[go: nahoru, domu]

Kazan et al., 2023 - Google Patents

A Wideband X/Ku/Ka-band SATCOM 8-Channel SiGe Transmit Beamformer Chip in a 16-Element Phased-Array

Kazan et al., 2023

Document ID
612713573994997005
Author
Kazan O
Hu Z
Alhamed A
Rebeiz G
Publication year
Publication venue
2023 17th European Conference on Antennas and Propagation (EuCAP)

External Links

Snippet

This paper presents a 5-33 GHz 8-channel transmit beamformer implemented in 90nm SiGe BiCMOS HBT technology. Each channel is composed of a wideband two-stage power- amplifier (PA), a phase-shifter (PS), a variable gain amplifier (VGA) and single-ended to …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/06Arrays of individually energised active aerial units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/28Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the amplitude
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/24Combinations of aerial elements or aerial units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/605Distributed amplifiers
    • H03F3/607Distributed amplifiers using FET's
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q23/00Aerials with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/204A hybrid coupler being used at the output of an amplifier circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission

Similar Documents

Publication Publication Date Title
Kibaroglu et al. A low-cost scalable 32-element 28-GHz phased array transceiver for 5G communication links based on a $2\times 2$ beamformer flip-chip unit cell
Chen et al. 38-GHz phased array transmitter and receiver based on scalable phased array modules with endfire antenna arrays for 5G MMW data links
Kibaroglu et al. An ultra low-cost 32-element 28 GHz phased-array transceiver with 41 dBm EIRP and 1.0–1.6 Gbps 16-QAM link at 300 meters
Kang et al. A $ Ku $-band two-antenna four-simultaneous beams SiGe BiCMOS phased array receiver
Dunworth et al. 28GHz phased array transceiver in 28nm bulk CMOS for 5G prototype user equipment and base stations
Alhamed et al. A multi-band 16–52-GHz transmit phased array employing 4× 1 beamforming IC with 14–15.4-dBm P sat for 5G NR FR2 operation
Chu et al. A true time-delay-based bandpass multi-beam array at mm-waves supporting instantaneously wide bandwidths
Kibaroglu et al. A quad-core 28–32 GHz transmit/receive 5G phased-array IC with flip-chip packaging in SiGe BiCMOS
Alhamed et al. A multiband/multistandard 15–57 GHz receive phased-array module based on 4× 1 beamformer IC and supporting 5G NR FR2 operation
Kazan et al. An 8-channel 5–33-GHz transmit phased array beamforming IC with 10.8–14.7-dBm Psat for C-, X-, Ku-, and Ka-band SATCOM
Dal Maistro et al. A 24.2-30.5 GHz quad-channel RFIC for 5G communications including built-in test equipment
Zhao et al. A K-band hybrid-packaged temperature-compensated phased-array receiver and integrated antenna array
Valdes-Garcia et al. Circuit and antenna-in-package innovations for scaled mmWave 5G phased array modules
Rebeiz et al. Silicon RFICs for phased arrays
Boroujeni et al. A high-efficiency 27–30-GHz 130-nm Bi-CMOS transmitter front end for SATCOM phased arrays
Li et al. W-band scalable 2× 2 phased-array transmitter and receiver chipsets in SiGe BiCMOS for high data-rate communication
Afroz et al. $ W $-Band (92–100 GHz) Phased-Array Receive Channel With Quadrature-Hybrid-Based Vector Modulator
Li et al. Design and implementation of an active array antenna with remote controllable radiation patterns for mobile communications
Saha et al. X/Ku-band four-channel transmit/receive SiGe phased-array IC
Alhamed et al. A multi-standard 15-57 GHz 4-channel receive beamformer with 4.8 dB midband NF for 5G applications
Alhamed et al. A global multi-standard/multi-band 17.1-52.4 GHz Tx phased array beamformer with 14.8 dBm OP1dB supporting 5G NR FR2 bands with multi-Gb/s 64-QAM for massive MIMO arrays
Wong et al. A 4Rx, 4Tx Ka-band transceiver in 40nm bulk CMOS technology for satellite terminal applications
Hu et al. A quad-band RX phased-array receive beamformer with two simultaneous beams, polarization diversity, and 2.1–2.3 dB NF for C/X/Ku/Ka-band SATCOM
Kazan et al. A Wideband X/Ku/Ka-band SATCOM 8-Channel SiGe Transmit Beamformer Chip in a 16-Element Phased-Array
Rupakula et al. A 64 GHz 2 Gbps transmit/receive phased-array communication link in SiGe with 300 meter coverage