) = 3.
MATHEMATICA
f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; fe[p_, e_] := uphi[e]; euphi[n_] := Times @@ fe @@@ FactorInteger[n]; Select[Range[8000], euphi[#] == euphi[# + 1] > 1 &]
CROSSREFS
Subsequence of A068140.
Similar sequences: A001274, A287055, A293184, A326403, A349307.
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 14 2021
STATUS
approved
Numbers k such that k and k + 1 have the same value of the norm of the totient function for Gaussian integers (A103224).
+10
2
4, 5, 35, 51, 154, 804, 3596, 6200, 7595, 916538, 1638039, 2794805, 6804035, 24724472, 40128444, 52424787, 69918849, 82954611, 124077316, 160245605, 204215514, 361275551, 371254235, 661831521, 1314759754, 1695554762, 2246110022, 2378746131, 2889320799, 4181707719
OFFSET
1,1
COMMENTS
The corresponding common values A103224(k) = A103224(k+1) are 8, 8, 288, 640, 7200, 139392, 3744000, 5760000, ...
LINKS
EXAMPLE
4 is a term since norm(phi(4)) = norm(phi(5)) = 8.
MATHEMATICA
phi[z_] := Module[{f, k, prod}, If[Abs[z]==1, z, f = FactorInteger[z, GaussianIntegers->True]; If[Abs[f[[1, 1]]]==1, k=2; prod=f[[1, 1]], k=1; prod=1]; Do[prod=prod*(f[[i, 1]]-1)f[[i, 1]]^(f[[i, 2]]-1), {i, k, Length[f]}]; prod]]; Select[Range[10^3], Abs[phi[#]]^2 == Abs[phi[# + 1]]^2 &] (* after T. D. Noe at A103222 *)
KEYWORD
nonn
AUTHOR
Amiram Eldar, Feb 09 2020
STATUS
approved
Numbers k such that A254926(k) = A254926(k+1).
+10
2
7, 26, 124, 342, 1330, 2196, 12166, 24388, 29790, 79506, 103822, 148876, 205378, 226980, 300762, 357910, 493038, 571786, 1030300, 1092726, 1225042, 2248090, 2685618, 3307948, 3442950, 3869892, 4657462, 5177716, 5735338, 6967870, 7645372, 9393930, 11089566, 11697082
OFFSET
1,1
LINKS
EXAMPLE
7 is a term since A254926(7) = A254926(8) = 7.
MATHEMATICA
f[p_, e_] := If[e < 3, p^e, p^e - p^(e - 3)]; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[10^6], s[#] == s[# + 1] &]
PROG
(Python)
from math import prod
from itertools import count, islice
from sympy import factorint
def A349309_gen(startvalue=1): # generator of terms >= startvalue
a = prod(p**e - (p**(e-3) if e >= 3 else 0) for p, e in factorint(max(startvalue, 1)).items())
for k in count(max(startvalue, 1)):
b = prod(p**e - (p**(e-3) if e >= 3 else 0) for p, e in factorint(k+1).items())
if a == b:
yield k
a = b
A349309_list = list(islice(A349309_gen(), 10)) # Chai Wah Wu, Jan 24 2022
CROSSREFS
Cf. A254926.
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 14 2021
STATUS
approved
Values of bphi(k) = bphi(k+1), where bphi is the bi-unitary analog of Euler's totient function (A116550).
+10
1
1, 9, 14, 42, 161, 161, 798, 1400, 86156, 123656, 419430, 387868, 508797, 772121, 870233, 4162866, 8754569, 126168912, 126991491, 128007618, 131491736
OFFSET
1,2
COMMENTS
The bi-unitary totient function of numbers k such that k and k+1 have the same function value (A293184).
FORMULA
a(n) = A116550(A293184(n)).
EXAMPLE
9 is in the sequence since 9 = bphi(14) = bphi(15).
MATHEMATICA
bphi[1] = 1; bphi[n_] := With[{pp = Power @@@ FactorInteger[n]}, Count[Range[n], m_ /; Intersection[pp, Power @@@ FactorInteger[m]] == {}]]; a={}; b1=0; Do[b2 = bphi[k]; If[b1 == b2, a = AppendTo[a, b1]]; b1 = b2, {k, 1, 10^2}]; a (* after Jean-François Alcover at A116550 *)
CROSSREFS
The bi-unitary version of A003275.
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Oct 22 2017
EXTENSIONS
a(10)-a(11) from Michel Marcus, Nov 14 2017
a(12)-a(21) from Amiram Eldar, Jul 16 2022
STATUS
approved
Numbers k such that k and k + 1 has the same value of A319445, the equivalent of the Euler totient function in the ring of Eisenstein integers.
+10
1
34, 51, 152, 679, 1065, 1845, 6525, 12122, 12970, 15656, 38607, 48398, 175473, 272935, 401505, 953342, 1035895, 1210054, 1222988, 1406665, 1589245, 1607095, 2108186, 2116975, 2272425, 2500615, 2751160, 3399591, 4542225, 5298559, 5412986, 6813585, 6898736, 7115553
OFFSET
1,1
LINKS
EXAMPLE
34 is a term since A319445(34) = A319445(35) = 864.
MATHEMATICA
f[p_, e_] := If[p == 3, 2*3^(2*e - 1), Switch[Mod[p, 3], 1, (p - 1)^2*p^(2*e - 2), 2, (p^2 - 1)*p^(2*e - 2)]]; eisPhi[1] = 1; eisPhi[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; e1 = eisPhi[1]; Do[e2 = eisPhi[n]; If[e1 == e2, AppendTo[seq, n - 1]]; e1 = e2, {n, 2, 10^6}]; seq
KEYWORD
nonn
AUTHOR
Amiram Eldar, Feb 15 2020
STATUS
approved

Search completed in 0.011 seconds