[go: nahoru, domu]

Gao et al., 2022 - Google Patents

A 0.47-THz ring scalable coupled oscillator–radiator array with miniature patch antennas

Gao et al., 2022

Document ID
3053302902386967047
Author
Gao L
Chan C
Publication year
Publication venue
IEEE Transactions on Microwave Theory and Techniques

External Links

Snippet

This article integrates several techniques for large-scale, high power-efficiency, and area- efficiency terahertz (THz) radiators. First, we present a systematic design method to synthesize a high output power harmonic oscillator at a high fundamental to maximum …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/16Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole
    • H01Q9/26Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/16Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/364Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. supraconductor
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/06Arrays of individually energised active aerial units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q13/00Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot aerials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q23/00Aerials with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q19/00Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B9/00Generation of oscillations using transit-time effects
    • H03B9/12Generation of oscillations using transit-time effects using solid state devices, e.g. Gunn-effect devices
    • H03B9/14Generation of oscillations using transit-time effects using solid state devices, e.g. Gunn-effect devices and elements comprising distributed inductance and capacitance
    • H03B9/141Generation of oscillations using transit-time effects using solid state devices, e.g. Gunn-effect devices and elements comprising distributed inductance and capacitance and comprising a voltage sensitive element, e.g. varactor
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for

Similar Documents

Publication Publication Date Title
Guo et al. A 0.53-THz Subharmonic Injection-Locked Phased Array With 63-$\mu $ W Radiated Power in 40-nm CMOS
US9344308B2 (en) System and method for signal generation
Gao et al. A 0.47-THz ring scalable coupled oscillator–radiator array with miniature patch antennas
Wu et al. A 312-GHz CMOS injection-locked radiator with chip-and-package distributed antenna
Gao et al. A 0.68–0.72-THz 2-D scalable radiator array with–3-dBm radiated power and 27.3-dBm EIRP in 65-nm CMOS
Kawasaki et al. Quasi-optical planar arrays with FETs and slots
Jalili et al. A standing-wave architecture for scalable and wideband millimeter-wave and terahertz coherent radiator arrays
Nallandhigal et al. Unified and integrated circuit antenna in front end—A proof of concept
Gao et al. A 0.45-THz 2-D scalable radiator array with 28.2-dBm EIRP using an elliptical Teflon lens
Buadana et al. A multiport chip-scale dielectric resonator antenna for CMOS THz transmitters
Nazari et al. 19.1 A fundamental-frequency 114GHz circular-polarized radiating element with 14dBm EIRP,− 99.3 dBc/Hz phase-noise at 1MHz offset and 3.7% peak efficiency
Gao et al. A 482-GHz 2-D scalable and wideband radiator array
Razavian et al. A highly power efficient 2× 3 PIN-diode-based intercoupled THz radiating array at 425GHz with 18.1 dBm EIRP in 90nm SiGe BiCMOS
Kamal et al. An assessment of progress in 5.8 GHz quasi-lumped element resonator antennas
Hu et al. Fully-scalable 2D THz radiating array: A 42-element source in 130-nm SiGe with 80-µW total radiated power at 1.01 THz
Jameson et al. Sub-harmonic wireless injection locking of a THz CMOS chip array
Lim et al. Novel utilization of the dielectric resonator antenna as an oscillator load
Jalili et al. A 0.34-THz varactor-less scalable standing wave radiator array with 5.9% tuning range in 130nm BiCMOS
Wang et al. Highly efficient terahertz beam-steerable integrated radiator based on tunable boundary conditions
Gao et al. A 0.6-THz area-efficient source based on parallel coupled oscillators and a bandwidth expanded differentially-fed shared aperture patch antenna
Park et al. An on-chip dipole antenna for millimeter-wave transmitters
US11670862B1 (en) Two-dimensional scalable radiator array
Ip et al. A compact CPW-based single-layer injection-locked active antenna for array applications
Wang et al. 300-335 GHz highly efficient beam-steerable radiator based on tunable boundary conditions
Guo et al. Analysis and design of a 0.3-THz signal generator using an oscillator-doubler architecture in 40-nm CMOS