[go: nahoru, domu]

login
Search: a209077 -id:a209077
     Sort: relevance | references | number | modified | created      Format: long | short | data
Characteristic function of 1.
+10
152
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
The identity function for Dirichlet multiplication (see Apostol).
Sum of the Moebius function mu(d) of the divisors d of n. - Robert G. Wilson v, Sep 30 2006
-a(n) is the Hankel transform of A000045(n), n >= 0 (Fibonacci numbers). See A055879 for the definition of Hankel transform. - Wolfdieter Lang, Jan 23 2007
a(A000012(n)) = 1; a(A087156(n)) = 0. - Reinhard Zumkeller, Oct 11 2008
a(n) for n >= 1 is the Dirichlet convolution of following functions b(n), c(n), a(n) = Sum_{d|n} b(d)*c(n/d)): a(n) = A008683(n) * A000012(n), a(n) = A007427(n) * A000005(n), a(n) = A007428(n) * A007425(n). - Jaroslav Krizek, Mar 03 2009
From Christopher Hunt Gribble, Jul 11 2013: (Start)
a(n) for 1 <= n <= 4 and conjectured for n > 4 is the number of Hamiltonian circuits in a 2n X 2n square lattice of nodes, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 1 element: When n=1, there is only 1 Hamiltonian circuit in a 2 X 2 square lattice, as illustrated below. The circuit is the same when rotated and/or reflected and so has only 1 orbital element under the symmetry group of the square.
o--o
| |
o--o (End)
Convolution property: For any sequence b(n), the sequence c(n)=b(n)*a(n) has the following values: c(1)=0, c(n+1)=b(n) for all n > 1. In other words, the sequence b(n) is shifted 1 step to the right. - David Neil McGrath, Nov 10 2014
REFERENCES
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 30.
FORMULA
From Philippe Deléham, Nov 25 2008: (Start)
G.f.: x.
E.g.f.: x. (End)
a(n) = mu(n^2). - Enrique Pérez Herrero, Sep 04 2009
a(n) = floor(n/A000203(n)) for n > 0. - Enrique Pérez Herrero, Nov 11 2009
a(n) = (1-(-1)^(2^abs(n-1)))/2 = (1-(-1)^(2^((n-1)^2)))/2. - Luce ETIENNE, Jun 05 2015
a(n) = n*(A057427(n) - A057427(n-1)) = A000007(abs(n-1)). - Chayim Lowen, Aug 01 2015
a(n) = A010051(p*n) for any prime p (where A010051(0)=0). - Chayim Lowen, Aug 05 2015
From Antti Karttunen, Jun 04 2022: (Start)
For n >= 1:
a(n) = Sum_{d|n} A000010(n/d) * A023900(d), and similarly for any pair of sequences that are Dirichlet inverses of each other, like for example A000027 & A055615 and those mentioned in Krizek's Mar 03 2009 comment above.
a(n) = [A101296(n) == 1], where [ ] is the Iverson bracket.
Fully multiplicative with a(p^e) = 0. (End)
MAPLE
A063524 := proc(n) if n = 1 then 1 else 0; fi; end;
MATHEMATICA
Table[If[n == 1, 1, 0], {n, 0, 104}] (* Robert G. Wilson v, Sep 30 2006 *)
LinearRecurrence[{1}, {0, 1, 0}, 106] (* Ray Chandler, Jul 15 2015 *)
PROG
(Haskell)
a063524 = fromEnum . (== 1) -- Reinhard Zumkeller, Apr 01 2012
(PARI) a(n)=n==1; \\ Charles R Greathouse IV, Apr 01 2012
(Python)
def A063524(n): return int(n==1) # Chai Wah Wu, Feb 04 2022
CROSSREFS
KEYWORD
easy,nonn,mult
AUTHOR
Labos Elemer, Jul 30 2001
STATUS
approved
Number of Hamiltonian circuits in a 2n X 2n square lattice of nodes, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 2 elements.
+10
6
0, 1, 4, 20, 346, 6891, 634172, 47917598, 27622729933, 6998287399637
OFFSET
1,3
FORMULA
a(2n) = A237431(2n), a(2n+1) = A237431(2n+1) + A237432(n+1). - Ed Wynn, Feb 07 2014
EXAMPLE
When n = 2, there is only 1 Hamiltonian circuit in a 4 X 4 square lattice where the orbits under the symmetry group of the square have 2 elements. The 2 elements are:
o__o__o__o o__o o__o
| | | | | |
o__o o__o o o__o o
| | | |
o__o o__o o o__o o
| | | | | |
o__o__o__o o__o o__o
CROSSREFS
KEYWORD
nonn,more
AUTHOR
EXTENSIONS
a(4) from Giovanni Resta, Jul 11 2013
a(5)-a(10) from Ed Wynn, Feb 05 2014
STATUS
approved
Number of Hamiltonian circuits in a 2n X 2n square lattice of nodes, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 4 elements.
+10
6
0, 1, 24, 1760, 411861, 551247139, 2883245852086, 85948329517780776, 11001968794030973784902, 7462399462450938863305238264
OFFSET
1,3
FORMULA
a(n) = A237429(n) + A237430(n). - Ed Wynn, Feb 07 2014
EXAMPLE
When n = 2, there is only 1 Hamiltonian circuit in a 4 X 4 square lattice, where the orbits under the symmetry group of the square have 4 elements. The 4 elements are:
o__o__o__o o__o__o__o o__o__o__o o__o o__o
| | | | | | | | | |
o o__o__o o o__o o o__o__o o o o o o
| | | | | | | | | | | |
o o__o__o o o o o o__o__o o o o__o o
| | | | | | | | | |
o__o__o__o o__o o__o o__o__o__o o__o__o__o
CROSSREFS
KEYWORD
nonn,more
AUTHOR
EXTENSIONS
a(4) from Giovanni Resta, Jul 11 2013
a(5)-a(10) from Ed Wynn, Feb 05 2014
STATUS
approved
Number of Hamiltonian circuits in a 2n node X 2n node square lattice, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 8 elements.
+10
4
0, 0, 121, 578937, 58407351059, 134528360800075421, 7015812452559988037073365, 8235314565328229497795808499821534, 216740797236120772990968348272561831275923059, 127557553423846099192878370706037904215158660401579043097
OFFSET
1,3
EXAMPLE
When n = 3 there are 121 Hamiltonian circuits in a 6 X 6 square lattice where the orbits under the symmetry group of the square have 8 elements. One of these circuits is shown below with its 8 distinct transformations under rotation and reflection:
o__o__o__o__o__o o__o o__o o__o o__o__o__o__o__o
| | | | | | | | | |
o__o__o__o o__o o o o o o o o__o__o o__o__o
| | | | | | | | | |
o__o__o__o o__o o o__o o o o o__o__o o__o__o
| | | | | | | |
o__o__o o__o__o o o__o o__o o o__o o__o__o__o
| | | | | | | |
o__o__o o__o__o o o o o__o o o__o o__o__o__o
| | | | | | | | | |
o__o__o__o__o__o o__o o__o o__o o__o__o__o__o__o
.
o__o o__o o__o o__o__o__o__o__o o__o o__o o__o
| | | | | | | | | | | | | |
o o__o o o o o__o o__o__o__o o o o o__o o
| | | | | | | | | |
o o__o o__o o o__o o__o__o__o o o__o o__o o
| | | | | | | | | |
o o o o__o o o__o__o o__o__o o o__o o o o
| | | | | | | | | | | | | |
o o o o o o o__o__o o__o__o o o o o o o
| | | | | | | | | | | | | |
o__o o__o o__o o__o__o__o__o__o o__o o__o o__o
.
o__o__o__o__o__o o__o o__o o__o
| | | | | | | |
o__o__o o__o__o o o o o o o
| | | | | | | |
o__o__o o__o__o o o o o__o o
| | | | | |
o__o__o__o o__o o o__o o__o o
| | | | | |
o__o__o__o o__o o o__o o o o
| | | | | | | |
o__o__o__o__o__o o__o o__o o__o
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
EXTENSIONS
a(4) from Giovanni Resta, Jul 11 2013
a(5)-a(10) from Ed Wynn, Feb 05 2014
STATUS
approved
Number of states arising in matrix method for enumerating Hamiltonian cycles on 2n X 2n grid.
+10
3
1, 6, 32, 182, 1117, 7280, 49625, 349998, 2535077, 18758264
OFFSET
1,2
LINKS
KEYWORD
nonn,hard,more
AUTHOR
N. J. A. Sloane, Mar 05 2014
STATUS
approved
Number of continuations arising in matrix method for enumerating Hamiltonian cycles on 2n X 2n grid.
+10
3
1, 14, 162, 1966, 25567, 351880, 5056350, 75100735, 1144833705, 17821104101
OFFSET
1,2
LINKS
KEYWORD
nonn,hard,more
AUTHOR
N. J. A. Sloane, Mar 05 2014
STATUS
approved
Number of states with reflective symmetry arising in matrix method for enumerating Hamiltonian cycles on 2n X 2n grid.
+10
3
1, 4, 14, 40, 120, 320, 946, 2496, 7418, 19616
OFFSET
1,2
LINKS
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Mar 05 2014
STATUS
approved
Number of continuations with reflective symmetry arising in matrix method for enumerating Hamiltonian cycles on 2n X 2n grid.
+10
3
1, 6, 20, 101, 327, 1560, 5333, 24727, 88422, 403552
OFFSET
1,2
LINKS
KEYWORD
nonn,hard,more
AUTHOR
N. J. A. Sloane, Mar 05 2014
STATUS
approved
Number of Hamiltonian paths on an n X n grid reduced for symmetry, i.e., where rotations and reflections are not counted as distinct.
+10
3
1, 1, 3, 38, 549, 28728, 1692417, 377919174, 93177169027, 91255604983167, 98333935794279062, 431583106977641773651, 2081500714709464758363648, 41476136050841717002906372881, 907951420995033325255530074961505
OFFSET
1,3
COMMENTS
For odd n > 1 the only symmetry possible is rotation by 180 degrees. For even n the only symmetries are reflections either horizontally or vertically. - Andrew Howroyd, Apr 15 2016
LINKS
J.-M. Mayer, C. Guez and J. Dayantis, Exact computer enumeration of the number of Hamiltonian paths in small square plane lattices, Physical Review B, Vol. 42 Number 1, 1990.
CROSSREFS
KEYWORD
nonn,walk,hard
AUTHOR
Luca Petrone, Dec 18 2015
EXTENSIONS
a(9)-a(15) from Andrew Howroyd, Apr 15 2016
STATUS
approved
Number of nonisomorphic Hamiltonian cycles on 2n X 2n square grid of points with exactly one axis of reflective symmetry.
+10
2
0, 1, 19, 1394, 281990, 377205809, 1539951848735, 44222409563201991, 3842818845468254120853, 2396657968905952750257244144
OFFSET
1,3
FORMULA
a(n) = A227257(n) - A237430(n).
EXAMPLE
The following two cycles with n=3 are counted only once, since they are isomorphic under the full symmetry group of the square. They have a horizontal and a vertical axis respectively. No example has a diagonal axis, since this brings other symmetries (see A063524).
o-o-o-o-o-o o-o o-o o-o
| | | | | | | |
o o-o-o-o-o o o o o o o
| | | | | | | |
o o-o-o-o-o o o o o o o
| | | | | | | |
o o-o-o-o-o o o o o o o
| | | | | | | |
o o-o-o o-o o o-o o-o o
| | | |
o-o-o-o-o-o o-o-o-o-o-o
CROSSREFS
KEYWORD
nonn,walk,more
AUTHOR
Ed Wynn, Feb 07 2014
STATUS
approved

Search completed in 0.027 seconds