[go: nahoru, domu]

AU2001288575A1 - Devices, systems and methods for patient infusion - Google Patents

Devices, systems and methods for patient infusion

Info

Publication number
AU2001288575A1
AU2001288575A1 AU2001288575A AU2001288575A AU2001288575A1 AU 2001288575 A1 AU2001288575 A1 AU 2001288575A1 AU 2001288575 A AU2001288575 A AU 2001288575A AU 2001288575 A AU2001288575 A AU 2001288575A AU 2001288575 A1 AU2001288575 A1 AU 2001288575A1
Authority
AU
Australia
Prior art keywords
flow
fluid
reservoir
local processor
exit port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2001288575A
Other versions
AU2001288575B2 (en
Inventor
J. Christopher Flaherty
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Insulet Corp
Original Assignee
Insulet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Insulet Corp filed Critical Insulet Corp
Priority claimed from PCT/US2001/027108 external-priority patent/WO2002020073A2/en
Publication of AU2001288575A1 publication Critical patent/AU2001288575A1/en
Application granted granted Critical
Publication of AU2001288575B2 publication Critical patent/AU2001288575B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

DEVICES, SYSTEMS AND METHODS FOR PATIENT INFUSION
Cross-Reference to Related Applications
(01) The present application claims priority to provisional V. S . patent application serial number 60/231,476, filed on September 8, 2000, which is assigned to the assignee of the present application and incorporated herein by reference.
Field of the Invention
(02) The present invention relates generally to medical devices, systems and methods, and more particularly to small, low cost, portable infusion devices and methods that are useable to achieve precise, sophisticated, and programmable flow patterns for the delivery of therapeutic liquids to a mammalian patient.
Background of the Invention
(03) Today, there are numerous diseases and other physical ailments that are treated by various medicines including pharmaceuticals, nutritional formulas, biologically derived or active agents, hormonal and gene based material and other substances in both solid or liquid form. In the delivery of these medicines, it is often desirable to bypass the digestive system of a mammalian patient to avoid degradation of the active ingredients caused by the catalytic enzymes in the digestive tract and liver. Delivery of a medicine other than by way of the intestines is known as parenteral delivery. Parenteral delivery of various drugs in liquid form is often desired to enhance the effect of the substance being delivered, insuring that the unaltered medicine reaches its intended site at a significant concentration. Also, undesired side effects associated with other routes of delivery, such as systemic toxicity, can potentially be avoided.
(04) Often, a medicine may only be available in a liquid form, or the liquid version may have desirable characteristics that cannot be achieved with solid or pill form. Delivery of liquid medicines may best be accomplished by infusing directly into the cardiovascular system via veins or arteries, into the subcutaneous tissue or directly into organs, tumors, cavities, bones or other site specific locations within the body.
(05) Parenteral delivery of liquid medicines into the body is often accomplished by administering bolus injections using a needle and syringe, or continuously by gravity driven dispensers or transdermal patch technologies. Bolus injections often imperfectly match the clinical needs of the patient, and usually require larger individual doses than are desired at the specific time they are given. Continuous delivery of medicine through gravity feed systems compromise the patient's mobility and lifestyle, and limit the therapy to simplistic flow rates and profiles. Transdermal patches have special requirements of the medicine being delivered, particularly as it relates to the molecular structure, and similar to gravity feed systems, the control of the drug administration is severely limited.
(06) Ambulatory infusion pumps have been developed for delivering liquid medicaments to a patient. These infusion devices have the ability to offer sophisticated fluid delivery profiles accomplishing bolus requirements, continuous infusion and variable flow rate delivery. These infusion capabilities usually result in better efficacy of the drug and therapy and less toxicity to the patient' s system. An example of a use of an ambulatory infusion pump is for the delivery of insulin for the treatment of diabetes mellitus. These pumps can deliver insulin on a continuous basal basis as well as a bolus basis as is disclosed in U.S. Patent 4,498,843 to Schneider et al.
(07) The ambulatory pumps often work with a reservoir to contain the liquid medicine, such as a cartridge or syringe, and use electro-mechanical pumping or metering technology to deliver the medication to the patient via tubing from the infusion device to a needle that is inserted transcutaneously, or through the skin of the patient. The devices allow control and programming via electromechanical buttons or switches located on the housing of the device, and accessed by the patient or clinician. The devices include visual feedback via text or graphic screens, such as liquid crystal displays known as LCD's, and may include alert or warning lights and audio or vibration signals and alarms. The device can be worn in a harness or pocket or strapped to the body of the patient.
(08) Currently available ambulatory infusion devices are expensive, difficult to program and prepare for infusion, and tend to be bulky, heavy and very fragile. Filling of these devices or their reservoirs can be difficult and require the patient to carry both the intended medication as well as filling accessories when traveling or even just going to work. The accuracy and safety requirements of these devices are extremely important, based both on the medicine being delivered and the condition of the patient. Therefore, the devices require specialized care, maintenance and cleaning to assure proper functionality and safety for their intended long term use. The devices are usually sold for $4,000 to $6,000 requiring maintenance of the device for four or more years to justify the expenditure. Also due to the cost, replacement devices are not easily available or practical. Any damage to the device, such as that caused by it being dropped, result not only in the costs of repair or replacement, but also in a period of discontinued therapy. The high cost of the device is a concern of healthcare providers who approve and prescribe the use of the device, limiting the expansion of the patient populations and therapies for which the devices can be used.
(09) Clearly, therefore, there is a need for a programmable and adjustable infusion system that is precise and reliable and can offer clinicians and patients a small, low cost, light weight, simple to use alternative for parenteral delivery of liquid medicines.
Summary of the Invention
(10) The applicant has determined that a sophisticated ambulatory infusion device that can be programmed to reliably deliver variable flow profiles of liquid medications, yet is small, light weight and low cost, is needed. Smaller and lighter devices are easier to carry and are more comfortable for the patient, even allowing the device to be adhesively attached to the patient's skin similar to a transdermal patch. An inexpensive device allows greater flexibility in prescribing the device for use by reducing the financial burden on healthcare insurance providers, hospitals and patient care centers, as well as patients themselves. In addition, low cost devices make more practical the maintenance of one or more replacement devices. If the primary device is lost or becomes dysfunctional, availability of the replacement avoids costly expedited repair and down time.
(11) Aspects of the present invention will enable cost reductions significant enough to make the entire device disposable in nature, being replaced as frequently as every two to five days. A disposable device allows the medication to be prefilled by the manufacturer and does not need the routine cleaning and maintenance required by long term devices, greatly simplifying use for the patient. Similar to disposable cameras which have become increasingly popular in recent years, another benefit is that each time a disposable fluid delivery device is purchased, it is the latest or state of the art technology. Long term use devices may be outdated in a year when a new version is available from the manufacturer, just twenty five percent of the life expectancy of the original device.
(12) The present invention, therefore, provides a device for delivering fluid to a patient, including an exit port assembly adapted to connect to a transcutaneous patient access tool, a dispenser for causing fluid from a reservoir to flow to the exit port assembly, a local processor connected to the dispenser and programmed to cause a flow of fluid to the exit port assembly based on flow instructions from a separate, remote control device, and a wireless receiver connected to the local processor for receiving the flow instructions from a separate, remote control device and delivering the flow instructions to the local processor. The device also includes a housing containing the exit port assembly, the dispenser, the local processor, and the wireless receiver. The housing is free of user input components for providing flow instructions to the local processor in order to reduce the size, complexity and costs of the device, such that the device lends itself to being disposable in nature.
(13) According to one aspect of the present invention, the flow instructions cause a predetermined rate of fluid flow for a predetermined period. According to another aspect, the predetermined rate of fluid flow comprises a basal rate.
(14) According to another aspect of the present invention, the flow instructions cause a predetermined volume of fluid to flow for a predetermined period. According to an additional aspect, the predetermined volume comprises a bolus volume.
(15) According to an additional aspect, the device includes a least one user interface component accessible from an exterior of the housing for causing a predetermined volume of fluid to flow for a predetermined period, independently of the local processor. According to a further aspect, the device includes a least one user interface component accessible from an exterior of the housing for occluding flow to the exit port assembly.
(16) According to another aspect of the present invention, the device includes a power supply connected to the local processor. According to an additional aspect, the device includes a transmitter connected to the local processor for transmitting information from the local controller to a separate, remote control device. According to still a further aspect, the housing is free of user output components for providing information from the local processor. According to a further aspect, the exit port assembly includes a tubular member for transcutaneously entering a patient. According to still a further aspect, the device includes a reservoir.
(17) The present invention also provides a system including a fluid delivery device as described above, and further including a separate, remote control device including a remote processor, user input components connected to the remote processor for allowing a user to provide instructions to the remote controller, and a transmitter connected to the remote controller for transmitting the instructions to the receiver of the fluid delivery device. Thus, the remote controller allows a user, such as a patient, nurse or doctor, to remotely program the fluid delivery device to provide a desired infusion of fluid into the patient.
(18) The present invention further provides another device for delivering fluid to a patient, including an exit port assembly adapted to connect to a transcutaneous patient access tool, a dispenser for causing fluid from a reservoir to flow to the exit port assembly, a local processor connected to the dispenser and programmed to cause fluid flow to the exit port assembly based upon flow instructions. The local processor is also programmed to provide flow information, and a wireless transmitter is connected to the local processor for transmitting the flow information to a separate, remote control device. A housing contains the exit port assembly, the dispenser, the local processor, and the wireless transmitter, and is free of user output components for providing the flow information from the local processor to a user.
(19) These aspects of the invention together with additional features and advantages thereof may best be understood by reference to the following detailed descriptions and examples taken in connection with the accompanying illustrated drawings.
Brief Description of the Drawings
(20) Fig. 1 is a sectional side view of a first exemplary embodiment of a fluid delivery device in accordance with this invention;
(21) Fig. 2 is a perspective view of an exemplary embodiment of a remote control device in accordance with this invention for use with the fluid delivery device of Fig. 1;
(22) Fig. 3 is a sectional side view of a second exemplary embodiment of a fluid delivery device in accordance with this invention;
(23) Fig. 3a is an enlarged partial sectional view of a dispenser for the device of Fig. 3, shown with an accumulator empty and ready to be filled upon an inlet valve being opened; (24) Fig. 3b is an enlarged sectional view of the dispenser for the device of Fig. 3, shown with the accumulator filled and ready to dispense a pulse of fluid upon an outlet valve being opened;
(25) Fig. 4 is a sectional side view of a third exemplary embodiment of a fluid delivery device in accordance with this invention;
(26) Fig. 4a is an enlarged sectional side view of a reservoir chamber of the device of Fig. 4;
(27) Fig. 4b is an enlarged bottom plan view of a portion of the reservoir chamber of the device of Fig. 4;
(28) Fig. 5 is a sectional side view of a fourth exemplary embodiment of a fluid delivery device in accordance with this invention;
(29) Fig. 5a is a bottom plan view of the device of Fig. 5;
(30) Fig. 6 is a sectional side view of a fifth exemplary embodiment of a fluid delivery device shown positioned on an outer surface of skin and subcutaneous tissue of a patient;
(31) Fig. 6a is a bottom plan view of the device of Fig. 6;
(32) Fig. 7 is a sectional side view of a sixth exemplary embodiment of a fluid delivery device in accordance with the present invention;
(33) Fig. 8 is a sectional side view of a seventh exemplary embodiment of a fluid delivery device in accordance with the present invention;
(34) Fig. 8a is a top plan view of the device of Fig. 8;
(35) Fig. 9 is a sectional side view of an eighth exemplary embodiment of a fluid delivery device in accordance with the present invention;
(36) Fig. 9a is a perspective view of an infusion set compatible with an outlet assembly of the device of Fig. 9; (37) Fig. 10 is a sectional side view of a ninth exemplary embodiment of a fluid delivery device in accordance with the present invention, with a mechanical stop button of the device shown in the open position;
(38) Fig. 10a is an enlarged sectional view of the stop button assembly of the device of Fig. 10 with the button shown in the closed position;
(39) Fig. 11 is a sectional side view of a tenth exemplary embodiment of a fluid delivery device in accordance with the present invention;
(40) Fig.1 la is an enlarged sectional view of a bolus button assembly of the device of Fig. 11;
(41) Fig. 12 is a perspective view of another exemplary embodiment of a remote control device in accordance with the present invention;
(42) Fig. 12a is a sectional side view of the remote control device of Fig. 12;
(43) Fig. 13 is a top plan view of an eleventh exemplary embodiment of a fluid delivery device in accordance with the present invention;
(44) Fig. 13a is a top plan view of a remote controller to be combined with the fluid delivery device of Fig. 13 as part of a kit in accordance with the present invention;
(45) Fig. 13b is a top plan view of an insulin cartridge to be combined with the fluid delivery device of Fig. 13 as part of a kit in accordance with the present invention; and
(46) Fig. 13c is a top plan view of a sterile infusion set to be combined with the fluid delivery device of Fig. 13 as part of a kit in accordance with the present invention.
(47) Like reference characters designate identical or corresponding components and units throughout the several views. Detailed Description of the Preferred Embodiments
(48) Set forth hereinbelow are detailed descriptions of certain embodiments and examples of fluid delivery devices, systems and kits, constructed in accordance with the present invention, as well as methods for using the devices, systems and kits. The types of liquids that can be delivered by the fluid delivery devices, systems and kits of the present invention include, but are not limited to, insulin, antibiotics, nutritional fluids, total parenteral nutrition or TPN, analgesics, morphine, hormones or hormonal drugs, gene therapy drugs, anticoagulants, analgesics, cardiovascular medications, AZT or chemotherapeutics. The types of medical conditions that the fluid delivery devices, systems and kits of the present invention might be used to treat include diabetes, cardiovascular disease, pain, chronic pain, cancer, ADDS, neurological diseases, Alzheimer's Disease, ALS, Hepatitis, Parkinson's Disease or spasticity.
(49) In Fig. 1, there is illustrated, generally at 10, a fluid delivery device according to the invention. The device 10 generally includes an exit port assembly 70 adapted to connect to a transcutaneous patient access tool, a dispenser 40 for causing fluid from a reservoir 30 to flow to the exit port assembly, a processor or electronic microcontroller (hereinafter referred to as the "local" processor) 50 connected to the dispenser and programmed to cause a flow of fluid to the exit port assembly based on flow instructions from a separate, remote control device (an example of which is shown in Fig. 2), and a wireless receiver 60 connected to the local processor for receiving the flow instructions from the separate, remote control device and delivering the flow instructions to the local processor. The device also includes a housing 20 containing the exit port assembly 70, the dispenser 40, the local processor 50, and the wireless receiver 60. The housing 20 is free of user input components, such as external buttons connected to the processor 50, for providing flow instructions to the local processor 50 in order to reduce the size, complexity and costs of the device 10, such that the device lends itself to being small and disposable in nature.
(50) In the exemplary embodiment of Fig. 1, the device 10 also includes a reservoir 30 contained within the housing 20 and connected to the dispenser 40. The reservoir 30 is provided with a collapsible design such as a metal bellows or is made of a collapsible material such as a silicone elastomer. The volume of the reservoir 30 is chosen to best suit the therapeutic application of the fluid delivery device 10 impacted by such factors as available concentrations of medicinal fluids to be delivered, acceptable times between refills or disposal of the fluid delivery device 10, size constraints and other factors. For treatment of Type I diabetics, for example, a reservoir of less than 5 ml, and preferably 2 to 3 ml, is appropriate.
(51) The local processor 50 contains all the computer programs and electronic circuitry needed to allow a user to program the desired flow patterns and adjust the program as necessary. Such circuitry can include one or more microprocessors, digital and analog integrated circuits, resistors, capacitors, transistors and other semiconductors and other electronic components known to those skilled in the art. The local processor 50 also includes programming, electronic circuitry and memory to properly activate the dispenser at the needed time intervals. In the exemplary embodiment of Fig. 1, a power supply 80, such as a battery or capacitor, is included and supplies power to the local processor 50.
(52) When the local processor 50 activates the dispenser 40, a specific amount of fluid exits the fluid delivery device 10 via the exit port assembly 70. The exit port assembly 70 can include elements to transcutaneously enter the patient, such as a needle or soft cannula, or can be adapted to connect to a standard infusion device that includes transcutaneous delivery means.
(53) As shown, the housing 20 is free of user input components for providing flow instructions to the local processor 50, such as electromechanical switches or buttons on an outer surface 21 of the housing, or interfaces otherwise accessible to a user to adjust the programmed flow rate through the local processor 50. In order to program, adjust the programming of, or otherwise communicate user inputs to the local processor 50, the fluid delivery device 10 includes the wireless communication element, or receiver 60 for receiving the user inputs from a separate, remote control device, such as the separate, remote control device 100 of Fig. 2. Signals can be sent via a communication element (not shown) of the remote control device 100, which can include or be connected to an antenna 130, shown in Fig. 2 as being external to the device 100.
(54) The remote control device 100 has user input components, including an array of electromechanical switches, such as the membrane keypad 120 shown. The control device 100 also includes user output components, including a visual display, such as a liquid crystal display (LCD) 110. Although not shown in Fig. 2, the remote control device 100 has its own processor (hereinafter referred to as the "remote" processor) connected to the membrane keypad 120 and the LCD 110. The remote processor is programmed to receive the user inputs from the membrane keypad 120 and translate the user inputs into "flow" instructions for transmission to the fluid delivery device 10, and is programmed to send user outputs to the LCD 110.
(55) A user, such as a patient or a clinician, can thus program the fluid delivery device 10 by entering information into the remote control device 100, which then downloads information to the receiver 60 of the device 10 with each key stroke or button pressed or in a batch mode of multiple key strokes. Complex flow algorithms, requests for bolus delivery and other desired infusions of the medicinal fluid can be accomplished by entering information into the remote control device 100, which is then transmitted to the fluid delivery device 10. The communication can be confirmed as acceptable by the local processor 50 of the fluid delivery device 10 by using one or more features such as standard handshaking protocols, redundant transmissions and other communication confirmation methods, as are known to those skilled in the art.
(56) The lack of user interfaces, such as electromechanical switches on the fluid delivery device 10, results in substantial reductions in the cost, the size, and the weight of the device 10. The lack of user interfaces also allows the housing outer surface 21 of the device 10 to be relatively smooth, thereby simplifying cleaning and preventing jewelry or clothing items such as sweaters from catching on the device. Since the remote control device 100 also includes a visual display 110, the fluid delivery device 10 can be void of an information screen, further reducing cost, size and weight. Lack of user interfaces, such as electromechanical switches and information screens, greatly simplifies the design of the fluid delivery device 10 and allows the device 10 to be made more flexible and resistant to damage.
(57) Fig. 3 shows another exemplary embodiment of the fluid delivery device 10 of the present invention wherein the reservoir 30 is made of a flexible material and is enclosed in a reservoir chamber 35, which can be defined by the housing 20 and housing reservoir walls 27. The flexible reservoir 30 is placed in compression by a compressing member 33 and compressing springs 34, which are positioned between the compressing member 33 and the housing 20. The compressed, flexible reservoir 30 causes fluid inside the reservoir 30 to be at a pressure above atmospheric pressure. In a preferred embodiment, a cross sectional area of the compressing member 33 approximates a cross sectional area of the reservoir 30.
(58) Alternatively, the housing 20 may include a flexible cantilever beam that contacts the reservoir 30 creating a pressure within the reservoir 30 above atmospheric pressure. In another alternative, the reservoir chamber 35 may be sealed and filled with a gas, or a vapor-plus-fluid mixture, to place the fluid within the reservoir 30 under pressure above atmospheric pressure. The gas can be air, and the vapor-plus-fluid mixture can be Freon. The Freon vapor-plus-fluid mixture provides the design advantage of near constant pressure if the fluid delivery device 10 is maintained at near constant temperature. In still another alternative embodiment, the amount of gas placed in a sealed reservoir chamber 35 may be chosen such that the reservoir 30 pressure is equal to or less than atmospheric for the entire full to empty conditions of the reservoir 30. If the fluid in the reservoir 30 is maintained at a pressure equal to or below atmospheric, then the dispenser 40 is provided in the form of a pump, such as a peristaltic drive pump, for pumping fluid from the reservoir 30 to the outlet port assembly 70.
(59) The reservoir 30 may be prefϊlled by the device manufacturer or a cooperating drug manufacturer, or may include external filling means consisting of a fill assembly 31. If the fluid delivery device 10 is prefilled by the manufacturer, the local processor 50 can be provided with memory containing various information regarding the prefilled drug including but not limited to, the type or name and the concentration and volume of the fluid.
(60) The fill assembly 31 can include a needle insertion septum 32. The reservoir 30 and other fluid path components may be placed in a vacuum during the final manufacturing process to simplify filling and priming of the fluid delivery device 10 for the patient. Needle insertion septum 32 may be constructed of a resealing elastomer such as silicone that allows a needle to puncture septum to add fluid to the reservoir 30, yet reseal after the needle is withdrawn. An alternative to the needle insertion septum 32 is a standard fluid connection, such as a Luer connector, which can be affixed to the fill assembly 31 in combination with a one way valve such as a duck bill valve (not shown). The patient could attach a syringe filled with the liquid medication to the Luer connector and fill the fluid delivery device 10. The fill assembly 31 may be designed so that the patient can fill the fluid delivery device 10 one time only, such as by having the Luer connection break off when the syringe is removed.
(61) The dispenser 40 is connected in fluid communication with the reservoir 30. When the device 10 is provided with a pressurized reservoir 30, as shown in exemplary embodiment of Fig. 3, the dispenser can include an inlet valve 41 connected to the reservoir, and outlet valve 42 connected to the exit port assembly 70, and an accumulator 43 connected between the inlet valve and the outlet valve. Since the fluid in the reservoir 30 is maintained at a pressure above atmospheric pressure, opening of the inlet valve 41 allows the accumulator to fill to the reservoir pressure, after which the inlet valve is 41 is closed. At the proper time, as determined by the local processor 50 programming and instructions received from the remote control device, the outlet valve 42 can be opened to dispense fluid to the exit port assembly 70, which is at the pressure of the patient, or atmospheric pressure. The accumulator 43 will then be at atmospheric pressure, and the outlet valve 42 can be closed, ready for another repeat cycle.
(62) The dispenser 40 of the exemplary embodiment of Figure 3 does not create a driving or pumping force on the fluid passing therethrough, but rather acts as a metering device, allowing pulses of fluid to pass from the pressurized reservoir 30, through the dispenser 40, to the exit port assembly 70 at atmospheric pressure. The inlet valve 41 and the outlet valve 42 of the dispenser 40 are controlled by the local processor 50, which includes electronic programming, controls and circuitry to allow sophisticated fluid delivery programming and control of the dispenser 40.
(63) Fig. 3 a shows the dispenser 40 with the accumulator 43 at atmospheric pressure. An accumulator membrane 44 is shown in its non-distended state, caused by atmospheric pressure only. Inlet valve 41 is closed, and outlet valve 42 may be open or closed, but must have been opened since the last time inlet valve 41 was opened. Fig. 3b shows the condition where outlet valve 42 is closed, and inlet valve 41 has been opened. Because of the elevated pressure of the fluid from the reservoir 30, the accumulator membrane 44 is distended, thus increasing the volume of accumulator 43 by an accumulator volume 45. After the inlet valve 41 is closed, the outlet valve 42 can be opened, to dispense the accumulator volume 45 and allow the accumulator membrane 44 to retract to the position shown in Fig. 3 a. (64) The inlet valve 41 and the outlet valve 42 of the dispenser 40 and the local processor 50 are designed to prevent both valves from being opened at the same time, precluding the reservoir 30 to ever flow directly to the exit port assembly 70. The prevention of both valves opening at the same time is critical and can be accomplished via mechanical means, electrical means, or both. The prevention can be accomplished in the dispenser 40 design, the local processor 50 design, or both.
(65) The dispenser 40 shown in Figs. 3, 3 a and 3b dispenses finite pulses of fluid volume, called pulse volume (PV), with each activation. The PV is determined by the properties, materials and construction of the accumulator 43 and the accumulator membrane 44. PV's delivered by infusion devices are typically chosen to be small relative to what would be considered a clinically significant volume. For insulin applications at a concentration of 100 units per ml, a PV of less than 2 microliter, and typically 0.5 microliter, is appropriate. If the fluid delivery device 10 is programmed via the remote control device 100 to deliver 2 units an hour, the dispenser will deliver 40 pulses an hour, or a pulse every 1.5 minutes. Such pulsitile flow is considered continuous if the PV is small enough. Other drugs or concentrations may permit a much larger PV. Various flow rates are achieved by adjusting the time between pulses. To give a fixed volume or bolus, multiple pulses are given in rapid succession until the bolus volume is reached.
(66) The PV may not always be constant enough to be within the accuracy requirements of the fluid delivery device 10. One factor impacting the PV is reservoir pressure. The fluid delivery device 10 may include means for monitoring reservoir pressure (RP) and adjust the timing between pulses to achieve the desire flow pattern. An example of such compensation would be to decrease time between pulses as the PV decreases to maintain the programmed flow rate. Means for monitoring such parameters as reservoir pressure RP are described below. An alternative to monitoring reservoir pressure is monitoring the volume of the reservoir 30. Each time a pulse or series of pulses are delivered, a measurement of reservoir volume can indicate whether a proper amount of fluid has been delivered, both for individual pulses and cumulative pulses. The system could also be designed to compensate fluid flow as errors are detected. An example of a reservoir volume transducer means is also described below.
(67) The communication element 60 preferably receives electronic communication from the remote control device 100 using radio frequency or other wireless communication standards and protocols. The information transferred includes codes or packets of codes that the local processor 50 uses to confirm that the information was received correctly, similar to the way standard telephone modem communication is performed. More sophisticated codes can be included to allow the information to be self- corrected or pinpoint the area of bad information. In an even more preferred embodiment, the communication element 60 is a two-way communication element, including a receiver and a transmitter, for allowing the fluid delivery device 10 to send information back to the remote control device 100. hi such an embodiment, the remote control device 100 also includes an integral communication element 60 comprising a receiver and a transmitter, for allowing the remote control device 100 to receive the information sent by the fluid delivery device 10.
(68) The power supply 80 can be integrated into the fluid delivery device 10 and not accessible to a user. In an alternative embodiment, however, the power supply 80 can be replaceable, e.g., a replaceable battery. In another embodiment, the power supply 80 can comprise an integrated battery or capacitor, for low power components of the device 10 such as the electronic memory, and a user-inserted battery for powering the remainder of the device 10. Other components that may require electrical energy are the communication element 60, the dispenser 40, and other components such as sensors or transducers.
(69) As shown in Fig. 3, the device can include sensors or transducers such as a reservoir volume transducer 37. A similar transducer is described in U.S. Patent 5,533,389 to Kamen et al. Fig. 3 also shows a pressure transducer 221, located on the housing reservoir walls 27 and in contact with a portion of the reservoir 30. The pressure transducer 221 may consist of force sensing resistor technology such as that manufactured by Interlink, Inc. of Camarillo, CA. Reservoir transducer 37 or pressure transducer 221 can transmit information to local processor 50 to indicate how and when to activate the dispenser 40, or to indicate other parameters determining flow, as well as conditions such as the reservoir 30 being empty or leaking, or the dispensing of too much or too little fluid from the reservoir, etc.
(70) Fig. 4 shows another exemplary embodiment of the fluid delivery device 10 including an elastic sock 36 for compressing the reservoir 30 to a pressure above atmospheric pressure. The reservoir sock 36, constructed of an elastic material, has a very small unexpanded internal volume, no larger than the volume of reservoir 30 in its empty state. The reservoir sock 36 expands to support reservoir 30 when full, and elastically compresses until reservoir 30 is fully empty. Alternatively, the elastic reservoir 30 can be provided with a very small internal volume when empty, typically less than 100 microliters, and that expands during the fill process, creating a pressure within the reservoir greater than atmospheric pressure until the reservoir 30 is again empty, thereby obviating the need for the reservoir sock 36. The fluid delivery device 10 of Fig. 4 also includes a Luer connector 71 for attaching a standard transcutaneous fluid delivery set to the exit port assembly 70.
(71) Since the fluid delivery device 10 may be worn close to or even attached to the body of a mammalian patient, it may be desired to prevent the temperature of the fluid in the reservoir 30 from elevating toward the body temperature of the patient. In one embodiment, the reservoir chamber 35 can be sealed and placed in a vacuum, similar to construction of a thermos bottle. The internal surface of the reservoir chamber 35 can be coated with reflective material, also similar to a thermos bottle. Alternatively, the chamber 35 can be filled with insulating material such as a low thermal conductance foam, with sufficient cavity size to allow the reservoir 30 to expand to a maximum fill capacity. Shown in Figs. 4a and 4b are venting holes 38, placed through the housing 20 and housing outer surface 21 in the area of reservoir chamber 35 on the side of the device 10 away from the skin of the patient. The venting holes 38 allow the reservoir chamber 35 to vent to ambient temperature and thus help cool the reservoir 30.
(72) Fig. 5 shows another exemplary embodiment of the fluid delivery device 10 that includes a second reservoir 90 in fluid communication with a second dispenser 91. The additional reservoir 90 can be filled during the manufacturing process or can include filling means similar to the fill assembly 31. The additional dispenser 91 may include a separate controller, or can be controlled by the same local processor 50. The additional dispenser 91 connects distally to tubing lumen 74 extending between the main dispenser 40 and the exit port assembly 70. Similar to the main dispenser 40, the additional dispenser 91 is designed and controlled to prevent free flow of fluid from the additional reservoir 90 to the exit port assembly 70.
(73) The second reservoir 90 may be filled with a drug different from the drug in the main reservoir 30, a diluent of the drug in the main reservoir 30 or any inert substance. The fluid from the additional reservoir 90 may be administered to dilute the fluid dispensed from the main reservoir 30, to provide more sophisticated or additive therapies, or even to maintain patency of the transcutaneous fluid path by flowing an inert substance at a more frequent rate then the intended infusion of the fluid in the main reservoir 30.
(74) Referring also to Fig. 5 a, the device also includes a transcutaneous patient access tool comprising transcutaneous micropenetrators 75 connected to the exit port assembly 70. The transcutaneous micropenetrators 75 include a series of micro-needles or other micropenetrators that allow fluid to transcutaneously enter the body of the patient without standard needles. Similar transcutaneous micropenetrators are shown, for example, in U.S. Patent 5,983,136 to Kamen et al.
(75) The device 10 further includes an adhesive layer 201 on the outer surface 21 of the housing 20 for securing the device 10 directly to the skin of a patient. The adhesive layer is preferably provided in a continuous, oval shape encircling the exit port assembly 70 in order to provide a protective seal around the penetrated skin. The housing adhesive layer 201 can consist of material such as that used in bandages or electro surgery return pads such as those manufactured by the Valley Lab division of Tyco/U.S. Surgical.
(76) Figs. 6 and 6a show another exemplary embodiment of the fluid delivery device 10 including a housing 200 having a recessed surface 29 for creating an air pocket between the fluid delivery device 10 and the skin 210 of a patient. The device 10 also includes a secondary adhesive layer 202 attached to the first adhesive layer 201, which is attached to the bottom surface of the housing 200 surrounding the recessed surface 29. The secondary adhesive layer 202 allows the device 10 to be attached, removed and attached again to a patient. When first attached, the secondary adhesive layer 202 adheres to the skin 210. Upon removal of the device 10, the secondary adhesive layer 202 can be removed from the first adhesive layer 201, and the fluid delivery device 10 can then be reattached to the skin 210 using the adhesive layer 201.
(77) A needle connection tubing 73 terminating in a skin penetrating cannula 72 is shown connected to the exit port assembly 70. The needle connection tubing 73 is flexible, allows various placements and can be reinforced to prevent kinking. Reinforcement can be accomplished through choice of materials and ratio of wall thickness to inner diameter, or the tubing 73 can be reinforced with an internal wire coil. The skin penetrating cannula 72 can be a rigid member, such as a needle, or can be flexible. The skin penetrating cannula 72 is inserted through the skin 210 prior to attaching the fluid delivery device 10 to the skin 210 and may be inserted using a needle insertion assistance mechanism. Such a needle insertion assistance mechanism may be integrated into the fluid delivery device 10, or can be supplied as a separate mechanism. Fig. 6 shows the cannula 72 entering through the surface of the skin 210 and entering subcutaneous tissue 211. Once the fluid delivery device 10 is attached to the skin 210, the needle connecting tube 73 remains relatively stable due to the direct connection between the device 10 and the skin 210. This stability helps prevent kinking of the tubing 73 and resultant occlusion, which is common to other ambulatory devices.
(78) Fig. 7 shows another exemplary embodiment of the fluid delivery device 10 including sensors providing feedback to the local processor 50, an electronic assembly for the various electronic devices and an optional second power supply 83. The sensors include a volume sensor 222, for example, provided in proximity with the reservoir 30 and an occlusion sensor 220 in proximity with the exit port tubing lumen 74.
(79) The microcontroller 50 can include a microprocessor 51, memory 52, an electronic clock oscillator 53, an analog-to-digital converter 54 and a multiplexer 55. Also shown in Fig. 7 is the optional secondary power source 83, attached by the user to a battery connector 81 connected to the microcontroller 50. A battery door 82 is removed for insertion of the battery 83 and then reattached by sliding the door in direction Dl to the housing 20 of the fluid delivery device 10. In a preferred embodiment, the power supply 80 provides electrical power for memory retention and low power electronics only, while the secondary power source 83 provides electrical power for higher consumption components of the device 10, such as the dispenser 40. Both the power supply 80 and the secondary power source 83 may be consumer batteries, such as alkaline or nickel cadmium batteries, or other energy storage devices such as a capacitor. Additionally, both the power supply 80 and the secondary power source 83 may be rechargeable power sources.
(80) Fig. 8 shows another exemplary embodiment of the fluid delivery device 10 including an electronic module 300 including the local processor 50 and other electronic devices in a modular subassembly, which simplifies manufacture, provides protection from water or other fluid damage, and provides shielding and protection from electromagnetic interference and static discharge. Attached to the electronic module 300 and connected to the communication element 60 is an optional antenna 61 to enhance transmitting of signals from the fluid delivery device 10 via the communication element 60. Alternatively, antenna 61 may be integrated into electronic module 300.
(81) The device of Fig. 8 includes an alarm transducer 223, such as a beeper or vibration device, which is also integrated into the electronic module 300. The electronic module 300 is shown encapsulated by an electronic module housing 301, which is a portion of the housing 20. The electronic module housing 301 can easily be made to be waterproof, potentially by encapsulating the entire assembly in potting material, and can be protected with shielding material or coating for the electronic module 300 to resist electromagnetic interference and electrostatic discharge without having to encapsulate the entire internal portion of the fluid delivery device 10. Alternatively, the housing 20, in the portion surrounding the electronic module 300 can be shielded or made waterproof, potentially by using a gasket material. The optional antenna 61, which can be included internal or external to the shielding material, is shown as external. The electronic module 300 may include a microprocessor, logic circuitry, read only memory, writeable memory, random access memory, analog to digital conversion circuitry, a multiplexer, the power supply 80, resistors, capacitors, semiconductor components, programmable gate arrays, operational amplifiers and various other analog and digital electronic components.
(82) Fig. 8a shows a transparent window 22 included in the housing 20 of the fluid delivery device 10 of Fig. 8, which allows a user to visually inspect the reservoir 30. Also shown is an information barcode 26, which has information that can be read by a remote control device 100 provided with a barcode scanner. Information on the barcode 26 can include amount, type and concentration of drug contained in the reservoir, the device manufacturer and serial number, and expiration dates, and various other pieces of information relative to infusion of liquid medicines into mammalian patients.
(83) Fig. 9 shows another exemplary embodiment of the fluid delivery device 10 which includes a housing 200 having flexible hinged sections 23 that allow the fluid delivery device 10 to flex dtiring patient movement to prevent detachment and aid in patient comfort. The hinged sections 23 run along the length of the housing 20 and allow the fluid delivery device 10 to have flex along each axis of the hinged sections 23. Directions of the axes of the hinged sections 23 can be varied to provide optimum flexibility for various patient contours and areas of placement. (84) Fig. 9a shows a standard transcutaneous infusion set 400 consisting of a penetrating cannula 405, usually consisting of a needle bent to ninety degrees, a flexible tubing 404 and a Luer connector 401, which includes standard threads 402. The infusion set 400 may also include means for attaching to the skin of a patient, such as infusion set wings 403, which may have adhesive pads on their bottom side, or may be simply taped to the skin. This connection to the skin may not be necessary when used with fluid delivery device 10 with recessed housing 200. Infusion set 400 can be attached to fluid delivery device 10 by connecting the infusion set Luer connector 401 to the Luer connector 71 of the exit port assembly 70 of the device 10.
(85) Fig. 10 shows another exemplary embodiment of the fluid delivery device 10 including a means for stopping flow without requiring use of the remote control device 100. In this embodiment, the means comprises a "t-shaped" stop button 230 that protrudes through the housing 20 and is maintained in a deactivated position through the force of stop button spring 231 The spring 231 is positioned between the stop button 230 and a portion 24 of the housing 20. Under normal conditions, fluid exits the dispenser 40, travels through the exit port tubing lumen 74 and exits the exit port assembly 70 unencumbered by stop button 230. As is shown in Fig. 10a, when stop button 230 is pressed such that it overcomes the force of the stop button spring 231, the stop button 232 compresses the exit port tubing lumen 74 against a second portion 25 of the housing 20, until the exit port tubing lumen 74 is fully occluded. In the embodiment shown, the stop button 230 protrudes through the housing 20. Alternatively, the device can be constructed such that, in the deactivated position, the stop button 230 is flush with the housing outer surface 21 to prevent undesired occlusion of flow by inadvertent pressing of the stop button 230. The button size and shape can be designed to accommodate an index finger, or the point of a pen. In addition, additional features can be added to have the button 230 latch and hold after being pressed against the lumen 74. The latching feature can be reversible, or can required removal and disposable of the fluid delivery device 10.
(86) Fig. 11 shows another exemplary embodiment of the fluid delivery device 10 including a means for delivering a fixed amount of fluid without requiring use of the remote control device 100. In certain circumstances, it may be desirable to administer a specific volume or bolus of fluid on demand without the use of the remote control device 100. Described here is an embodiment 10 wherein the user can press a mechanical bolus button 180 to release the bolus of the intended medicine.
(87) As also shown in Fig. 1 l , the bolus button 180 is t-shaped and protrudes through the housing 20. The button 180 is maintained in a deactivated position through the force of bolus button spring 181 positioned between the bolus button 180 and an internal portion of the housing 20. The bolus button 180 is attached to a bolus release finger 183 via a pivoting bolus lever 187. The bolus lever 187 has a pivot 182 attached to the housing 20, and moves the bolus release finger 183 away from a bolus delivery tubing lumen 186 and a bolus button stop 28 of the housing when the bolus button 180 is depressed against the spring 181. The bolus delivery tubing 186 is in fluid communication with the exit port tubing lumen 74 and, thus, the exit port assembly 70. When bolus button 180 is not pressed, the bias from bolus button spring 181 causes the bolus release finger 183 to press against bolus delivery tubing lumen 186 which presses against the bolus button stop 28 to occlude the bolus delivery tubing lumen 186.
(88) In order to deliver a fixed amount of fluid when the bolus button 180 is pressed, a bolus flow restrictor 184 and a bolus volume accumulator 185 are provided in the bolus delivery tubing 186. The bolus flow restrictor 184 acts as a flow limiter to prevent free flow of fluid from the reservoir 30, and creates a minimum lock-out period between full bolus volumes. Assuming in this particular embodiment that the reservoir 30 is maintained at a pressure above atmospheric pressure, the flow rate of the flow restrictor 184 is chosen to be much slower than the rate at which the bolus volume should be delivered.
(89) The bolus volume accumulator 185 expands with the inflow of fluid from the flow restrictor 184 as long as the bolus release finger 183 is occluding the bolus delivery tubing 186. The amount of expansion of the bolus volume accumulator 185 equals the bolus volume to be delivered. When the bolus button 180 is depressed, the bolus volume of fluid maintained in the bolus volume accumulator 185 is dispensed through the bolus delivery tubing lumen 186 and out of the exit port assembly 70.
(90) The time to dispense the bolus dose should be short since there are no downstream flow restrictors, and the user could be instructed to hold the button down for a required time, not more than a few seconds. Alternative designs could latch the bolus button 180 for a specific amount of time only, as the button must be released to prevent continued flow via the flow restrictor 184. After the bolus button 180 is pressed, bolus volume accumulator 185 fluid is delivered until the pressure in bolus volume accumulator 185 reaches atmospheric pressure. Release of bolus button 180 causes the bolus lever 187 to rotate back, pivoting around bolus pivot 182 until bolus release finger 183 is occluding bolus delivery tubing lumen 186 by pressing it against housing button stop 28. Bolus volume accumulator 185 again expands an amount equal to the next bolus volume to be delivered as fluid from reservoir 30 passes through bolus flow restrictor 184 until the pressure in bolus volume accumulator 185 equals the pressure in reservoir 30.
(91) In Figs. 11 and 1 la, the bolus button 180 is shown protruding through housing 20. Alternatively, in the deactivated position, bolus button 180 may be flush with the housing outer surface 21 to prevent undesired bolus delivery by inadvertent pressing of bolus button 180. In addition, while the figure shows a design that allows multiple depressions of the bolus button 180, alternative designs can make the bolus button 180 activation a one-time event, requiring the user to replace the fluid delivery device 10 or locate the remote control device 100.
(92) Figs. 12 and 12a depict a exemplary embodiment of the remote control device 100 of the present invention. The remote control device 100 is a hand held device that includes a controller housing 102, on which is mounted a visual display 110, such as a liquid crystal display or LCD. The visual display 110 can visually indicate status of programming, amounts, timing, and other parameters of medicinal fluid delivery. Other information can include time of day, address book, to do lists, and calendar information and potentially an entertainment interface such as a computer game. Another use of the visual display 110 is to display information received or to be sent to devices other than the fluid delivery device 100, such as a glucometer used by diabetic patients or other diagnostic device, especially those whose information is related to the desired infusion rates and volumes to be delivered by fluid delivery device 10. The remote control device 100 may have a diagnostic device, such as a blood glucose monitor or glucometer, or an implantable glucose sensor reader, integrated into it, simplifying the requirements of the patient by not having to carry and maintain two separate devices. Other diagnostic devices include but are not limited to blood diagnostic devices, electrocardiography devices and readers, electroencephalogram or EEG devices and readers, blood pressure monitors and pulse oxymetry devices. Alternative to full integration of the diagnostic device, would be connection to the device via wireless or hardwired communication means, to perform a transfer of information.
(93) The visual display 110 can also include information such as warning and alarm conditions based on the status of the fluid delivery device 100. Elements such as indicator lights, buzzers, and vibrational alarms may also be included in the remote control device 100 as alternative or redundant means for communicating information to the user.
(94) The user can get information and adjust the programming of the device by depressing various electromechanical switches also mounted on controller housing 102. These switches may be joined in a bank of switches and included in membrane keypad 120 as shown in Figs. 11 and 11a and as is common with hand held electronic devices. It is preferred that the choice of electromechanical switches of the membrane keypad 120 interface with the visual display 110 in a menu driven fashion making reading information and programming the device more user friendly for the user. In an alternative embodiment, the visual display 110 and membrane keypad 120 can be combined into a single device such as a touch screen display, also common to electronic devices. Combination of touch screen displays, membrane keypads and singular switches may all be integrated into the remote control device 100.
(95) The remote control device 100 may include various electromechanical jacks, which can accept electromechanical plugs from various devices. Shown in the figure are three plugs, a bar code reader 140, a glucometer port 150 and a computer port 170. These ports can allow two way transfer of information to enhance the capabilities of remote control device 100 and improve its user friendliness. Fig. 12a shows a schematic cross section of the remote control device 100. The membrane keypad 120 and visual display 110 are attached to the controller electronics 105. Depicted is glucometer port 150 attached to the controller electronics 105. Bar code reader 140 and computer port 170 are also attached to the controller electronics, not shown. The controller electronics are mounted and soldered to the controller printed circuit board 101 as is the controller communication element 160.
(96) The controller communication element 160 is designed to transmit signals, or information to the communication element 60 of the fluid delivery device 10. The controller electronics 105 act as a "translator" in translating user inputs received through the user interfaces 120 into signals for transmission by the controller communication element 160. In a preferred embodiment, both the communication element 60 and the controller communication element 160 are two way communication assemblies allowing two way communication between the remote control device 100 and fluid delivery device 10. In order to send wireless information the communication element 60 and the controller communication element 160 may include inductive wire loops or other transmitting antenna means. Information can be sent using amplitude or frequency modulation, and can be broadcast in the radio frequency, or RF range. Standard information confirmation techniques such as handshaking or checksum protocols can be used to insure accurate information transfer. With two-way communication, when errors are detected, the transfer can be repeated until acceptable, a similar technique to that utilized with two way pager technology commonplace today.
(97) If the fluid delivery device 10 is prefilled prior to patient use, the electronic memory of local processor 50 may contain information regarding the fluid including but not limited to type or name, concentration, amount, volume, additional drugs in solution and any diluting agents. This information can be transmitted from the fluid delivery device 10 via its communication element 60, and uploaded into the remote control device 100 via its controller communication element 160. Other information may be factory installed into the fluid delivery device 10 including but not limited to manufacturing date, expiration date, sterilization date, therapy information such as defined flow profiles and even patient or hospital information. This information can be uploaded into the remote control device 100 as described above, and the remote control device 100 may adjust its internal programming based on the information received.
(98) hi a preferred embodiment, the electronic memory of the fluid delivery device 10 includes the latest program of the remote control device 100 available at the time of manufacture of the fluid delivery device 10. Similarly, the electronic memory of the remote control device 100 includes the latest program of the fluid delivery device 10, available at the time of manufacture of the remote control device 100. At the first communication between the remote control device 100 and the fluid delivery device 10, a program check is performed, and if a newer software version for either device is available from the other device, and the existing hardware is compatible, another feature which can be programmed into both devices, the newer program is downloaded into memory and used by the upgraded device. The embedded program may be contained in read only memory, or ROM, while the downloaded program can be written into electronically writeable memory. The automatic update feature, available for each device to upgrade the other, is another way to make sure the user has the best available product for use.
(99) Another advantageous feature associated with two way communication is the addition of a proximity alarm. The design of the fluid delivery device 10 and remote control device 100 electronics can be such that when the distance between the two devices is greater than a particular radial length, one or both of the devices will alert the user, potentially with an audio alarm. The alarming distance should be chosen so that it is less than the maximum communication range of the two devices. A method of creating the alarm is for the fluid delivery device 10 to send out frequent packets of information at a predetermined rate and at an amplitude or power less than the normal communication power, providing a safety margin for the proximity detection. The remote control device 100 is programmed to expect to receive this communication at the predetermined rate, and lack of receipt of one or more of these packets, causes the remote control device 100 to activate its audio alarm 106. Alternatively or additionally, a vibrational alarm may be included. Proximity alarms may be included that do not require two way communication, by integrating a device such as a magnet into the housing 20 of fluid delivery device 10, and integrating magnetic field detection means into the remote control device 100. When the magnetic field detection means of the remote control device 100 do not detect the presence of the magnetic field of the fluid delivery device 10, the remote control device 100 activates the controller audio alarm 106.
(100) The remote control device 100 includes a controller power supply 108 that powers the various electronic components including the controller electronics 105, controller audio alarm 106. The controller power supply 108 may be a standard battery and in the preferred embodiment, the power supply 108 may be replaceable by the user by removing a battery door, not shown, and replacing after power supply 108 is inserted and attached. In an alternative embodiment, the power supply is integrated into the remote control device 100, and can be recharged with a separate device or contains enough power to supply the device for its intended length of use.
(101) The fluid delivery device 10 of the present invention may be sold to hospitals, pharmacies, outpatient centers or the patients themselves. If the fluid delivery device is intended for short term or disposable use, it may be practical to sell each device with various accessories or groups of accessories that are convenient for the user. It may be desirable for certain parts of the fluid delivery device, or accessories such as an attachable transcutaneous infusion set, such as that described hereinabove, to be packaged sterilized in a protective packaging. Proper aseptic maintenance of the portion of the skin that receives the transcutaneous access is important to prevent infection. Figs. 13, 13a, 13b and 13c depict various components that may be packaged together in kit form.
(102) Fig. 13 shows the fluid delivery device of the present invention including means for viewing the status of the reservoir 30 and an information barcode 26 with a sterilized device in a sterile assembly pack 350. The device may be packaged separately or with various other kit components. The fluid delivery device may be packaged sterile entirely in a device pouch 351, intended to allow sterilization and maintain sterility. Such pouches often are constructed of materials such as TYVEK, a product of Dupont. The sterile assembly pack 350 consists of the fluid delivery device 10 of the present invention, sealed in the device pouch 351 as is shown in Fig. 13. Alternatively, a portion of the fluid delivery device surrounding the exit port assembly 70 may be covered, sealed and sterilized with a sterility maintaining covering (not shown).
(103) The top of the housing 20, or housing top side 203 includes a housing transparent window 22 located above the reservoir 30. The transparency of the housing transparent window 22 and design of the reservoir 30 are such that the patient can determine information regarding status of the reservoir 30 by viewing through the housing transparent window 22. Such information can include amount of drug remaining or presence of a leak. Alternatively, the entire housing 20 may be transparent yielding similar visual indications.
(104) Also included in the fluid delivery device 10 of this embodiment is an information barcode 26 which can include various pieces of information regarding the status of that particular fluid delivery device 10 such as type, volume and concentration of drug prefϊlled in the device, expiration date of device or drug, manufacture date of device or drug, serial numbers, lot numbers, hospital name, clinician name, patient name, prescription requirements and various other pieces of information. The barcode information can be read into a hospital or home computer, or in the preferred embodiment is uploaded via a barcode reader integral to the remote control device 100. The fluid delivery device 10 and remote control device 100 electronics and programming can be designed such that the bar code must be read prior to programming or otherwise using the fluid delivery device 10. This feature can greatly reduce programming errors such as those associated with the patient entering drug information. If the patient were to enter a drug concentration that was incorrect, and did all the remaining programming in units of drug, instead of volume, which is common practice, while the device would function properly, all of the volumes delivered would be inaccurate based on the ratio of the incorrect concentration entered versus the true concentration of the drug being delivered. Many drugs are available in multiple concentrations such as insulin often made available to patients in 40, 50 and 100 units per ml concentrations.
(105) Fig. 13a shows the remote control device 100 of the present invention that could be packaged or provided as a kit with one or more of sterile package assembly 350, including at least one fluid delivery device 10. There is no need for the remote control device 100 to be sterilized, so if the fluid delivery device 10 was sterilized, one or more sterile package assembly 350 can be boxed or otherwise packaged with a single remote control device 100 along with one or more other devices 10.
(106) Fig. 13b shows a therapeutic fluid supply 250, which may consist of a vial of drug such as insulin. The drug, in one or more vials, which has been sterilized and made otherwise biocompatible for use, can be packaged with one or more sterile package assemblies 350 as well as with one or more remote control devices 100. Additional devices may be included in the kit if desired.
(107) Fig. 13c shows a sterile infusion set assembly 407 including the transcutaneous infusion set 400 described hereinabove packaged in an infusion set pouch 406. The infusion set 400 includes an infusion set Luer 401 connected to infusion set flexible tubing 404 and terminating in an infusion set penetrating cannula 405. An optional set of infusion set wings 403 can be included to attach the infusion set 400 to the patient's skin. In the preferred embodiment of fluid delivery device 100, the transcutaneous delivery means are integrated into exit port assembly 70, however in an alternative embodiment, the exit port assembly 70 can be attached to infusion set 400. In this particular embodiment, it may be desirable to kit sterile infusion set assemblies 407 with any quantity of one or more of the sterile assembly packs 350, the fluid delivery device 10, the remote control device 100 or the therapeutic fluid supply 250. (108) The fluid delivery device 10 of the present invention is intended to be low cost and potentially disposable. It may be advantageous for one or more of the components to be biodegradable, since replacement of the device every two to five days has many advantages, it would also generate a fair amount of waste. The fluid delivery device 10 may include a preinstalled battery as its power supply 80. In order to prevent the battery from powering the electronics of fluid delivery device 10 before its intended use, a mechanical switch may be included, connecting the battery contacts to the electronics prior to programming with the remote control device 100. A simplistic version of the switch design may be an insulating material between the battery contacts of power supply 80 and the electrical connection to the local processor 50. The insulating material could be designed to protrude through housing 20, and be removable by the user, not shown. The user could pull the insulating material and remove it, simultaneously connecting the battery contacts with the electrical connection to the local processor.
(109) The fluid delivery device 10 of the present invention may be filled with the therapeutic fluid by the device manufacture, a pharmaceutical company, or another manufacturer prior to its shipment to the hospital, pharmacy or patient. Certain drugs require refrigeration or other special environmental conditions, requiring the prefilled fluid delivery device to be refrigerated or otherwise handled to meet special requirements. Insulin is a drug that requires refrigeration if it is to be stored for a prolonged period of time. Hoechst, of Frankfurt Germany, is developing insulin that is stable at higher temperatures. Drugs that are stable at room temperature, such as the developmental insulin of Hoechst, allow simple filling and handling of the fluid delivery device 10, greatly simplifying the requirements for the patient.
(110) Various methods of using the fluid delivery device 10 are included in the present invention and described above. The method of programming the fluid delivery device 10 with remote programmer 100 as well as the attachment and use of the peripheral devices including transcutaneous infusion sets and diagnostic devices such as glucometers are described. Also relevant is the ability to update the internal programming of either the fluid delivery device 10 or the remote control device 100 by the corresponding device. Methods of filling the fluid delivery device 10 with therapeutic fluid during the manufacturing process as well as by the user have been described. Methods and timing of sterilization and packaging of part or all of the fluid delivery device 10 and therapeutic fluid have also been described.
(111) Although exemplary embodiments of the invention have been shown and described, many changes, modifications and substitutions may be made by those having ordinary skill in the art without necessarily departing from the spirit and scope of this invention. For example, the fluid delivery device of this invention is intended to be low cost, light weight, simple to use and potentially disposable by removing a majority of the user interface, including electromechanical switches, from the fluid delivery device, and including a separate controller to replace those functions. A reservoir, fluid dispenser, transcutaneous fluid administration means, solid state electronics and wireless communications are included in the fluid delivery device to perform its intended function. While various means for reservoir construction, pressurization means, fluid pumping means, fluid metering means, transcutaneous delivery, electronic control and wireless communications have been discussed in this application, alternatives to each of these areas can be made without departing from the spirit of the invention.
(112) In addition, where this patent application has listed the steps of a method or procedure in a specific order, it may be possible (or even expedient in certain circumstances) to change the order in which some steps are performed, and it is intended that the particular steps of the method or procedure claims set forth hereinbelow not be construed as being order-specific unless such order specificity is expressly stated in the claim.

Claims (51)

What is claimed is:
1. A device for delivering fluid to a patient, comprising:
an exit port assembly adapted to connect to a transcutaneous patient access tool;
a dispenser for causing fluid from a reservoir to flow to the exit port assembly;
a local processor connected to the dispenser and programmed to cause a flow of fluid to the exit port assembly based on flow instructions;
a wireless receiver connected to the local processor for receiving flow instructions from a separate, remote control device and delivering the flow instructions to the local processor; and
a housing containing the exit port assembly, the dispenser, the local processor, and the wireless receiver;
wherein the housing is free of user input components for providing flow instructions to the local processor.
2. A device according to Claim 1, wherein the flow instructions cause a predetermined rate of fluid flow for a predetermined period.
3. A device according to Claim 2, wherein the predetermined rate of fluid flow comprises a basal rate.
4. A device according to Claim 1, wherein the flow instructions cause a predetermined volume of fluid to flow for a predetermined period.
5. A device according to Claim 4, wherein the predetermined volume comprises a bolus volume.
6. A device according to Claim 1, wherein the local processor is programmed to cause a flow of fluid comprising pulse volumes.
7. A device according to Claim 1, further comprising at least one user interface component accessible from an exterior of the housing for occluding flow to the exit port assembly.
8. A device according to Claim 1, further comprising a power supply for supplying electrical power to the local processor.
9. A device according to Claim 8, wherein the power supply is integrated with the device.
10. A device according to Claim 8, wherein the power supply comprises a replaceable battery.
11. A device according to Claim 1, wherein the receiver utilizes radio frequency signals.
12. A device according to Claim 1, further comprising a transmitter connected to the local processor for transmitting information from the local processor to a separate, remote control device.
13. A device according to Claim 12, wherein the housing is free of user output components for providing information from the local processor.
14. A device according to Claim 1, wherein the exit port assembly includes a Luer connector.
15. A device according to Claim 1, further comprising a transcutaneous patient access tool connected to the exit port assembly.
16. A device according to Claim 15, wherein the transcutaneous patient access tool comprises a tubular member.
17. A device according to Claim 16, wherein the tubular member is adapted for residing in subcutaneous tissue of a patient.
18. A device according to Claim 17, wherein the tubular member comprises a rigid needle.
19. A device-according to Claim 15, wherein the transcutaneous patient access tool comprises micropenetrators.
20. A device according to Claim 1, further comprising a reservoir, and the dispenser controls fluid flow from the reservoir to the exit port assembly.
21. A device according to Claim 20, wherein the reservoir contains a therapeutic fluid.
22. A device according to Claim 20, further comprising a fill port connected to the reservoir.
23. A device according to Claim 20, wherein the reservoir is made of a flexible material and collapses as emptied.
24. A device according to Claim 20, wherein the reservoir is thermally insulated.
25. A device according to Claim 20, wherein the reservoir is pressurized.
26. A device according to Claim 25, further comprising a spring compressing the reservoir.
27. A device according to Claim 20, further comprising a second reservoir connected to the exit port assembly.
28. A device according to Claim 20, further comprising:
an expandable bolus accumulator connected to the reservoir; and
at least one user interface component accessible from an exterior of the housing for opening fluid flow between the bolus accumulator and the exit port assembly.
29. A device according to Claim 1, wherein the dispenser includes an expandable accumulator, an inlet valve controlling flow from a reservoir into the accumulator and an outlet valve controlling flow between the accumulator and the exit port assembly.
30. A device according to Claim 1, wherein the dispenser comprises a pump for pumping fluid from a reservoir to the exit port assembly.
31. A device according to Claim 1 , further including at least one sensor connected to the local processor and comprising at least one of an occlusion detector, a reservoir volume transducer, a reservoir empty detector, a leak detector, a pressure transducer, a fluid contact detector, an impedance monitor, a voltage detector, a photodetector, and a vibration monitor.
32. A device according to Claim 1, further comprising an alarm connected to the local processor.
33. A device according to Claim 1, further comprising adhesive on an exterior of the housing.
34. A device according to Claim 33, wherein the adhesive is provided in at least one continuous band surrounding the exit port assembly.
35. A device according to Claim 1, wherein the exit port assembly is mounted in a recessed portion of the housing.
36. A device according to Claim 1, wherein the housing is flexible.
37. A device according to Claim 36, wherein the housing includes hinge sections.
38. A device according to Claim 1, wherein the housing includes a window.
39. A device according to Claim 1, wherein the housing includes vent holes.
40. A device according to Claim 1, wherein the local processor and the receiver are encapsulated in an electromagnetic shielding material.
41. A device according to Claim 40, wherein the receiver includes an antenna extending out of the electromagnetic shielding material.
42. A device according to Claim 1, wherein the local processor includes programming which can be updated by a remote control device.
43. A system including a fluid delivery device according to Claim 1, and further comprising a remote control device separate from the fluid delivery device and including:
a remote processor;
user interface components connected to the remote processor for allowing a user to provide flow instructions to the remote processor, and
a transmitter connected to the remote processor for transmitting the flow instructions to the receiver of the fluid delivery device.
44. A system according to Claim 43, further comprising a proximity alarm.
45. A kit including a system according to Claim 43, and further comprising a subcutaneous patient access tool for connection to the exit port assembly of the fluid delivery device.
46. A kit according to Claim 45, including a single remote control device, and a plurality of fluid delivery devices.
47. A kit according to Claim 46, wherein each fluid delivery device includes a bar code and the remote control device includes a bar code scanner.
48. A device for delivering fluid to a patient, comprising:
an exit port assembly adapted to connect to a transcutaneous patient access tool:
a dispenser for causing fluid from a reservoir to flow to the exit port assembly;
a local processor connected to the dispenser and programmed to cause fluid flow to the exit port assembly based upon flow instructions, and further programmed to provide flow information;
a wireless transmitter connected to the local processor for transmitting the flow information from the local processor to a separate, remote control device; and a housing containing the exit port assembly, the dispenser, the local processor, and the wireless transmitter;
wherein the housing is free of user output components for providing the flow information from the local processor to a user.
49. A device according to Claim 48, wherein the local processor is programmed to receive at least some of the flow instructions from a separate, remote control device, and the device further includes a wireless receiver connected to the local processor for receiving the flow instructions from a separate, remote control device and delivering the flow instructions to the local processor.
50. A system including a fluid delivery device according to Claim 48, and further comprising a remote control device separate from the fluid delivery device and including:
a remote processor;
user output components connected to the remote processor for allowing a user to receive flow information, and
a receiver connected to the remote processor for receiving the flow information from the transmitter of the fluid delivery device.
51. A system for delivering a fluid to a patient, comprising:
a) a fluid delivery device for attachment to a skin surface of a patient and including,
an exit port assembly adapted to connect to a transcutaneous patient access tool,
a dispenser for causing fluid from a reservoir to flow to the exit port assembly,
a local processor connected to the dispenser and programmed to cause a flow of fluid to the exit port assembly based at least in part on received flow instructions, and further programmed to provide flow information, a wireless receiver connected to the local processor for receiving the flow instructions and delivering the flow instructions to the local processor,
a wireless transmitter connected to the local processor for transmitting the flow information from the local processor, and
a housing containing the exit port assembly, the dispenser, the local processor, the wireless receiver, and the wireless transmitter,
wherein the housing is free of user input components for providing flow instructions to the local processor; and
b) a remote control device separate from the fluid delivery device and including,
user input components for receiving user inputs,
user output components for providing user outputs,
a remote processor connected to the user input components and programmed to provide the flow instructions based on the user inputs, and connected to the user output components to provide user outputs based upon the flow information,
a wireless transmitter connected to the remote processor for transmitting the flow instructions to the receiver of the fluid delivery device, and
a wireless receiver connected to the remote processor for receiving the flow information from the transmitter of the fluid delivery device.
AU2001288575A 2000-09-08 2001-08-31 Devices, systems and methods for patient infusion Ceased AU2001288575B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US23147600P 2000-09-08 2000-09-08
US60/231,476 2000-09-08
PCT/US2001/027108 WO2002020073A2 (en) 2000-09-08 2001-08-31 Devices, systems and methods for patient infusion

Publications (2)

Publication Number Publication Date
AU2001288575A1 true AU2001288575A1 (en) 2002-06-13
AU2001288575B2 AU2001288575B2 (en) 2006-06-01

Family

ID=22869381

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2001288575A Ceased AU2001288575B2 (en) 2000-09-08 2001-08-31 Devices, systems and methods for patient infusion
AU8857501A Pending AU8857501A (en) 2000-09-08 2001-08-31 Devices, systems and methods for patient infusion

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU8857501A Pending AU8857501A (en) 2000-09-08 2001-08-31 Devices, systems and methods for patient infusion

Country Status (11)

Country Link
US (4) US6740059B2 (en)
EP (1) EP1335764B1 (en)
JP (1) JP2004521667A (en)
CN (1) CN1471413A (en)
AT (1) ATE363922T1 (en)
AU (2) AU2001288575B2 (en)
CA (2) CA2771723C (en)
DE (1) DE60128826T2 (en)
DK (1) DK1335764T3 (en)
ES (1) ES2287156T3 (en)
WO (1) WO2002020073A2 (en)

Families Citing this family (1040)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7090658B2 (en) * 1997-03-03 2006-08-15 Medical Solutions, Inc. Temperature sensing device for selectively measuring temperature at desired locations along an intravenous fluid line
US6824528B1 (en) 1997-03-03 2004-11-30 Medical Solutions, Inc. Method and apparatus for pressure infusion and temperature control of infused liquids
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US6467953B1 (en) 1999-03-30 2002-10-22 Medical Solutions, Inc. Method and apparatus for monitoring temperature of intravenously delivered fluids and other medical items
US6660974B2 (en) * 1997-04-07 2003-12-09 Medical Solutions, Inc. Warming system and method for heating various items utilized in surgical procedures
US7041941B2 (en) * 1997-04-07 2006-05-09 Patented Medical Solutions, Llc Medical item thermal treatment systems and method of monitoring medical items for compliance with prescribed requirements
ZA9811087B (en) 1997-12-04 1999-06-03 Bracco Research Sa Automatic liquid injection system and method
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
KR100308161B1 (en) * 1999-05-07 2001-09-26 구본준, 론 위라하디락사 Multi-domain liquid crystal display device
US6635014B2 (en) 2000-01-21 2003-10-21 Timothy J. Starkweather Ambulatory medical apparatus and method having telemetry modifiable control software
BR0110596A (en) 2000-05-05 2005-08-02 Hill Rom Services Inc Patient monitoring system, computer system, patient information monitoring system, patient care device, walker device, patient care device, and computer display
CA2408258A1 (en) 2000-05-05 2001-11-15 Hill Rom Services, Inc. Hospital monitoring and control system and method
US20040260233A1 (en) * 2000-09-08 2004-12-23 Garibotto John T. Data collection assembly for patient infusion system
ES2287156T3 (en) 2000-09-08 2007-12-16 Insulet Corporation DEVICES AND SYSTEMS FOR THE INFUSION OF A PATIENT.
CA2423717A1 (en) * 2000-10-04 2002-04-11 Insulet Corporation Data collection assembly for patient infusion system
AU2001295360A1 (en) * 2000-11-17 2002-05-27 Tecan Trading Ag Device and method for separating samples from a liquid
ATE501666T1 (en) * 2000-12-21 2011-04-15 Insulet Corp REMOTE CONTROL MEDICAL DEVICE AND METHOD
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
CA2434731C (en) * 2001-02-22 2010-01-26 Insulet Corporation Modular infusion device and method
US7031602B2 (en) * 2001-03-12 2006-04-18 Patented Medical Solutions, Llc Method and apparatus for controlling temperature of infused liquids
US7238171B2 (en) * 2001-03-12 2007-07-03 Medical Solutions, Inc. Method and apparatus for controlling pressurized infusion and temperature of infused liquids
US7041468B2 (en) 2001-04-02 2006-05-09 Therasense, Inc. Blood glucose tracking apparatus and methods
US6945965B2 (en) * 2001-05-16 2005-09-20 Howard Anthony Whiting Remote controlled urinary leg/bed bag drain valve
EP2140891B1 (en) 2001-05-18 2013-03-27 DEKA Products Limited Partnership Conduit for coupling to a fluid delivery device
US8034026B2 (en) 2001-05-18 2011-10-11 Deka Products Limited Partnership Infusion pump assembly
DE10133216B4 (en) * 2001-07-09 2005-01-27 Tecpharma Licensing Ag position detection
IL155682A0 (en) * 2001-08-20 2003-11-23 Inverness Medical Ltd Wireless diabetes management devices and methods for using the same
US8152789B2 (en) 2001-10-23 2012-04-10 Medtronic Minimed, Inc. System and method for providing closed loop infusion formulation delivery
US20030055380A1 (en) * 2001-09-19 2003-03-20 Flaherty J. Christopher Plunger for patient infusion device
WO2003026558A2 (en) * 2001-09-24 2003-04-03 Scott Laboratories, Inc. Methods and apparatuses for assuring quality and safety of drug administration and medical products and kits
US20040078028A1 (en) * 2001-11-09 2004-04-22 Flaherty J. Christopher Plunger assembly for patient infusion device
US8226605B2 (en) * 2001-12-17 2012-07-24 Medical Solutions, Inc. Method and apparatus for heating solutions within intravenous lines to desired temperatures during infusion
US10080529B2 (en) 2001-12-27 2018-09-25 Medtronic Minimed, Inc. System for monitoring physiological characteristics
US10173008B2 (en) 2002-01-29 2019-01-08 Baxter International Inc. System and method for communicating with a dialysis machine through a network
US8775196B2 (en) 2002-01-29 2014-07-08 Baxter International Inc. System and method for notification and escalation of medical data
US10022078B2 (en) * 2004-07-13 2018-07-17 Dexcom, Inc. Analyte sensor
US9247901B2 (en) 2003-08-22 2016-02-02 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US7497827B2 (en) 2004-07-13 2009-03-03 Dexcom, Inc. Transcutaneous analyte sensor
US8010174B2 (en) 2003-08-22 2011-08-30 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8260393B2 (en) 2003-07-25 2012-09-04 Dexcom, Inc. Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US20080172026A1 (en) 2006-10-17 2008-07-17 Blomquist Michael L Insulin pump having a suspension bolus
US7035773B2 (en) * 2002-03-06 2006-04-25 Fisher-Rosemount Systems, Inc. Appendable system and devices for data acquisition, analysis and control
US20030181845A1 (en) * 2002-03-21 2003-09-25 Orton Kevin R. Preparation and delivery of healthcare services utilizing electrolytic medicament
US7115108B2 (en) * 2002-04-02 2006-10-03 Becton, Dickinson And Company Method and device for intradermally delivering a substance
US7544179B2 (en) 2002-04-11 2009-06-09 Deka Products Limited Partnership System and method for delivering a target volume of fluid
US20050238507A1 (en) * 2002-04-23 2005-10-27 Insulet Corporation Fluid delivery device
US20040153032A1 (en) * 2002-04-23 2004-08-05 Garribotto John T. Dispenser for patient infusion device
US6960192B1 (en) * 2002-04-23 2005-11-01 Insulet Corporation Transcutaneous fluid delivery system
US8234128B2 (en) 2002-04-30 2012-07-31 Baxter International, Inc. System and method for verifying medical device operational parameters
US20080132842A1 (en) * 2002-06-06 2008-06-05 Flaherty J Christopher Plunger assembly for patient infusion device
US7261733B1 (en) * 2002-06-07 2007-08-28 Endovascular Technologies, Inc. Endovascular graft with sensors design and attachment methods
US6997905B2 (en) * 2002-06-14 2006-02-14 Baxter International Inc. Dual orientation display for a medical device
US7018361B2 (en) 2002-06-14 2006-03-28 Baxter International Inc. Infusion pump
US20030236489A1 (en) 2002-06-21 2003-12-25 Baxter International, Inc. Method and apparatus for closed-loop flow control system
US7338465B2 (en) 2002-07-02 2008-03-04 Patton Medical Devices, Lp Infusion device and method thereof
US7018360B2 (en) * 2002-07-16 2006-03-28 Insulet Corporation Flow restriction system and method for patient infusion device
CN1681544A (en) 2002-07-24 2005-10-12 M2医药有限公司 Infusion pump system, an infusion pump unit and an infusion pump
US20050160858A1 (en) * 2002-07-24 2005-07-28 M 2 Medical A/S Shape memory alloy actuator
US20040049129A1 (en) * 2002-09-05 2004-03-11 Yan Qi Wafer assembly having a resilient extendable/retractable needle means for healthcare
US7188538B2 (en) * 2002-09-30 2007-03-13 Pitney Bowes Inc. Hazardous material detector for detecting hazardous material in a mailstream
US7144384B2 (en) * 2002-09-30 2006-12-05 Insulet Corporation Dispenser components and methods for patient infusion device
US7128727B2 (en) * 2002-09-30 2006-10-31 Flaherty J Christopher Components and methods for patient infusion device
ATE506538T1 (en) 2002-10-09 2011-05-15 Abbott Diabetes Care Inc FUEL DELIVERY DEVICE, SYSTEM AND METHOD
US7727181B2 (en) 2002-10-09 2010-06-01 Abbott Diabetes Care Inc. Fluid delivery device with autocalibration
US7993108B2 (en) 2002-10-09 2011-08-09 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
US7399401B2 (en) * 2002-10-09 2008-07-15 Abbott Diabetes Care, Inc. Methods for use in assessing a flow condition of a fluid
WO2004041330A2 (en) * 2002-11-05 2004-05-21 M 2 Medical A/S A disposable wearable insulin dispensing device, a combination of such a device and a programming controller and a method of controlling the operation of such a device
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
US20060264926A1 (en) * 2002-11-08 2006-11-23 Kochamba Gary S Cutaneous stabilization by vacuum for delivery of micro-needle array
US6896666B2 (en) * 2002-11-08 2005-05-24 Kochamba Family Trust Cutaneous injection delivery under suction
EP1583571B1 (en) 2002-12-23 2008-02-13 M2 Medical A/S Medical dispensing device for insulin
JP2006511262A (en) * 2002-12-23 2006-04-06 エム2・メディカル・アクティーゼルスカブ Flexible piston rod
US7811231B2 (en) 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US7569049B1 (en) * 2003-01-13 2009-08-04 Advanced Neuromodulation Systems, Inc. Multi-stable valves for medical applications and methods for use thereof
US20050182366A1 (en) * 2003-04-18 2005-08-18 Insulet Corporation Method For Visual Output Verification
US20050022274A1 (en) * 2003-04-18 2005-01-27 Robert Campbell User interface for infusion pump remote controller and method of using the same
EP1617888B1 (en) 2003-04-23 2019-06-12 Valeritas, Inc. Hydraulically actuated pump for long duration medicament administration
US7679407B2 (en) 2003-04-28 2010-03-16 Abbott Diabetes Care Inc. Method and apparatus for providing peak detection circuitry for data communication systems
US20040220551A1 (en) * 2003-04-30 2004-11-04 Flaherty J. Christopher Low profile components for patient infusion device
CA2524029A1 (en) * 2003-04-30 2004-11-18 Insulet Corporation Rf medical device
US20040220531A1 (en) * 2003-05-01 2004-11-04 Bui Tuan S. System and method operating microreservoirs delivering medication in coordination with a pump delivering diluent
EP1475113A1 (en) * 2003-05-08 2004-11-10 Novo Nordisk A/S External needle inserter
ATE474611T1 (en) * 2003-05-08 2010-08-15 Novo Nordisk As AN INJECTION DEVICE THAT CAN BE APPLIED TO THE SKIN WITH A SEPARABLE ACTUATING PART FOR INSERTING THE NEEDLE
EP1624914B1 (en) * 2003-05-08 2008-04-16 Novo Nordisk A/S Internal needle inserter
US20040230247A1 (en) * 2003-05-15 2004-11-18 Stein Richard E. Patient controlled therapy management and diagnostic device with human factors interface
US20040230246A1 (en) * 2003-05-15 2004-11-18 Stein Richard E. Patient controlled therapy management and diagnostic device with human factors interface
US8460243B2 (en) 2003-06-10 2013-06-11 Abbott Diabetes Care Inc. Glucose measuring module and insulin pump combination
DE10327254B4 (en) * 2003-06-17 2010-01-28 Disetronic Licensing Ag Modular infusion pump
ATE357939T1 (en) 2003-07-08 2007-04-15 Novo Nordisk As PORTABLE MEDICINE DELIVERY DEVICE HAVING AN ENCAPSULATED NEEDLE
US7722536B2 (en) * 2003-07-15 2010-05-25 Abbott Diabetes Care Inc. Glucose measuring device integrated into a holster for a personal area network device
EP1648298A4 (en) 2003-07-25 2010-01-13 Dexcom Inc Oxygen enhancing membrane systems for implantable devices
EP1502613A1 (en) * 2003-08-01 2005-02-02 Novo Nordisk A/S Needle device with retraction means
US7220244B2 (en) * 2003-08-04 2007-05-22 Bioquiddity, Inc. Infusion apparatus with constant force spring energy source
US7399205B2 (en) 2003-08-21 2008-07-15 Hill-Rom Services, Inc. Plug and receptacle having wired and wireless coupling
US20140121989A1 (en) 2003-08-22 2014-05-01 Dexcom, Inc. Systems and methods for processing analyte sensor data
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
DK1662987T3 (en) * 2003-09-11 2012-02-27 Theranos Inc Medical device for analyte monitoring and drug delivery
IL157984A (en) 2003-09-17 2015-02-26 Dali Medical Devices Ltd Autoneedle
IL157981A (en) 2003-09-17 2014-01-30 Elcam Medical Agricultural Cooperative Ass Ltd Auto-injector
US20050065760A1 (en) * 2003-09-23 2005-03-24 Robert Murtfeldt Method for advising patients concerning doses of insulin
US7305984B2 (en) 2003-09-25 2007-12-11 Deka Products Limited Partnership Metering system and method for aerosol delivery
US9138537B2 (en) * 2003-10-02 2015-09-22 Medtronic, Inc. Determining catheter status
US9033920B2 (en) * 2003-10-02 2015-05-19 Medtronic, Inc. Determining catheter status
US7320676B2 (en) * 2003-10-02 2008-01-22 Medtronic, Inc. Pressure sensing in implantable medical devices
US8323244B2 (en) * 2007-03-30 2012-12-04 Medtronic, Inc. Catheter malfunction determinations using physiologic pressure
US9123077B2 (en) 2003-10-07 2015-09-01 Hospira, Inc. Medication management system
US8065161B2 (en) 2003-11-13 2011-11-22 Hospira, Inc. System for maintaining drug information and communicating with medication delivery devices
KR20060099520A (en) * 2003-10-21 2006-09-19 노보 노르디스크 에이/에스 Medical skin mountable device
US8029454B2 (en) 2003-11-05 2011-10-04 Baxter International Inc. High convection home hemodialysis/hemofiltration and sorbent system
USD914881S1 (en) 2003-11-05 2021-03-30 Abbott Diabetes Care Inc. Analyte sensor electronic mount
SG179415A1 (en) 2003-11-06 2012-04-27 Lifescan Inc Drug delivery pen with event notification means
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US20050126304A1 (en) * 2003-11-24 2005-06-16 Integrated Sensing Systems, Inc. Fluid infusion method and system therefor
CA2557469C (en) * 2003-12-16 2011-05-10 Ultimate Medical Pty. Ltd. Fluid delivery device
US7515963B2 (en) * 2003-12-16 2009-04-07 Cardiac Pacemakers, Inc. Method of patient initiated electro-cardiogram storage, status query and therapy activation
AU2004298287B2 (en) * 2003-12-16 2010-09-16 Chimden Medical Pty. Ltd. Fluid delivery device
US7753879B2 (en) 2004-01-29 2010-07-13 M2 Group Holdings, Inc. Disposable medicine dispensing device
US20050191194A1 (en) * 2004-02-26 2005-09-01 Falk Theodore J. Low power electromagnetic pump having internal compliant element
EP1723977B1 (en) * 2004-03-03 2021-10-20 Nemoto Kyorindo Co., Ltd. Medical solution injection system
IL160891A0 (en) 2004-03-16 2004-08-31 Auto-mix needle
CN100586495C (en) * 2004-03-30 2010-02-03 诺和诺德公司 Actuator system comprising lever mechanism
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
JP2007537793A (en) * 2004-05-14 2007-12-27 バイエル・ヘルスケア・エルエルシー Method and apparatus for performing patient data download for multiple different instrument types
US20050277883A1 (en) * 2004-05-26 2005-12-15 Kriesel Marshall S Fluid delivery device
US20070156090A1 (en) * 2004-05-26 2007-07-05 Kriesel Marshall S Fluid delivery apparatus
US7927313B2 (en) 2004-05-27 2011-04-19 Baxter International Inc. Medical device configuration based on recognition of identification information
US8961461B2 (en) 2004-05-27 2015-02-24 Baxter International Inc. Multi-state alarm system for a medical pump
US20060010098A1 (en) 2004-06-04 2006-01-12 Goodnow Timothy T Diabetes care host-client architecture and data management system
US7794499B2 (en) 2004-06-08 2010-09-14 Theken Disc, L.L.C. Prosthetic intervertebral spinal disc with integral microprocessor
WO2006014425A1 (en) 2004-07-02 2006-02-09 Biovalve Technologies, Inc. Methods and devices for delivering glp-1 and uses thereof
US20060009734A1 (en) * 2004-07-07 2006-01-12 Martin James F Dosage control for drug delivery system
US8886272B2 (en) * 2004-07-13 2014-11-11 Dexcom, Inc. Analyte sensor
US7319386B2 (en) 2004-08-02 2008-01-15 Hill-Rom Services, Inc. Configurable system for alerting caregivers
US7736354B2 (en) * 2004-09-09 2010-06-15 Plc Medical Systems, Inc. Patient hydration system with hydration state detection
US11213621B2 (en) 2004-09-09 2022-01-04 Reprieve Cardiovascular, Inc. Fluid therapy method
US20180185577A9 (en) 2004-09-09 2018-07-05 Plc Medical Systems, Inc. Fluid therapy method
US7837667B2 (en) * 2004-09-09 2010-11-23 Plc Medical Systems, Inc. Patient hydration system with abnormal condition sensing
US7727222B2 (en) * 2004-09-09 2010-06-01 Plc Medical Systems, Inc. Patient hydration system with taper down feature
US20080027409A1 (en) * 2004-09-09 2008-01-31 Rudko Robert I Patient hydration/fluid administration system and method
US7938817B2 (en) * 2004-09-09 2011-05-10 Plc Medical Systems, Inc. Patient hydration system and method
US7758563B2 (en) * 2004-09-09 2010-07-20 Plc Medical Systems, Inc. Patient hydration monitoring and maintenance system and method for use with administration of a diuretic
US7758562B2 (en) * 2004-09-09 2010-07-20 Plc Medical Systems, Inc. Patient hydration system with a redundant monitoring of hydration fluid infusion
WO2006031712A2 (en) 2004-09-13 2006-03-23 Oriel Therapeutics, Inc. Tubular dry powder drug containment systems, associated inhalers and methods
CN100584399C (en) * 2004-09-22 2010-01-27 诺和诺德公司 Medical device with percutaneous cannula device
WO2006032692A1 (en) * 2004-09-22 2006-03-30 Novo Nordisk A/S Medical device with cannula inserter
WO2006042419A1 (en) * 2004-10-22 2006-04-27 Multi-Vet Ltd. Mobile electronic device with fluid delivery system
WO2006061354A1 (en) * 2004-12-06 2006-06-15 Novo Nordisk A/S Ventilated skin mountable device
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US8613703B2 (en) 2007-05-31 2013-12-24 Abbott Diabetes Care Inc. Insertion devices and methods
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US10226207B2 (en) 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
US9259175B2 (en) * 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US9351669B2 (en) 2009-09-30 2016-05-31 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
US9636450B2 (en) * 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US7697967B2 (en) 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US8545403B2 (en) 2005-12-28 2013-10-01 Abbott Diabetes Care Inc. Medical device insertion
US20090105569A1 (en) 2006-04-28 2009-04-23 Abbott Diabetes Care, Inc. Introducer Assembly and Methods of Use
US20090082693A1 (en) * 2004-12-29 2009-03-26 Therasense, Inc. Method and apparatus for providing temperature sensor module in a data communication system
ITBO20050002A1 (en) * 2005-01-04 2006-07-05 Giacomo Vespasiani METHOD AND SYSTEM FOR INTERACTIVE MANAGEMENT OF DATA CONCERNING AN INSULIN THERAPY IN SELF-CONTROL FOR A DIABETIC PATIENT
CN100571800C (en) 2005-01-24 2009-12-23 诺和诺德公司 Armarium with protected transcutaneous device
US20060178633A1 (en) * 2005-02-03 2006-08-10 Insulet Corporation Chassis for fluid delivery device
US7545272B2 (en) 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
US8029468B2 (en) * 2005-02-15 2011-10-04 Bioquiddity, Inc. Fluid delivery and mixing apparatus with flow rate control
US20080009835A1 (en) * 2005-02-17 2008-01-10 Kriesel Marshall S Fluid dispensing apparatus with flow rate control
US7694938B2 (en) * 2005-02-17 2010-04-13 Bioquiddity, Inc. Distal rate control device
US7837653B2 (en) * 2005-02-18 2010-11-23 Bioquiddity, Inc. Fluid delivery apparatus with vial fill
CN101128229B (en) * 2005-02-28 2011-05-25 诺和诺德公司 Device for providing a change in a drug delivery rate
US20080208627A1 (en) * 2005-03-17 2008-08-28 Ole Skyggebjerg Securing Pairing of Electronic Devices
US20060224141A1 (en) 2005-03-21 2006-10-05 Abbott Diabetes Care, Inc. Method and system for providing integrated medication infusion and analyte monitoring system
DE202006020986U1 (en) * 2005-04-06 2011-08-05 Asante Solutions, Inc. An actuator
US8744546B2 (en) 2005-05-05 2014-06-03 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US7905868B2 (en) 2006-08-23 2011-03-15 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
US8512288B2 (en) * 2006-08-23 2013-08-20 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
US8137314B2 (en) * 2006-08-23 2012-03-20 Medtronic Minimed, Inc. Infusion medium delivery device and method with compressible or curved reservoir or conduit
US8840586B2 (en) 2006-08-23 2014-09-23 Medtronic Minimed, Inc. Systems and methods allowing for reservoir filling and infusion medium delivery
US7699833B2 (en) 2005-05-06 2010-04-20 Moberg Sheldon B Pump assembly and method for infusion device
US20080097291A1 (en) * 2006-08-23 2008-04-24 Hanson Ian B Infusion pumps and methods and delivery devices and methods with same
US8277415B2 (en) * 2006-08-23 2012-10-02 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
CA2610294C (en) 2005-05-09 2023-10-03 Theranos, Inc. Point-of-care fluidic systems and uses thereof
EP1898975A2 (en) * 2005-05-13 2008-03-19 Novo Nordisk A/S Medical device adapted to detect disengagement of a transcutaneous device
US7768408B2 (en) 2005-05-17 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing data management in data monitoring system
US7620437B2 (en) 2005-06-03 2009-11-17 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US20090018495A1 (en) * 2005-06-27 2009-01-15 Novo Nordisk A/S User Interface For Delivery System Providing Shortcut Navigation
US20090212966A1 (en) * 2005-06-27 2009-08-27 Novo Nordisk A/S User Interface for Delivery System Providing Dual Setting of Parameters
EP1899880A1 (en) * 2005-06-27 2008-03-19 Novo Nordisk A/S User interface for delivery system providing graphical programming of profile
AU2006297601A1 (en) * 2005-08-22 2007-04-12 Patton Medical Devices, Lp Fluid delivery devices, systems and methods
US7713240B2 (en) * 2005-09-13 2010-05-11 Medtronic Minimed, Inc. Modular external infusion device
US20070196456A1 (en) * 2005-09-15 2007-08-23 Visible Assets, Inc. Smart patch
WO2007035666A2 (en) * 2005-09-19 2007-03-29 Lifescan, Inc. Electrokinetic infusion pump system
WO2007035654A2 (en) * 2005-09-19 2007-03-29 Lifescan, Inc. Systems and methods for detecting a partition position in an infusion pump
US20070066940A1 (en) * 2005-09-19 2007-03-22 Lifescan, Inc. Systems and Methods for Detecting a Partition Position in an Infusion Pump
US7534226B2 (en) * 2005-09-26 2009-05-19 M2 Group Holdings, Inc. Dispensing fluid from an infusion pump system
US8105279B2 (en) 2005-09-26 2012-01-31 M2 Group Holdings, Inc. Dispensing fluid from an infusion pump system
EP2162168B1 (en) 2005-09-26 2018-11-07 Bigfoot Biomedical, Inc. Modular infusion pump having two different energy sources
US8057436B2 (en) 2005-09-26 2011-11-15 Asante Solutions, Inc. Dispensing fluid from an infusion pump system
US8551046B2 (en) 2006-09-18 2013-10-08 Asante Solutions, Inc. Dispensing fluid from an infusion pump system
US8409142B2 (en) 2005-09-26 2013-04-02 Asante Solutions, Inc. Operating an infusion pump system
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US20070088333A1 (en) * 2005-10-13 2007-04-19 G&L Consulting, Llc Method and system for infusing an osmotic solute into a patient and providing feedback control of the infusing rate
WO2007047279A1 (en) * 2005-10-18 2007-04-26 Richards Cynthia C Dispenser having a first pump for insulin and a second pump for glucose or glucagon
US7583190B2 (en) 2005-10-31 2009-09-01 Abbott Diabetes Care Inc. Method and apparatus for providing data communication in data monitoring and management systems
CN101389366B (en) 2005-11-03 2012-12-26 巴顿医疗设备有限公司 Fluid delivery devices and system
US7935104B2 (en) 2005-11-07 2011-05-03 Medingo, Ltd. Systems and methods for sustained medical infusion and devices related thereto
WO2007056592A2 (en) 2005-11-08 2007-05-18 M2 Medical A/S Method and system for manual and autonomous control of an infusion pump
US8475408B2 (en) 2005-11-08 2013-07-02 Asante Solutions, Inc. Infusion pump system
DK1957794T3 (en) * 2005-11-23 2014-08-11 Eksigent Technologies Llc Electrokinetic pump designs and drug delivery systems
EP1795117A1 (en) * 2005-12-12 2007-06-13 F. Hoffmann-La Roche AG Patient device with remote user interface
US7963945B2 (en) * 2005-12-14 2011-06-21 Hewlett-Packard Development Company, L.P. Replaceable supplies for IV fluid delivery systems
US11298058B2 (en) 2005-12-28 2022-04-12 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US8344966B2 (en) 2006-01-31 2013-01-01 Abbott Diabetes Care Inc. Method and system for providing a fault tolerant display unit in an electronic device
US8579884B2 (en) * 2006-02-09 2013-11-12 Deka Products Limited Partnership Infusion pump assembly
US11364335B2 (en) 2006-02-09 2022-06-21 Deka Products Limited Partnership Apparatus, system and method for fluid delivery
US12070574B2 (en) 2006-02-09 2024-08-27 Deka Products Limited Partnership Apparatus, systems and methods for an infusion pump assembly
US11478623B2 (en) 2006-02-09 2022-10-25 Deka Products Limited Partnership Infusion pump assembly
US11497846B2 (en) 2006-02-09 2022-11-15 Deka Products Limited Partnership Patch-sized fluid delivery systems and methods
US11027058B2 (en) 2006-02-09 2021-06-08 Deka Products Limited Partnership Infusion pump assembly
EP1993633B1 (en) 2006-02-09 2016-11-09 Deka Products Limited Partnership Pumping fluid delivery systems and methods using force application assembly
WO2007093981A2 (en) * 2006-02-15 2007-08-23 Medingo Ltd. Systems and methods for sensing analyte and dispensing therapeutic fluid
US7981034B2 (en) 2006-02-28 2011-07-19 Abbott Diabetes Care Inc. Smart messages and alerts for an infusion delivery and management system
EP1997233B1 (en) * 2006-03-13 2014-03-05 Novo Nordisk A/S Secure pairing of electronic devices using dual means of communication
CN101401314B (en) 2006-03-13 2013-04-24 诺沃-诺迪斯克有限公司 Medical system comprising dual purpose communication means
US7993304B2 (en) * 2006-03-15 2011-08-09 Bioquiddity, Inc. Fluid dispensing apparatus
US7828772B2 (en) * 2006-03-15 2010-11-09 Bioquiddity, Inc. Fluid dispensing device
US8487738B2 (en) * 2006-03-20 2013-07-16 Medical Solutions, Inc. Method and apparatus for securely storing medical items within a thermal treatment system
US11287421B2 (en) 2006-03-24 2022-03-29 Labrador Diagnostics Llc Systems and methods of sample processing and fluid control in a fluidic system
US8741230B2 (en) 2006-03-24 2014-06-03 Theranos, Inc. Systems and methods of sample processing and fluid control in a fluidic system
WO2007115039A2 (en) 2006-03-30 2007-10-11 Valeritas, Llc Multi-cartridge fluid delivery device
US20070233051A1 (en) * 2006-03-31 2007-10-04 David Hohl Drug delivery systems and methods
WO2007123764A2 (en) * 2006-04-06 2007-11-01 Medtronic, Inc. Systems and methods of identifying catheter malfunctions using pressure sensing
CN101426542A (en) * 2006-04-26 2009-05-06 诺沃-诺迪斯克有限公司 Skin-mountable device in packaging comprising coated seal member
US8083730B2 (en) * 2006-04-28 2011-12-27 Medtronic, Inc. Implantable therapeutic substance delivery device with reservoir volume sensor
US8007999B2 (en) * 2006-05-10 2011-08-30 Theranos, Inc. Real-time detection of influenza virus
CA2651703A1 (en) * 2006-05-10 2007-11-15 F. Hoffmann-La Roche Ag Infusion set with a data storage device
EP2032188A1 (en) * 2006-06-06 2009-03-11 Novo Nordisk A/S Assembly comprising skin-mountable device and packaging therefore
US20080064937A1 (en) 2006-06-07 2008-03-13 Abbott Diabetes Care, Inc. Analyte monitoring system and method
US20090171269A1 (en) * 2006-06-29 2009-07-02 Abbott Diabetes Care, Inc. Infusion Device and Methods Therefor
US9119582B2 (en) 2006-06-30 2015-09-01 Abbott Diabetes Care, Inc. Integrated analyte sensor and infusion device and methods therefor
ES2802600T3 (en) 2006-07-07 2021-01-20 Hoffmann La Roche Fluid Management Device and Operating Procedures
DK2043706T3 (en) * 2006-07-24 2016-04-04 Hoffmann La Roche SYSTEMS, DEVICES AND PROCEDURES FOR FLUID / MEDICINE ADMINISTRATION
US8292848B2 (en) * 2006-07-31 2012-10-23 Bio Quiddity, Inc. Fluid dispensing device with additive
US8057435B2 (en) 2006-07-31 2011-11-15 Kriesel Joshua W Fluid dispenser
US8932216B2 (en) 2006-08-07 2015-01-13 Abbott Diabetes Care Inc. Method and system for providing data management in integrated analyte monitoring and infusion system
US8206296B2 (en) 2006-08-07 2012-06-26 Abbott Diabetes Care Inc. Method and system for providing integrated analyte monitoring and infusion system therapy management
US20080051765A1 (en) * 2006-08-23 2008-02-28 Medtronic Minimed, Inc. Systems and methods allowing for reservoir filling and infusion medium delivery
US7811262B2 (en) * 2006-08-23 2010-10-12 Medtronic Minimed, Inc. Systems and methods allowing for reservoir filling and infusion medium delivery
US7828764B2 (en) * 2006-08-23 2010-11-09 Medtronic Minimed, Inc. Systems and methods allowing for reservoir filling and infusion medium delivery
US7794434B2 (en) * 2006-08-23 2010-09-14 Medtronic Minimed, Inc. Systems and methods allowing for reservoir filling and infusion medium delivery
US7455663B2 (en) * 2006-08-23 2008-11-25 Medtronic Minimed, Inc. Infusion medium delivery system, device and method with needle inserter and needle inserter device and method
US9056165B2 (en) 2006-09-06 2015-06-16 Medtronic Minimed, Inc. Intelligent therapy recommendation algorithm and method of using the same
US8506524B2 (en) * 2006-10-04 2013-08-13 Novo Nordisk A/S User interface for delivery system comprising diary function
US8202267B2 (en) * 2006-10-10 2012-06-19 Medsolve Technologies, Inc. Method and apparatus for infusing liquid to a body
US8075513B2 (en) * 2006-10-13 2011-12-13 Plc Medical Systems, Inc. Patient connection system for a balance hydration unit
AU2007317669A1 (en) 2006-10-16 2008-05-15 Hospira, Inc. System and method for comparing and utilizing activity information and configuration information from mulitple device management systems
US8579853B2 (en) 2006-10-31 2013-11-12 Abbott Diabetes Care Inc. Infusion devices and methods
US7459961B2 (en) * 2006-10-31 2008-12-02 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Voltage supply insensitive bias circuits
US20080113391A1 (en) 2006-11-14 2008-05-15 Ian Gibbons Detection and quantification of analytes in bodily fluids
WO2008067245A2 (en) * 2006-11-29 2008-06-05 University Of Maryland, Baltimore Determining insulin pump rate for tight glycemic control
JP4398971B2 (en) * 2006-12-07 2010-01-13 シャープ株式会社 Image processing device
US20080145007A1 (en) * 2006-12-13 2008-06-19 Eric Crumpton Electronic device and method for manufacturing the same
JP2010512813A (en) * 2006-12-14 2010-04-30 ノボ・ノルデイスク・エー/エス User interface of medical law system with diary function with change function
US7654127B2 (en) * 2006-12-21 2010-02-02 Lifescan, Inc. Malfunction detection in infusion pumps
DK3998095T3 (en) 2006-12-22 2024-04-02 Hoffmann La Roche Device for continuous administration of a therapeutic liquid
EP2601883A1 (en) 2006-12-22 2013-06-12 Medingo Ltd. Fluid delivery with in vivo electrochemical analyte sensing
US20080214919A1 (en) * 2006-12-26 2008-09-04 Lifescan, Inc. System and method for implementation of glycemic control protocols
EP2121076B1 (en) 2006-12-29 2017-04-05 F. Hoffmann-La Roche AG Infusion device that can be worn outside the body
US20080161754A1 (en) * 2006-12-29 2008-07-03 Medsolve Technologies, Inc. Method and apparatus for infusing liquid to a body
EP2109395B1 (en) * 2007-01-15 2018-12-26 Deka Products Limited Partnership Device and method for food management
EP2120680A2 (en) 2007-02-06 2009-11-25 Glumetrics, Inc. Optical systems and methods for rationmetric measurement of blood glucose concentration
WO2008098246A1 (en) * 2007-02-09 2008-08-14 Deka Products Limited Partnership Automated insertion assembly
US8226293B2 (en) 2007-02-22 2012-07-24 Medical Solutions, Inc. Method and apparatus for measurement and control of temperature for infused liquids
JP2010520409A (en) * 2007-03-06 2010-06-10 ノボ・ノルデイスク・エー/エス Pump assembly with actuator system
EP1972267A1 (en) 2007-03-20 2008-09-24 Roche Diagnostics GmbH System for in vivo measurement of an analyte concentration
US9044537B2 (en) 2007-03-30 2015-06-02 Medtronic, Inc. Devices and methods for detecting catheter complications
US20080243077A1 (en) * 2007-04-02 2008-10-02 Bivin Donald B Fluid dispenser with uniformly collapsible reservoir
EP4364766A2 (en) 2007-04-10 2024-05-08 Roche Diabetes Care GmbH Apparatus for pumping fluid
US20080269673A1 (en) * 2007-04-27 2008-10-30 Animas Corporation Cellular-Enabled Medical Monitoring and Infusion System
US7963954B2 (en) 2007-04-30 2011-06-21 Medtronic Minimed, Inc. Automated filling systems and methods
US8323250B2 (en) 2007-04-30 2012-12-04 Medtronic Minimed, Inc. Adhesive patch systems and methods
US8597243B2 (en) 2007-04-30 2013-12-03 Medtronic Minimed, Inc. Systems and methods allowing for reservoir air bubble management
US8613725B2 (en) 2007-04-30 2013-12-24 Medtronic Minimed, Inc. Reservoir systems and methods
US8434528B2 (en) 2007-04-30 2013-05-07 Medtronic Minimed, Inc. Systems and methods for reservoir filling
US7959715B2 (en) 2007-04-30 2011-06-14 Medtronic Minimed, Inc. Systems and methods allowing for reservoir air bubble management
DK2146760T3 (en) 2007-04-30 2019-01-28 Medtronic Minimed Inc FILLING OF RESERVOIR, BUBBLE MANAGEMENT AND DELIVERY SYSTEMS FOR INFUSION MEDIA AND PROCEDURES
WO2009056981A2 (en) * 2007-05-07 2009-05-07 Medingo Ltd. Reciprocating delivery of fluids to the body with analyte concentration monitoring
JP5517919B2 (en) 2007-05-10 2014-06-11 グルメトリクス、 インク. Balanced non-consumable fluorescent sensor for immediate intravascular glucose measurement
EP2155289A2 (en) 2007-05-11 2010-02-24 Medingo Ltd. A positive displacement pump
US7833196B2 (en) 2007-05-21 2010-11-16 Asante Solutions, Inc. Illumination instrument for an infusion pump
US7981102B2 (en) 2007-05-21 2011-07-19 Asante Solutions, Inc. Removable controller for an infusion pump
US7794426B2 (en) * 2007-05-21 2010-09-14 Asante Solutions, Inc. Infusion pump system with contamination-resistant features
US7892199B2 (en) 2007-05-21 2011-02-22 Asante Solutions, Inc. Occlusion sensing for an infusion pump
US20080319385A1 (en) * 2007-06-25 2008-12-25 Kriesel Marshall S Fluid dispenser with additive sub-system
US8226609B2 (en) * 2007-06-25 2012-07-24 Bioquiddity, Inc. Fluid dispenser with additive sub-system
US8211059B2 (en) * 2007-06-25 2012-07-03 Kriesel Marshall S Fluid dispenser with additive sub-system
EP2173408A1 (en) 2007-06-27 2010-04-14 Medingo Ltd. Tubing for fluid delivery device
US8641618B2 (en) 2007-06-27 2014-02-04 Abbott Diabetes Care Inc. Method and structure for securing a monitoring device element
US8085151B2 (en) 2007-06-28 2011-12-27 Abbott Diabetes Care Inc. Signal converting cradle for medical condition monitoring and management system
KR100904096B1 (en) * 2007-07-06 2009-06-23 이지의료정보 주식회사 Insulin injection apparatus and working method thereof
US8491529B2 (en) 2007-07-20 2013-07-23 Medingo, Ltd. Vented dispensing device and method
CN101801438B (en) * 2007-07-20 2013-08-07 梅丁格有限公司 Manually operable portable infusion device
AU2008281381A1 (en) 2007-08-01 2009-02-05 F.Hoffmann-La Roche Ag Portable infusion device provided with means for monitoring and controlling fluid delivery
WO2009016635A2 (en) 2007-08-01 2009-02-05 Medingo Ltd. Detachable portable infusion device
US8158430B1 (en) 2007-08-06 2012-04-17 Theranos, Inc. Systems and methods of fluidic sample processing
US20090062768A1 (en) * 2007-08-29 2009-03-05 Seattle Medical Technologies Systems and methods for delivering medication
US7828528B2 (en) * 2007-09-06 2010-11-09 Asante Solutions, Inc. Occlusion sensing system for infusion pumps
US7717903B2 (en) 2007-09-06 2010-05-18 M2 Group Holdings, Inc. Operating an infusion pump system
US7935076B2 (en) 2007-09-07 2011-05-03 Asante Solutions, Inc. Activity sensing techniques for an infusion pump system
US7935105B2 (en) 2007-09-07 2011-05-03 Asante Solutions, Inc. Data storage for an infusion pump system
US8287514B2 (en) 2007-09-07 2012-10-16 Asante Solutions, Inc. Power management techniques for an infusion pump system
US7879026B2 (en) 2007-09-07 2011-02-01 Asante Solutions, Inc. Controlled adjustment of medicine dispensation from an infusion pump device
CN101951975B (en) * 2007-09-17 2013-06-19 萨蒂什·桑达尔 High precision infusion pumps
CN101868273B (en) * 2007-10-02 2014-10-15 莱蒙德尔有限公司 External drug pump
US10420880B2 (en) 2007-10-02 2019-09-24 West Pharma. Services IL, Ltd. Key for securing components of a drug delivery system during assembly and/or transport and methods of using same
US7967795B1 (en) 2010-01-19 2011-06-28 Lamodel Ltd. Cartridge interface assembly with driving plunger
US9345836B2 (en) 2007-10-02 2016-05-24 Medimop Medical Projects Ltd. Disengagement resistant telescoping assembly and unidirectional method of assembly for such
US9656019B2 (en) 2007-10-02 2017-05-23 Medimop Medical Projects Ltd. Apparatuses for securing components of a drug delivery system during transport and methods of using same
DE102007049446A1 (en) 2007-10-16 2009-04-23 Cequr Aps Catheter introducer
US8082160B2 (en) 2007-10-26 2011-12-20 Hill-Rom Services, Inc. System and method for collection and communication of data from multiple patient care devices
US20090112155A1 (en) * 2007-10-30 2009-04-30 Lifescan, Inc. Micro Diaphragm Pump
CN101888859B (en) * 2007-10-31 2014-09-17 诺沃-诺迪斯克有限公司 Non-porous material as sterilization barrier
US20090113939A1 (en) * 2007-11-01 2009-05-07 Eric Crumpton Fiber-optic component and method for manufacturing the same
WO2009060432A1 (en) * 2007-11-07 2009-05-14 Medingo Ltd. Device and method for preventing diabetic complications
US20100256593A1 (en) * 2007-11-21 2010-10-07 Ofer Yodfat Analyte Monitoring and Fluid Dispensing System
US7979136B2 (en) * 2007-12-07 2011-07-12 Roche Diagnostics Operation, Inc Method and system for multi-device communication
US20090147011A1 (en) * 2007-12-07 2009-06-11 Roche Diagnostics Operations, Inc. Method and system for graphically indicating multiple data values
US20090150439A1 (en) * 2007-12-07 2009-06-11 Roche Diagnostics Operations, Inc. Common extensible data exchange format
US8402151B2 (en) 2007-12-07 2013-03-19 Roche Diagnostics Operations, Inc. Dynamic communication stack
US8019721B2 (en) * 2007-12-07 2011-09-13 Roche Diagnostics Operations, Inc. Method and system for enhanced data transfer
US9003538B2 (en) * 2007-12-07 2015-04-07 Roche Diagnostics Operations, Inc. Method and system for associating database content for security enhancement
US20090150780A1 (en) * 2007-12-07 2009-06-11 Roche Diagnostics Operations, Inc. Help utility functionality and architecture
US20090150438A1 (en) * 2007-12-07 2009-06-11 Roche Diagnostics Operations, Inc. Export file format with manifest for enhanced data transfer
US20090150181A1 (en) * 2007-12-07 2009-06-11 Roche Diagnostics Operations, Inc. Method and system for personal medical data database merging
US8112390B2 (en) * 2007-12-07 2012-02-07 Roche Diagnostics Operations, Inc. Method and system for merging extensible data into a database using globally unique identifiers
US8132101B2 (en) * 2007-12-07 2012-03-06 Roche Diagnostics Operations, Inc. Method and system for data selection and display
US9886549B2 (en) * 2007-12-07 2018-02-06 Roche Diabetes Care, Inc. Method and system for setting time blocks
US20090150865A1 (en) * 2007-12-07 2009-06-11 Roche Diagnostics Operations, Inc. Method and system for activating features and functions of a consolidated software application
US7996245B2 (en) * 2007-12-07 2011-08-09 Roche Diagnostics Operations, Inc. Patient-centric healthcare information maintenance
US8365065B2 (en) * 2007-12-07 2013-01-29 Roche Diagnostics Operations, Inc. Method and system for creating user-defined outputs
US20090150482A1 (en) * 2007-12-07 2009-06-11 Roche Diagnostics Operations, Inc. Method of cloning a server installation to a network client
US8566818B2 (en) 2007-12-07 2013-10-22 Roche Diagnostics Operations, Inc. Method and system for configuring a consolidated software application
US8078592B2 (en) * 2007-12-07 2011-12-13 Roche Diagnostics Operations, Inc. System and method for database integrity checking
US20090147006A1 (en) * 2007-12-07 2009-06-11 Roche Diagnostics Operations, Inc. Method and system for event based data comparison
US20090150174A1 (en) * 2007-12-07 2009-06-11 Roche Diagnostics Operations, Inc. Healthcare management system having improved printing of display screen information
US20090150331A1 (en) * 2007-12-07 2009-06-11 Roche Diagnostics Operations, Inc. Method and system for creating reports
US8103241B2 (en) * 2007-12-07 2012-01-24 Roche Diagnostics Operations, Inc. Method and system for wireless device communication
US8819040B2 (en) * 2007-12-07 2014-08-26 Roche Diagnostics Operations, Inc. Method and system for querying a database
US20090150451A1 (en) * 2007-12-07 2009-06-11 Roche Diagnostics Operations, Inc. Method and system for selective merging of patient data
US20090150812A1 (en) * 2007-12-07 2009-06-11 Roche Diagnostics Operations, Inc. Method and system for data source and modification tracking
US20090150877A1 (en) * 2007-12-07 2009-06-11 Roche Diagnostics Operations, Inc. Data driven communication protocol grammar
US20090147026A1 (en) * 2007-12-07 2009-06-11 Roche Diagnostics Operations, Inc. Graphic zoom functionality for a custom report
US20090150771A1 (en) * 2007-12-07 2009-06-11 Roche Diagnostics Operations, Inc. System and method for reporting medical information
US7875022B2 (en) * 2007-12-12 2011-01-25 Asante Solutions, Inc. Portable infusion pump and media player
US8517990B2 (en) 2007-12-18 2013-08-27 Hospira, Inc. User interface improvements for medical devices
WO2009081399A1 (en) 2007-12-21 2009-07-02 Medingo Ltd. Devices and methods for powering a medical device
US9199031B2 (en) * 2007-12-26 2015-12-01 Ofer Yodfat Maintaining glycemic control during exercise
ES2680896T3 (en) 2007-12-26 2018-09-11 F. Hoffmann-La Roche Ag System for glycemic control
US9456955B2 (en) 2007-12-31 2016-10-04 Deka Products Limited Partnership Apparatus, system and method for fluid delivery
AU2008347241B2 (en) 2007-12-31 2014-09-18 Deka Products Limited Partnership Infusion pump assembly
WO2009088956A2 (en) 2007-12-31 2009-07-16 Deka Products Limited Partnership Infusion pump assembly
US10188787B2 (en) 2007-12-31 2019-01-29 Deka Products Limited Partnership Apparatus, system and method for fluid delivery
US8900188B2 (en) * 2007-12-31 2014-12-02 Deka Products Limited Partnership Split ring resonator antenna adapted for use in wirelessly controlled medical device
US10080704B2 (en) 2007-12-31 2018-09-25 Deka Products Limited Partnership Apparatus, system and method for fluid delivery
US8881774B2 (en) 2007-12-31 2014-11-11 Deka Research & Development Corp. Apparatus, system and method for fluid delivery
US8062254B2 (en) * 2008-01-08 2011-11-22 MacLean, LLC Spring driven adjustable oral syringe
US20090177142A1 (en) * 2008-01-09 2009-07-09 Smiths Medical Md, Inc Insulin pump with add-on modules
US8986253B2 (en) 2008-01-25 2015-03-24 Tandem Diabetes Care, Inc. Two chamber pumps and related methods
US8708961B2 (en) * 2008-01-28 2014-04-29 Medsolve Technologies, Inc. Apparatus for infusing liquid to a body
US20090192813A1 (en) * 2008-01-29 2009-07-30 Roche Diagnostics Operations, Inc. Information transfer through optical character recognition
KR101106929B1 (en) * 2008-02-07 2012-01-25 아크레이 인코퍼레이티드 Code readout device and data-gathering system using the same
US8234126B1 (en) 2008-02-12 2012-07-31 Asante Solutions, Inc. Distribution of infusion pumps
US8551044B2 (en) * 2008-03-05 2013-10-08 Flowonix Medical Incorporated Multiple reservoir implantable drug infusion device and method
DK2271384T3 (en) 2008-03-10 2018-05-22 Hoffmann La Roche PORTABLE INFUSION AND DETECTION DEVICE WITH BATTERY CHARGING AND DATA TRANSMISSION MECHANISMS
MX2010010858A (en) * 2008-04-01 2010-11-01 Deka Products Lp Methods and systems for controlling an infusion pump.
AU2009235064A1 (en) 2008-04-09 2009-10-15 F.Hoffmann-La Roche Ag Modular skin-adherable system for medical fluid delivery
US20090259176A1 (en) * 2008-04-09 2009-10-15 Los Gatos Research, Inc. Transdermal patch system
US20090270844A1 (en) * 2008-04-24 2009-10-29 Medtronic, Inc. Flow sensor controlled infusion device
US20110071765A1 (en) * 2008-05-16 2011-03-24 Ofer Yodfat Device and Method for Alleviating Postprandial Hyperglycemia
WO2009144726A1 (en) 2008-05-29 2009-12-03 Medingo Ltd. A device, a system and a method for identification/authentication of parts of a medical device
US20090326509A1 (en) * 2008-06-30 2009-12-31 Muse Philip A Context aware medical monitoring and dosage delivery device
US10089443B2 (en) 2012-05-15 2018-10-02 Baxter International Inc. Home medical device systems and methods for therapy prescription and tracking, servicing and inventory
US8057679B2 (en) 2008-07-09 2011-11-15 Baxter International Inc. Dialysis system having trending and alert generation
US7967785B2 (en) * 2008-07-14 2011-06-28 Nipro Healthcare Systems, Llc Insulin reservoir detection via magnetic switching
US8700114B2 (en) 2008-07-31 2014-04-15 Medtronic Minmed, Inc. Analyte sensor apparatuses comprising multiple implantable sensor elements and methods for making and using them
US7959598B2 (en) 2008-08-20 2011-06-14 Asante Solutions, Inc. Infusion pump systems and methods
WO2010023666A2 (en) 2008-08-28 2010-03-04 Medingo Ltd. Device and method for enhanced subcutaneous insulin absorption
EP2355865A2 (en) * 2008-09-02 2011-08-17 Medingo Ltd. Remote control for fluid dispensing device with a rechargeable power source
WO2010026580A2 (en) 2008-09-05 2010-03-11 Medingo Ltd. Auditory notification device
US20100059059A1 (en) * 2008-09-09 2010-03-11 Perry Baromedical Corporation Hyperbaric chamber
WO2010029551A2 (en) * 2008-09-11 2010-03-18 Medingo Ltd. Methods and devices for tailoring a bolus delivery pattern
US12097357B2 (en) 2008-09-15 2024-09-24 West Pharma. Services IL, Ltd. Stabilized pen injector
US9393369B2 (en) 2008-09-15 2016-07-19 Medimop Medical Projects Ltd. Stabilized pen injector
EP3881874A1 (en) 2008-09-15 2021-09-22 DEKA Products Limited Partnership Systems and methods for fluid delivery
US8408421B2 (en) 2008-09-16 2013-04-02 Tandem Diabetes Care, Inc. Flow regulating stopcocks and related methods
EP2334234A4 (en) 2008-09-19 2013-03-20 Tandem Diabetes Care Inc Solute concentration measurement device and related methods
US8696629B2 (en) 2008-10-07 2014-04-15 Roche Diagnostics Operations Inc. Skin securable drug delivery device with a shock absorbing protective shield
US8708376B2 (en) 2008-10-10 2014-04-29 Deka Products Limited Partnership Medium connector
US8262616B2 (en) 2008-10-10 2012-09-11 Deka Products Limited Partnership Infusion pump assembly
US8267892B2 (en) 2008-10-10 2012-09-18 Deka Products Limited Partnership Multi-language / multi-processor infusion pump assembly
US8016789B2 (en) 2008-10-10 2011-09-13 Deka Products Limited Partnership Pump assembly with a removable cover assembly
US9180245B2 (en) 2008-10-10 2015-11-10 Deka Products Limited Partnership System and method for administering an infusible fluid
US8066672B2 (en) 2008-10-10 2011-11-29 Deka Products Limited Partnership Infusion pump assembly with a backup power supply
US8223028B2 (en) 2008-10-10 2012-07-17 Deka Products Limited Partnership Occlusion detection system and method
US8554579B2 (en) 2008-10-13 2013-10-08 Fht, Inc. Management, reporting and benchmarking of medication preparation
WO2010044088A1 (en) * 2008-10-16 2010-04-22 Medingo Ltd. Method and system for adaptive communication transmission
US8105269B2 (en) 2008-10-24 2012-01-31 Baxter International Inc. In situ tubing measurements for infusion pumps
EP3315958B1 (en) 2008-11-04 2021-09-15 PHC Holdings Corporation Measurement device
US20100145305A1 (en) * 2008-11-10 2010-06-10 Ruth Alon Low volume accurate injector
EP2379133A1 (en) * 2008-11-11 2011-10-26 Medingo Ltd. Modular fluid delivery device with quick-release /connect mechanism for drive screw
US9421325B2 (en) * 2008-11-20 2016-08-23 Medtronic, Inc. Pressure based refill status monitor for implantable pumps
US9968733B2 (en) * 2008-12-15 2018-05-15 Medtronic, Inc. Air tolerant implantable piston pump
WO2010072005A1 (en) 2008-12-24 2010-07-01 Calasso, Irio, Giuseppe System and methods for medicament infusion
US8152779B2 (en) * 2008-12-30 2012-04-10 Medimop Medical Projects Ltd. Needle assembly for drug pump
EP2391408B1 (en) 2008-12-31 2018-01-17 Roche Diabetes Care GmbH Portable medical fluid delivery device with drive screw articulated with reservoir plunger
CA2749320C (en) 2009-01-12 2018-03-20 Becton, Dickinson And Company Infusion set and/or patch pump having at least one of an in-dwelling rigid catheter with flexible features and/or a flexible catheter attachment
US9375529B2 (en) 2009-09-02 2016-06-28 Becton, Dickinson And Company Extended use medical device
US10045734B2 (en) 2009-01-28 2018-08-14 Plc Medical Systems, Inc. Fluid replacement device
US8560082B2 (en) 2009-01-30 2013-10-15 Abbott Diabetes Care Inc. Computerized determination of insulin pump therapy parameters using real time and retrospective data processing
US20100198034A1 (en) 2009-02-03 2010-08-05 Abbott Diabetes Care Inc. Compact On-Body Physiological Monitoring Devices and Methods Thereof
US8353864B2 (en) 2009-02-18 2013-01-15 Davis David L Low cost disposable infusion pump
US8197235B2 (en) 2009-02-18 2012-06-12 Davis David L Infusion pump with integrated permanent magnet
US20100217233A1 (en) * 2009-02-20 2010-08-26 Ranft Elizabeth A Method and device to anesthetize an area
US9250106B2 (en) 2009-02-27 2016-02-02 Tandem Diabetes Care, Inc. Methods and devices for determination of flow reservoir volume
CA2753214C (en) 2009-02-27 2017-07-25 Tandem Diabetes Care, Inc. Methods and devices for determination of flow reservoir volume
US8137083B2 (en) 2009-03-11 2012-03-20 Baxter International Inc. Infusion pump actuators, system and method for controlling medical fluid flowrate
JP6120436B2 (en) * 2009-03-25 2017-04-26 デカ・プロダクツ・リミテッド・パートナーシップ Infusion pump method and system
US8545451B2 (en) 2009-03-30 2013-10-01 Lifemedix Statfusion, Llc Manual pump for intravenous fluids
US8337466B2 (en) 2009-03-30 2012-12-25 Lifemedix, Llc Manual pump for intravenous fluids
US8271106B2 (en) 2009-04-17 2012-09-18 Hospira, Inc. System and method for configuring a rule set for medical event management and responses
WO2010129375A1 (en) 2009-04-28 2010-11-11 Abbott Diabetes Care Inc. Closed loop blood glucose control algorithm analysis
EP2442843A4 (en) 2009-06-14 2012-11-28 Medingo Ltd Devices and methods for malfunctions recognition in a therapeutic dispensing device
US8613892B2 (en) 2009-06-30 2013-12-24 Abbott Diabetes Care Inc. Analyte meter with a moveable head and methods of using the same
EP2453948B1 (en) 2009-07-15 2015-02-18 DEKA Products Limited Partnership Apparatus, systems and methods for an infusion pump assembly
EP2453972B1 (en) 2009-07-16 2014-01-15 Medingo Ltd. A device for accurate infusion of fluids
US8939928B2 (en) 2009-07-23 2015-01-27 Becton, Dickinson And Company Medical device having capacitive coupling communication and energy harvesting
EP4276652A3 (en) 2009-07-23 2024-01-31 Abbott Diabetes Care, Inc. Real time management of data relating to physiological control of glucose levels
EP2932994B1 (en) 2009-07-30 2017-11-08 Tandem Diabetes Care, Inc. New o-ring seal, and delivery mechanism and portable infusion pump system related thereto
US8547239B2 (en) 2009-08-18 2013-10-01 Cequr Sa Methods for detecting failure states in a medicine delivery device
US8672873B2 (en) 2009-08-18 2014-03-18 Cequr Sa Medicine delivery device having detachable pressure sensing unit
EP3001194B1 (en) 2009-08-31 2019-04-17 Abbott Diabetes Care, Inc. Medical devices and methods
US10092691B2 (en) * 2009-09-02 2018-10-09 Becton, Dickinson And Company Flexible and conformal patch pump
US8308679B2 (en) * 2009-12-30 2012-11-13 Medtronic Minimed, Inc. Alignment systems and methods
US8932256B2 (en) 2009-09-02 2015-01-13 Medtronic Minimed, Inc. Insertion device systems and methods
US8900190B2 (en) * 2009-09-02 2014-12-02 Medtronic Minimed, Inc. Insertion device systems and methods
US9125982B2 (en) * 2009-09-09 2015-09-08 Flowonix Medical Incorporated Methods and systems for providing metered doses of a compound to an individual
US10071198B2 (en) 2012-11-02 2018-09-11 West Pharma. Servicees IL, Ltd. Adhesive structure for medical device
US8157769B2 (en) * 2009-09-15 2012-04-17 Medimop Medical Projects Ltd. Cartridge insertion assembly for drug delivery system
US10071196B2 (en) 2012-05-15 2018-09-11 West Pharma. Services IL, Ltd. Method for selectively powering a battery-operated drug-delivery device and device therefor
JP2011067771A (en) * 2009-09-25 2011-04-07 Panasonic Electric Works Co Ltd Discharge apparatus
CN102665799B (en) * 2009-10-13 2014-12-17 瓦莱里塔斯公司 Fluid delivery device
NZ624935A (en) 2009-10-19 2016-01-29 Theranos Inc Integrated health data capture and analysis system
US9248232B2 (en) 2009-11-30 2016-02-02 Roche Diabetes Care, Inc. Analyte monitoring and fluid dispensing system
US20110144587A1 (en) * 2009-12-11 2011-06-16 Stone Robert T Liquid agent delivery apparatus, system and method
US20110144431A1 (en) * 2009-12-15 2011-06-16 Rainer Graumann System and method for controlling use of capsule endoscopes
CN106955392B (en) * 2009-12-16 2020-03-27 贝克顿·迪金森公司 Drug delivery device
WO2011075100A1 (en) 2009-12-16 2011-06-23 Becton, Dickinson And Company Self-injection device
US8771251B2 (en) 2009-12-17 2014-07-08 Hospira, Inc. Systems and methods for managing and delivering patient therapy through electronic drug delivery systems
EP2335565A1 (en) * 2009-12-18 2011-06-22 Roche Diagnostics GmbH Protective container for holding reusable diagnostic components
US8858500B2 (en) 2009-12-30 2014-10-14 Medtronic Minimed, Inc. Engagement and sensing systems and methods
US8998858B2 (en) * 2009-12-29 2015-04-07 Medtronic Minimed, Inc. Alignment and connection systems and methods
US8998840B2 (en) 2009-12-30 2015-04-07 Medtronic Minimed, Inc. Connection and alignment systems and methods
US9039653B2 (en) * 2009-12-29 2015-05-26 Medtronic Minimed, Inc. Retention systems and methods
US8435209B2 (en) 2009-12-30 2013-05-07 Medtronic Minimed, Inc. Connection and alignment detection systems and methods
US9421321B2 (en) * 2009-12-30 2016-08-23 Medtronic Minimed, Inc. Connection and alignment systems and methods
US11497850B2 (en) 2009-12-30 2022-11-15 Medtronic Minimed, Inc. Connection and alignment detection systems and methods
US20120215163A1 (en) 2009-12-30 2012-08-23 Medtronic Minimed, Inc. Sensing systems and methods
US8070723B2 (en) 2009-12-31 2011-12-06 Medtronic Minimed, Inc. Activity guard
US8382447B2 (en) 2009-12-31 2013-02-26 Baxter International, Inc. Shuttle pump with controlled geometry
US8348898B2 (en) 2010-01-19 2013-01-08 Medimop Medical Projects Ltd. Automatic needle for drug pump
CA2787178C (en) 2010-01-22 2019-02-12 Deka Products Limited Partnership Method and system for shape-memory alloy wire control
US20110184374A1 (en) * 2010-01-27 2011-07-28 Gao Shawn X Peristaltic Pump and Cassette
USD924406S1 (en) 2010-02-01 2021-07-06 Abbott Diabetes Care Inc. Analyte sensor inserter
US20110202063A1 (en) * 2010-02-15 2011-08-18 Freddy Bonnin Apparatus for delivery of viscous material during surgery
US8377002B2 (en) 2010-03-24 2013-02-19 Medtronic Minimed, Inc. Connection and alignment systems and methods
ES2881798T3 (en) 2010-03-24 2021-11-30 Abbott Diabetes Care Inc Medical device inserters and medical device insertion and use procedures
US9687603B2 (en) 2010-04-16 2017-06-27 Medtronic, Inc. Volume monitoring for implantable fluid delivery devices
US8810394B2 (en) 2010-04-16 2014-08-19 Medtronic, Inc. Reservoir monitoring for implantable fluid delivery devices
US8843200B2 (en) * 2010-04-29 2014-09-23 Medtronic, Inc. Neurological screening connector
US9022988B1 (en) 2010-05-07 2015-05-05 Kavan J. Shaban System and method for controlling a self-injector device
EP2569031B1 (en) 2010-05-10 2017-10-11 Medimop Medical Projects Ltd. Low volume accurate injector
USD669165S1 (en) 2010-05-27 2012-10-16 Asante Solutions, Inc. Infusion pump
FR2960415B1 (en) * 2010-05-27 2012-12-28 Nestis GENERATOR OF HIGH PRESSURE PULSES OF A LIQUID FOR MEDICAL AND SURGICAL APPLICATIONS
WO2011156373A1 (en) 2010-06-07 2011-12-15 Amgen Inc. Drug delivery device
US9215995B2 (en) 2010-06-23 2015-12-22 Medtronic Minimed, Inc. Sensor systems having multiple probes and electrode arrays
US11064921B2 (en) 2010-06-29 2021-07-20 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US8567235B2 (en) 2010-06-29 2013-10-29 Baxter International Inc. Tube measurement technique using linear actuator and pressure sensor
US9585620B2 (en) 2010-07-27 2017-03-07 Carefusion 303, Inc. Vital-signs patch having a flexible attachment to electrodes
US8814792B2 (en) 2010-07-27 2014-08-26 Carefusion 303, Inc. System and method for storing and forwarding data from a vital-signs monitor
US9357929B2 (en) 2010-07-27 2016-06-07 Carefusion 303, Inc. System and method for monitoring body temperature of a person
US9420952B2 (en) 2010-07-27 2016-08-23 Carefusion 303, Inc. Temperature probe suitable for axillary reading
US9615792B2 (en) 2010-07-27 2017-04-11 Carefusion 303, Inc. System and method for conserving battery power in a patient monitoring system
US9017255B2 (en) 2010-07-27 2015-04-28 Carefusion 303, Inc. System and method for saving battery power in a patient monitoring system
US9055925B2 (en) 2010-07-27 2015-06-16 Carefusion 303, Inc. System and method for reducing false alarms associated with vital-signs monitoring
CN102160903B (en) * 2010-08-24 2012-09-19 胡明建 Method for controlling intelligent control system for intravenous drip
US20120073378A1 (en) * 2010-09-23 2012-03-29 O'connor Sean M Pressure differential detection method for portable infusion pump
US9498573B2 (en) 2010-09-24 2016-11-22 Perqflo, Llc Infusion pumps
US9216249B2 (en) 2010-09-24 2015-12-22 Perqflo, Llc Infusion pumps
US8915879B2 (en) 2010-09-24 2014-12-23 Perqflo, Llc Infusion pumps
US9308320B2 (en) 2010-09-24 2016-04-12 Perqflo, Llc Infusion pumps
US9211378B2 (en) 2010-10-22 2015-12-15 Cequr Sa Methods and systems for dosing a medicament
WO2012059209A1 (en) 2010-11-01 2012-05-10 Roche Diagnostics Gmbh Fluid dispensing device with a flow detector
US8919452B2 (en) 2010-11-08 2014-12-30 Baker Hughes Incorporated Casing spears and related systems and methods
US8905972B2 (en) 2010-11-20 2014-12-09 Perqflo, Llc Infusion pumps
JP5973458B2 (en) * 2010-11-29 2016-08-23 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Multi reservoir pump patch
US8814831B2 (en) 2010-11-30 2014-08-26 Becton, Dickinson And Company Ballistic microneedle infusion device
US8795230B2 (en) 2010-11-30 2014-08-05 Becton, Dickinson And Company Adjustable height needle infusion device
US9950109B2 (en) 2010-11-30 2018-04-24 Becton, Dickinson And Company Slide-activated angled inserter and cantilevered ballistic insertion for intradermal drug infusion
US8628510B2 (en) 2010-12-22 2014-01-14 Medtronic Minimed, Inc. Monitoring the operating health of a force sensor in a fluid infusion device
EP3542852B1 (en) 2011-02-09 2024-07-10 Becton, Dickinson and Company Subcutaneous infusion device
EP2673031B1 (en) 2011-02-09 2020-07-15 Becton, Dickinson and Company Medical infusion device comprising a self-contained torsion spring inserter
US8852152B2 (en) 2011-02-09 2014-10-07 Asante Solutions, Inc. Infusion pump systems and methods
US8945068B2 (en) 2011-02-22 2015-02-03 Medtronic Minimed, Inc. Fluid reservoir having a fluid delivery needle for a fluid infusion device
US11266823B2 (en) 2011-02-22 2022-03-08 Medtronic Minimed, Inc. Retractable sealing assembly for a fluid reservoir of a fluid infusion device
US10136845B2 (en) 2011-02-28 2018-11-27 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US8454581B2 (en) 2011-03-16 2013-06-04 Asante Solutions, Inc. Infusion pump systems and methods
USD702834S1 (en) 2011-03-22 2014-04-15 Medimop Medical Projects Ltd. Cartridge for use in injection device
US11166660B2 (en) * 2011-04-05 2021-11-09 Pharmasens Ag Dermally affixed device for intravenous access
US8206378B1 (en) 2011-04-13 2012-06-26 Medtronic, Inc. Estimating the volume of fluid in therapeutic fluid delivery device reservoir
US8979825B2 (en) 2011-04-15 2015-03-17 Medtronic, Inc. Implantable fluid delivery device including gas chamber pressure sensor
US9008744B2 (en) 2011-05-06 2015-04-14 Medtronic Minimed, Inc. Method and apparatus for continuous analyte monitoring
US8795231B2 (en) 2011-05-10 2014-08-05 Medtronic Minimed, Inc. Automated reservoir fill system
US8585657B2 (en) 2011-06-21 2013-11-19 Asante Solutions, Inc. Dispensing fluid from an infusion pump system
WO2013022772A1 (en) * 2011-08-05 2013-02-14 Unitract Syringe Pty Ltd Cannula with controlled depth of insertion
EP2556815A1 (en) 2011-08-10 2013-02-13 Debiotech S.A. Container for storing a drug such as insulin
WO2013028497A1 (en) 2011-08-19 2013-02-28 Hospira, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US8808230B2 (en) 2011-09-07 2014-08-19 Asante Solutions, Inc. Occlusion detection for an infusion pump system
CN102309795A (en) * 2011-09-21 2012-01-11 上海市东方医院 Automatic transfusion alarm system
EP2760432B1 (en) 2011-09-27 2019-03-20 Medtronic Minimed, Inc. Method for functionalizing a porous membrane covering of an optical sensor to facilitate coupling of an antithrombogenic agent
CA2852271A1 (en) 2011-10-21 2013-04-25 Hospira, Inc. Medical device update system
US9989522B2 (en) 2011-11-01 2018-06-05 Medtronic Minimed, Inc. Methods and materials for modulating start-up time and air removal in dry sensors
US8999720B2 (en) 2011-11-17 2015-04-07 Medtronic Minimed, Inc. Aqueous radiation protecting formulations and methods for making and using them
US20140058755A1 (en) 2011-11-23 2014-02-27 Remedev, Inc. Remotely-executed medical diagnosis and therapy including emergency automation
FI3300658T3 (en) 2011-12-11 2024-03-01 Abbott Diabetes Care Inc Analyte sensor methods
US10022498B2 (en) 2011-12-16 2018-07-17 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US9610401B2 (en) 2012-01-13 2017-04-04 Medtronic Minimed, Inc. Infusion set component with modular fluid channel element
NO2617445T3 (en) 2012-01-17 2018-08-04
US9211381B2 (en) 2012-01-20 2015-12-15 Medical Solutions, Inc. Method and apparatus for controlling temperature of medical liquids
WO2013115843A1 (en) 2012-01-31 2013-08-08 Medimop Medical Projects Ltd. Time dependent drug delivery apparatus
EP2623142A1 (en) 2012-02-01 2013-08-07 Debiotech S.A. Medical liquid injection device having improved emptying detection features
CA2865986C (en) * 2012-03-05 2020-01-21 Becton, Dickinson And Company Wireless communication for on-body medical devices
US11524151B2 (en) 2012-03-07 2022-12-13 Deka Products Limited Partnership Apparatus, system and method for fluid delivery
CA3122007A1 (en) 2012-03-12 2013-09-19 Smith & Nephew Plc Reduced pressure apparatus and methods
MX2014010944A (en) * 2012-03-12 2014-11-13 Unitract Syringe Pty Ltd Fill-finish cartridges for sterile fluid pathway assemblies and drug delivery devices incorporating fill-finish cartridges.
WO2013142339A1 (en) * 2012-03-23 2013-09-26 Novartis Ag Transdermal therapeutic system and method
US9072827B2 (en) 2012-03-26 2015-07-07 Medimop Medical Projects Ltd. Fail safe point protector for needle safety flap
US10668213B2 (en) 2012-03-26 2020-06-02 West Pharma. Services IL, Ltd. Motion activated mechanisms for a drug delivery device
US9463280B2 (en) 2012-03-26 2016-10-11 Medimop Medical Projects Ltd. Motion activated septum puncturing drug delivery device
JP6306566B2 (en) 2012-03-30 2018-04-04 アイシーユー・メディカル・インコーポレーテッド Air detection system and method for detecting air in an infusion system pump
RS65875B1 (en) 2012-03-30 2024-09-30 Insulet Corp Fluid delivery device with transcutaneous access tool, insertion mechanism and blood glucose monitoring for use therewith
EP2844330B1 (en) * 2012-04-24 2020-06-03 The Queen Elizabeth Hospital King's Lynn NHS Foundation Trust A device for performing regional anesthesia
GR20120100242A (en) * 2012-05-04 2014-01-02 Micrel Ιατρικα Μηχανηματα Α.Ε., Analgesia pump/pre-filled bag set
US9180242B2 (en) 2012-05-17 2015-11-10 Tandem Diabetes Care, Inc. Methods and devices for multiple fluid transfer
US9493807B2 (en) 2012-05-25 2016-11-15 Medtronic Minimed, Inc. Foldover sensors and methods for making and using them
US9555186B2 (en) 2012-06-05 2017-01-31 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US9238100B2 (en) 2012-06-07 2016-01-19 Tandem Diabetes Care, Inc. Device and method for training users of ambulatory medical devices
US10156543B2 (en) 2012-06-08 2018-12-18 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
US9333292B2 (en) 2012-06-26 2016-05-10 Medtronic Minimed, Inc. Mechanically actuated fluid infusion device
US8454557B1 (en) 2012-07-19 2013-06-04 Asante Solutions, Inc. Infusion pump system and method
US8454562B1 (en) 2012-07-20 2013-06-04 Asante Solutions, Inc. Infusion pump system and method
US9710610B2 (en) 2012-07-25 2017-07-18 Covidien Lp Enteral feeding pump with flow adjustment
ES2743160T3 (en) 2012-07-31 2020-02-18 Icu Medical Inc Patient care system for critical medications
US9867929B2 (en) 2012-08-15 2018-01-16 Becton, Dickinson And Company Pump engine with metering system for dispensing liquid medication
US9682188B2 (en) 2012-08-21 2017-06-20 Medtronic Minimed, Inc. Reservoir fluid volume estimator and medical device incorporating same
US9662445B2 (en) 2012-08-30 2017-05-30 Medtronic Minimed, Inc. Regulating entry into a closed-loop operating mode of an insulin infusion system
US10130767B2 (en) 2012-08-30 2018-11-20 Medtronic Minimed, Inc. Sensor model supervisor for a closed-loop insulin infusion system
JP6205701B2 (en) * 2012-10-22 2017-10-04 セイコーエプソン株式会社 Fluid injection device
EP3779876A1 (en) 2012-10-26 2021-02-17 Baxter Corporation Englewood Improved image acquisition for medical dose preparation system
KR101623326B1 (en) 2012-10-26 2016-05-20 백스터 코포레이션 잉글우드 Improved work station for medical dose preparation system
US9757057B2 (en) 2012-11-07 2017-09-12 Medtronic Minimed, Inc. Dry insertion and one-point in vivo calibration of an optical analyte sensor
US9265455B2 (en) 2012-11-13 2016-02-23 Medtronic Minimed, Inc. Methods and systems for optimizing sensor function by the application of voltage
EP4234694A3 (en) 2012-11-21 2023-09-06 Amgen Inc. Drug delivery device
US10194840B2 (en) 2012-12-06 2019-02-05 Medtronic Minimed, Inc. Microarray electrodes useful with analyte sensors and methods for making and using them
US9427523B2 (en) 2012-12-10 2016-08-30 Bigfoot Biomedical, Inc. Infusion pump system and method
US20140276536A1 (en) 2013-03-14 2014-09-18 Asante Solutions, Inc. Infusion Pump System and Methods
US9421323B2 (en) 2013-01-03 2016-08-23 Medimop Medical Projects Ltd. Door and doorstop for portable one use drug delivery apparatus
US10426383B2 (en) 2013-01-22 2019-10-01 Medtronic Minimed, Inc. Muting glucose sensor oxygen response and reducing electrode edge growth with pulsed current plating
US9996173B2 (en) * 2013-02-12 2018-06-12 Illinois Tool Works, Inc. Front panel overlay incorporating a logic circuit
WO2014126964A1 (en) 2013-02-15 2014-08-21 Medical Solutions, Inc. Plural medical item warming system and method for warming a plurality of medical items to desired temperatures
US8751039B1 (en) 2013-02-22 2014-06-10 Remedev, Inc. Remotely-executed medical therapy device
JP5683620B2 (en) * 2013-02-26 2015-03-11 プライムテック株式会社 Fluid transport device
US9446186B2 (en) 2013-03-01 2016-09-20 Bigfoot Biomedical, Inc. Operating an infusion pump system
WO2014138446A1 (en) 2013-03-06 2014-09-12 Hospira,Inc. Medical device communication method
US9173998B2 (en) 2013-03-14 2015-11-03 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
JP2014176454A (en) * 2013-03-14 2014-09-25 Seiko Epson Corp Liquid transport apparatus and liquid transport method
JP6098250B2 (en) * 2013-03-14 2017-03-22 セイコーエプソン株式会社 Liquid transport device
US9603995B2 (en) 2013-03-15 2017-03-28 Tandem Diabetes Care. Inc. Device and method for setting therapeutic parameters for an infusion device
US9242043B2 (en) 2013-03-15 2016-01-26 Tandem Diabetes Care, Inc. Field update of an ambulatory infusion pump system
CA2904121C (en) * 2013-03-15 2021-02-23 Becton, Dickinson And Company Smart adapter for infusion devices
US9180243B2 (en) 2013-03-15 2015-11-10 Tandem Diabetes Care, Inc. Detection of infusion pump conditions
US9421329B2 (en) 2013-03-15 2016-08-23 Tandem Diabetes Care, Inc. Infusion device occlusion detection system
US9011164B2 (en) 2013-04-30 2015-04-21 Medimop Medical Projects Ltd. Clip contact for easy installation of printed circuit board PCB
US9889256B2 (en) 2013-05-03 2018-02-13 Medimop Medical Projects Ltd. Sensing a status of an infuser based on sensing motor control and power input
US10046112B2 (en) 2013-05-24 2018-08-14 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
US9338819B2 (en) 2013-05-29 2016-05-10 Medtronic Minimed, Inc. Variable data usage personal medical system and method
ES2838450T3 (en) 2013-05-29 2021-07-02 Icu Medical Inc Infusion set that uses one or more sensors and additional information to make an air determination relative to the infusion set
WO2014194065A1 (en) 2013-05-29 2014-12-04 Hospira, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US9457141B2 (en) 2013-06-03 2016-10-04 Bigfoot Biomedical, Inc. Infusion pump system and method
US9446187B2 (en) 2013-06-03 2016-09-20 Bigfoot Biomedical, Inc. Infusion pump system and method
US10194864B2 (en) 2013-06-21 2019-02-05 Medtronic Minimed, Inc. Anchoring apparatus and method for attaching device on body
US20140378903A1 (en) * 2013-06-21 2014-12-25 Animas Corporation Manually actuated infusion device and dose counter
CA3130345A1 (en) 2013-07-03 2015-01-08 Deka Products Limited Partnership Apparatus, system and method for fluid delivery
JP6397493B2 (en) 2013-07-11 2018-09-26 アレックザ ファーマシューティカルズ, インコーポレイテッド Nicotine salt with meta-salicylic acid
US9561324B2 (en) 2013-07-19 2017-02-07 Bigfoot Biomedical, Inc. Infusion pump system and method
GB2516667A (en) * 2013-07-29 2015-02-04 Atlas Genetics Ltd An improved cartridge, cartridge reader and method for preventing reuse
US9880528B2 (en) 2013-08-21 2018-01-30 Medtronic Minimed, Inc. Medical devices and related updating methods and systems
US20150066531A1 (en) 2013-08-30 2015-03-05 James D. Jacobson System and method of monitoring and managing a remote infusion regimen
US9565718B2 (en) 2013-09-10 2017-02-07 Tandem Diabetes Care, Inc. System and method for detecting and transmitting medical device alarm with a smartphone application
US9662436B2 (en) 2013-09-20 2017-05-30 Icu Medical, Inc. Fail-safe drug infusion therapy system
WO2015048079A1 (en) 2013-09-24 2015-04-02 Covidien Lp Feeding set and enteral feeding pump
US9265881B2 (en) 2013-10-14 2016-02-23 Medtronic Minimed, Inc. Therapeutic agent injection device
US8979799B1 (en) 2013-10-14 2015-03-17 Medtronic Minimed, Inc. Electronic injector
US9375537B2 (en) 2013-10-14 2016-06-28 Medtronic Minimed, Inc. Therapeutic agent injection device
US8979808B1 (en) 2013-10-14 2015-03-17 Medtronic Minimed, Inc. On-body injector and method of use
US9226709B2 (en) 2013-11-04 2016-01-05 Medtronic Minimed, Inc. ICE message system and method
US10311972B2 (en) 2013-11-11 2019-06-04 Icu Medical, Inc. Medical device system performance index
US20150133861A1 (en) 2013-11-11 2015-05-14 Kevin P. McLennan Thermal management system and method for medical devices
JP2016537175A (en) 2013-11-19 2016-12-01 ホスピーラ インコーポレイテッド Infusion pump automation system and method
US9267875B2 (en) 2013-11-21 2016-02-23 Medtronic Minimed, Inc. Accelerated life testing device and method
US10569015B2 (en) 2013-12-02 2020-02-25 Bigfoot Biomedical, Inc. Infusion pump system and method
US9750877B2 (en) 2013-12-11 2017-09-05 Medtronic Minimed, Inc. Predicted time to assess and/or control a glycemic state
US10105488B2 (en) 2013-12-12 2018-10-23 Medtronic Minimed, Inc. Predictive infusion device operations and related methods and systems
US9849240B2 (en) 2013-12-12 2017-12-26 Medtronic Minimed, Inc. Data modification for predictive operations and devices incorporating same
US10638947B2 (en) 2013-12-16 2020-05-05 Medtronic Minimed, Inc. Use of electrochemical impedance spectroscopy (EIS) in intelligent diagnostics
US9603561B2 (en) 2013-12-16 2017-03-28 Medtronic Minimed, Inc. Methods and systems for improving the reliability of orthogonally redundant sensors
US9779226B2 (en) 2013-12-18 2017-10-03 Medtronic Minimed, Inc. Fingerprint enhanced authentication for medical devices in wireless networks
US9143941B2 (en) 2013-12-18 2015-09-22 Medtronic Minimed, Inc. Secure communication by user selectable communication range
US9694132B2 (en) 2013-12-19 2017-07-04 Medtronic Minimed, Inc. Insertion device for insertion set
EP4250313A3 (en) 2013-12-26 2023-11-22 Tandem Diabetes Care, Inc. Integration of infusion pump with remote electronic device
GB2523989B (en) 2014-01-30 2020-07-29 Insulet Netherlands B V Therapeutic product delivery system and method of pairing
US9861748B2 (en) 2014-02-06 2018-01-09 Medtronic Minimed, Inc. User-configurable closed-loop notifications and infusion systems incorporating same
AU2015222800B2 (en) 2014-02-28 2019-10-17 Icu Medical, Inc. Infusion system and method which utilizes dual wavelength optical air-in-line detection
US9388805B2 (en) 2014-03-24 2016-07-12 Medtronic Minimed, Inc. Medication pump test device and method of use
US9689830B2 (en) 2014-04-03 2017-06-27 Medtronic Minimed, Inc. Sensor detection pads with integrated fuse
US9707336B2 (en) 2014-04-07 2017-07-18 Medtronic Minimed, Inc. Priming detection system and method of using the same
JP6035273B2 (en) * 2014-04-07 2016-11-30 凸版印刷株式会社 Microneedle chip history management system
US10004845B2 (en) 2014-04-18 2018-06-26 Becton, Dickinson And Company Split piston metering pump
US10232113B2 (en) 2014-04-24 2019-03-19 Medtronic Minimed, Inc. Infusion devices and related methods and systems for regulating insulin on board
US10195342B2 (en) 2014-04-24 2019-02-05 Becton, Dickinson And Company Cannula deployment mechanism
CA2945647C (en) 2014-04-30 2023-08-08 Hospira, Inc. Patient care system with conditional alarm forwarding
US9681828B2 (en) 2014-05-01 2017-06-20 Medtronic Minimed, Inc. Physiological characteristic sensors and methods for forming such sensors
WO2015184366A1 (en) 2014-05-29 2015-12-03 Hospira, Inc. Infusion system and pump with configurable closed loop delivery rate catch-up
MX2016015854A (en) 2014-06-03 2017-07-19 Amgen Inc Controllable drug delivery system and method of use.
US9901305B2 (en) 2014-06-13 2018-02-27 Medtronic Minimed, Inc. Physiological sensor history backfill system and method
US9724470B2 (en) 2014-06-16 2017-08-08 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US9629901B2 (en) 2014-07-01 2017-04-25 Bigfoot Biomedical, Inc. Glucagon administration system and methods
US9416775B2 (en) 2014-07-02 2016-08-16 Becton, Dickinson And Company Internal cam metering pump
US11083838B2 (en) 2014-07-21 2021-08-10 Medtronic Minimed, Inc. Smart connection interface
US10137246B2 (en) 2014-08-06 2018-11-27 Bigfoot Biomedical, Inc. Infusion pump assembly and method
US10143795B2 (en) 2014-08-18 2018-12-04 Icu Medical, Inc. Intravenous pole integrated power, control, and communication system and method for an infusion pump
US9717845B2 (en) 2014-08-19 2017-08-01 Medtronic Minimed, Inc. Geofencing for medical devices
US20160051755A1 (en) 2014-08-25 2016-02-25 Medtronic Minimed, Inc. Low cost fluid delivery device
US9919096B2 (en) 2014-08-26 2018-03-20 Bigfoot Biomedical, Inc. Infusion pump system and method
US11464899B2 (en) 2014-08-28 2022-10-11 Becton, Dickinson And Company Wireless communication for on-body medical devices
US9539383B2 (en) 2014-09-15 2017-01-10 Hospira, Inc. System and method that matches delayed infusion auto-programs with manually entered infusion programs and analyzes differences therein
CA3241573A1 (en) * 2014-09-22 2016-03-31 Becton, Dickinson And Company Plate with integral fluid path channels
US9839753B2 (en) 2014-09-26 2017-12-12 Medtronic Minimed, Inc. Systems for managing reservoir chamber pressure
US11107574B2 (en) 2014-09-30 2021-08-31 Baxter Corporation Englewood Management of medication preparation with formulary management
US10159786B2 (en) 2014-09-30 2018-12-25 Perqflo, Llc Hybrid ambulatory infusion pumps
US10279126B2 (en) 2014-10-07 2019-05-07 Medtronic Minimed, Inc. Fluid conduit assembly with gas trapping filter in the fluid flow path
US9592335B2 (en) 2014-10-20 2017-03-14 Medtronic Minimed, Inc. Insulin pump data acquisition device
US9841014B2 (en) 2014-10-20 2017-12-12 Medtronic Minimed, Inc. Insulin pump data acquisition device and system
US9901675B2 (en) 2014-11-25 2018-02-27 Medtronic Minimed, Inc. Infusion set insertion device and method of use
US9731067B2 (en) 2014-11-25 2017-08-15 Medtronic Minimed, Inc. Mechanical injection pump and method of use
US9943645B2 (en) 2014-12-04 2018-04-17 Medtronic Minimed, Inc. Methods for operating mode transitions and related infusion devices and systems
US9636453B2 (en) 2014-12-04 2017-05-02 Medtronic Minimed, Inc. Advance diagnosis of infusion device operating mode viability
SG11201704359VA (en) 2014-12-05 2017-06-29 Baxter Corp Englewood Dose preparation data analytics
ES2785311T3 (en) * 2014-12-19 2020-10-06 Amgen Inc Mobile button drug delivery device or user interface field
US11344668B2 (en) 2014-12-19 2022-05-31 Icu Medical, Inc. Infusion system with concurrent TPN/insulin infusion
EP3233163B1 (en) 2014-12-19 2021-10-13 Amgen Inc. Drug delivery device with proximity sensor
US10307535B2 (en) 2014-12-19 2019-06-04 Medtronic Minimed, Inc. Infusion devices and related methods and systems for preemptive alerting
EP3242699B1 (en) * 2015-01-08 2021-03-10 Novo Nordisk A/S A wireless data communication module for drug injection devices
US9717848B2 (en) 2015-01-22 2017-08-01 Medtronic Minimed, Inc. Data derived pre-bolus delivery
WO2016133789A2 (en) 2015-02-18 2016-08-25 Perqflo, Llc Ambulatory infusion pump and reservoir assemblies for use with same
EP4400130A3 (en) 2015-02-18 2024-10-16 Insulet Corporation Fluid delivery and infusion devices
US9872954B2 (en) 2015-03-02 2018-01-23 Medtronic Minimed, Inc. Belt clip
US10850024B2 (en) 2015-03-02 2020-12-01 Icu Medical, Inc. Infusion system, device, and method having advanced infusion features
EP3800610A1 (en) 2015-03-03 2021-04-07 Baxter Corporation Englewood Pharmacy workflow management with integrated alerts
US10251813B2 (en) 2015-03-04 2019-04-09 West Pharma. Services IL, Ltd. Flexibly mounted cartridge alignment collar for drug delivery device
US9795534B2 (en) 2015-03-04 2017-10-24 Medimop Medical Projects Ltd. Compliant coupling assembly for cartridge coupling of a drug delivery device
US10307528B2 (en) 2015-03-09 2019-06-04 Medtronic Minimed, Inc. Extensible infusion devices and related methods
KR20240136476A (en) 2015-03-10 2024-09-13 리제너론 파아마슈티컬스, 인크. Aseptic piercing system and method
CA2980004C (en) 2015-03-24 2023-10-10 Kaleo, Inc. Devices and methods for delivering a lyophilized medicament
US10449298B2 (en) 2015-03-26 2019-10-22 Medtronic Minimed, Inc. Fluid injection devices and related methods
US9744297B2 (en) 2015-04-10 2017-08-29 Medimop Medical Projects Ltd. Needle cannula position as an input to operational control of an injection device
US10293120B2 (en) 2015-04-10 2019-05-21 West Pharma. Services IL, Ltd. Redundant injection device status indication
EP3081150A1 (en) * 2015-04-15 2016-10-19 Alasdair Ivan Andre Gant Skin protrusion size determination
US9878097B2 (en) 2015-04-29 2018-01-30 Bigfoot Biomedical, Inc. Operating an infusion pump system
US10130757B2 (en) 2015-05-01 2018-11-20 Medtronic Minimed, Inc. Method and system for leakage detection in portable medical devices
CN116271320A (en) * 2015-05-08 2023-06-23 以色列三级跳远有限责任公司 System and device for infusion into the body
AU2016260547B2 (en) 2015-05-14 2020-09-03 Abbott Diabetes Care Inc. Compact medical device inserters and related systems and methods
US10213139B2 (en) 2015-05-14 2019-02-26 Abbott Diabetes Care Inc. Systems, devices, and methods for assembling an applicator and sensor control device
US9993595B2 (en) * 2015-05-18 2018-06-12 Tandem Diabetes Care, Inc. Patch pump cartridge attachment
ES2809505T3 (en) 2015-05-26 2021-03-04 Icu Medical Inc Disposable infusion fluid delivery device for programmable delivery of high volume drugs
WO2016189417A1 (en) 2015-05-26 2016-12-01 Hospira, Inc. Infusion pump system and method with multiple drug library editor source capability
US9999721B2 (en) 2015-05-26 2018-06-19 Medtronic Minimed, Inc. Error handling in infusion devices with distributed motor control and related operating methods
US10149943B2 (en) 2015-05-29 2018-12-11 West Pharma. Services IL, Ltd. Linear rotation stabilizer for a telescoping syringe stopper driverdriving assembly
WO2016196934A1 (en) 2015-06-04 2016-12-08 Medimop Medical Projects Ltd. Cartridge insertion for drug delivery device
CN116206744A (en) 2015-06-25 2023-06-02 甘布罗伦迪亚股份公司 Medical device systems and methods with distributed databases
DE102015213726A1 (en) * 2015-07-21 2017-01-26 B. Braun Melsungen Ag Actuator for bolus administration
US10293108B2 (en) 2015-08-21 2019-05-21 Medtronic Minimed, Inc. Infusion devices and related patient ratio adjustment methods
US10463297B2 (en) 2015-08-21 2019-11-05 Medtronic Minimed, Inc. Personalized event detection methods and related devices and systems
US10201657B2 (en) 2015-08-21 2019-02-12 Medtronic Minimed, Inc. Methods for providing sensor site rotation feedback and related infusion devices and systems
US10543314B2 (en) 2015-08-21 2020-01-28 Medtronic Minimed, Inc. Personalized parameter modeling with signal calibration based on historical data
US10576207B2 (en) 2015-10-09 2020-03-03 West Pharma. Services IL, Ltd. Angled syringe patch injector
US10086145B2 (en) 2015-09-22 2018-10-02 West Pharma Services Il, Ltd. Rotation resistant friction adapter for plunger driver of drug delivery device
US9987432B2 (en) 2015-09-22 2018-06-05 West Pharma. Services IL, Ltd. Rotation resistant friction adapter for plunger driver of drug delivery device
US10117992B2 (en) 2015-09-29 2018-11-06 Medtronic Minimed, Inc. Infusion devices and related rescue detection methods
US11065381B2 (en) 2015-10-05 2021-07-20 E3D A.C.A.L. Infusion pump device and method for use thereof
US9992818B2 (en) 2015-10-06 2018-06-05 Medtronic Minimed, Inc. Protocol translation device
CN108472438B (en) 2015-10-09 2022-01-28 西医药服务以色列分公司 Tortuous fluid path attachment to pre-filled fluid reservoirs
US11501867B2 (en) 2015-10-19 2022-11-15 Medtronic Minimed, Inc. Medical devices and related event pattern presentation methods
US9757511B2 (en) 2015-10-19 2017-09-12 Medtronic Minimed, Inc. Personal medical device and method of use with restricted mode challenge
US11666702B2 (en) 2015-10-19 2023-06-06 Medtronic Minimed, Inc. Medical devices and related event pattern treatment recommendation methods
US10964421B2 (en) * 2015-10-22 2021-03-30 Welch Allyn, Inc. Method and apparatus for delivering a substance to an individual
US10146911B2 (en) 2015-10-23 2018-12-04 Medtronic Minimed, Inc. Medical devices and related methods and systems for data transfer
CN108430308A (en) * 2015-10-30 2018-08-21 辛辛那提大学 Sweat sensor device with electromagnetic shielding sensor, interconnection and electronic device
US10037722B2 (en) 2015-11-03 2018-07-31 Medtronic Minimed, Inc. Detecting breakage in a display element
US10827959B2 (en) 2015-11-11 2020-11-10 Medtronic Minimed, Inc. Sensor set
WO2017087888A1 (en) 2015-11-18 2017-05-26 President And Fellows Of Harvard College Systems and methods for monitoring, managing, and treating asthma and anaphylaxis
WO2017083982A1 (en) * 2015-11-19 2017-05-26 Southmedic Incorporated Medical device for delivery of fluid to a patient
ES2873849T3 (en) 2015-11-20 2021-11-04 Amf Medical Sa Micropump and manufacturing procedure of a micropump
US10716896B2 (en) 2015-11-24 2020-07-21 Insulet Corporation Wearable automated medication delivery system
US10413665B2 (en) 2015-11-25 2019-09-17 Insulet Corporation Wearable medication delivery device
US9848805B2 (en) 2015-12-18 2017-12-26 Medtronic Minimed, Inc. Biostable glucose permeable polymer
US20170181672A1 (en) 2015-12-28 2017-06-29 Medtronic Minimed, Inc. Sensor systems, devices, and methods for continuous glucose monitoring
US10327680B2 (en) 2015-12-28 2019-06-25 Medtronic Minimed, Inc. Sensor systems, devices, and methods for continuous glucose monitoring
US10327686B2 (en) 2015-12-28 2019-06-25 Medtronic Minimed, Inc. Sensor systems, devices, and methods for continuous glucose monitoring
US20170184527A1 (en) 2015-12-28 2017-06-29 Medtronic Minimed, Inc. Sensor systems, devices, and methods for continuous glucose monitoring
US10349872B2 (en) 2015-12-28 2019-07-16 Medtronic Minimed, Inc. Methods, systems, and devices for sensor fusion
US10449294B1 (en) 2016-01-05 2019-10-22 Bigfoot Biomedical, Inc. Operating an infusion pump system
CN108472440B (en) 2016-01-05 2021-11-09 比格福特生物医药公司 Operating a multi-mode drug delivery system
EP3374905A1 (en) 2016-01-13 2018-09-19 Bigfoot Biomedical, Inc. User interface for diabetes management system
WO2017123703A2 (en) 2016-01-14 2017-07-20 Bigfoot Biomedical, Inc. Occlusion resolution in medication delivery devices, systems, and methods
EP3443998A1 (en) 2016-01-14 2019-02-20 Bigfoot Biomedical, Inc. Adjusting insulin delivery rates
USD830537S1 (en) 2016-01-21 2018-10-09 Becton, Dickinson And Company Wearable drug delivery device with adhesive and liner
USD829894S1 (en) 2016-01-21 2018-10-02 Becton, Dickinson And Company Wearable drug delivery device baseplate
USD830547S1 (en) 2016-01-21 2018-10-09 Becton, Dickinson And Company Adhesive liner for wearable drug delivery device
EP3405229A1 (en) 2016-01-21 2018-11-28 West Pharma. Services Il, Ltd. Needle insertion and retraction mechanism
USD806232S1 (en) 2016-01-21 2017-12-26 Becton, Dickinson And Company Drug delivery device with insertion mechanism
CN109219456B (en) 2016-01-21 2020-05-15 西医药服务以色列有限公司 Force containment in autoinjectors
USD805631S1 (en) 2016-01-21 2017-12-19 Becton, Dickinson And Company Drug delivery device with insertion mechanism button safety
USD857191S1 (en) 2016-01-21 2019-08-20 Becton, Dickinson And Company Wearable drug delivery device
JP6885960B2 (en) 2016-01-21 2021-06-16 ウェスト ファーマ サービシーズ イスラエル リミテッド Drug delivery device with visual indicators
USD829889S1 (en) 2016-01-21 2018-10-02 Becton, Dickinson And Company Wearable drug delivery device with adhesive
US10373716B2 (en) 2016-01-28 2019-08-06 Klue, Inc. Method and apparatus for tracking of food intake and other behaviors and providing relevant feedback
US10790054B1 (en) 2016-12-07 2020-09-29 Medtronic Minimed, Inc. Method and apparatus for tracking of food intake and other behaviors and providing relevant feedback
WO2017136268A1 (en) 2016-02-04 2017-08-10 Insulet Corporation Anti-inflammatory cannula
JP7069023B2 (en) 2016-02-12 2022-05-17 メドトロニック ミニメド インコーポレイテッド Carrying injection pump and assembly for use with it
USD809134S1 (en) 2016-03-10 2018-01-30 Bigfoot Biomedical, Inc. Infusion pump assembly
WO2017161076A1 (en) 2016-03-16 2017-09-21 Medimop Medical Projects Ltd. Staged telescopic screw assembly having different visual indicators
US10376647B2 (en) 2016-03-18 2019-08-13 West Pharma. Services IL, Ltd. Anti-rotation mechanism for telescopic screw assembly
TWI616216B (en) * 2016-04-07 2018-03-01 Du Bo Xun Constant pressure automatic adjustment system for human body
US10765369B2 (en) 2016-04-08 2020-09-08 Medtronic Minimed, Inc. Analyte sensor
US10765348B2 (en) 2016-04-08 2020-09-08 Medtronic Minimed, Inc. Sensor and transmitter product
US10420508B2 (en) 2016-04-08 2019-09-24 Medtronic Minimed, Inc. Sensor connections
US10589038B2 (en) 2016-04-27 2020-03-17 Medtronic Minimed, Inc. Set connector systems for venting a fluid reservoir
US10324058B2 (en) 2016-04-28 2019-06-18 Medtronic Minimed, Inc. In-situ chemistry stack for continuous glucose sensors
US10426389B2 (en) 2016-04-28 2019-10-01 Medtronic Minimed, Inc. Methods, systems, and devices for electrode capacitance calculation and application
US9970893B2 (en) 2016-04-28 2018-05-15 Medtronic Minimed, Inc. Methods, systems, and devices for electrode capacitance calculation and application
US10360787B2 (en) 2016-05-05 2019-07-23 Hill-Rom Services, Inc. Discriminating patient care communications system
EP3454922B1 (en) 2016-05-13 2022-04-06 ICU Medical, Inc. Infusion pump system with common line auto flush
US9968737B2 (en) 2016-05-26 2018-05-15 Medtronic Minimed, Inc. Systems for set connector assembly with lock
US10086133B2 (en) 2016-05-26 2018-10-02 Medtronic Minimed, Inc. Systems for set connector assembly with lock
US10086134B2 (en) 2016-05-26 2018-10-02 Medtronic Minimed, Inc. Systems for set connector assembly with lock
EP3251585A1 (en) * 2016-05-30 2017-12-06 Roche Diabetes Care GmbH Body-mountable device
EP4427776A2 (en) 2016-06-02 2024-09-11 West Pharma Services IL, Ltd Three position needle retraction
US20170348479A1 (en) 2016-06-03 2017-12-07 Bryan Choate Adhesive system for drug delivery device
US11134872B2 (en) 2016-06-06 2021-10-05 Medtronic Minimed, Inc. Thermally stable glucose limiting membrane for glucose sensors
US11179078B2 (en) 2016-06-06 2021-11-23 Medtronic Minimed, Inc. Polycarbonate urea/urethane polymers for use with analyte sensors
CN109475355B (en) 2016-06-09 2022-03-22 C·R·巴德股份有限公司 System and method for correcting and preventing catheter occlusion
EP3468635B1 (en) 2016-06-10 2024-09-25 ICU Medical, Inc. Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
WO2018013842A1 (en) 2016-07-14 2018-01-18 Icu Medical, Inc. Multi-communication path selection and security system for a medical device
WO2018026387A1 (en) 2016-08-01 2018-02-08 Medimop Medical Projects Ltd. Anti-rotation cartridge pin
CN109562220B (en) 2016-08-01 2021-06-29 西医药服务以色列有限公司 Partial door closing prevention spring
WO2018035032A1 (en) 2016-08-14 2018-02-22 Insulet Corporation Automatic drug delivery device with trigger mechanism
US10112012B2 (en) 2016-08-29 2018-10-30 Po-Hsun Tu Automatic regulating system for regulation of liquid pressure in a human body
US10485924B2 (en) 2016-09-06 2019-11-26 Medtronic Minimed, Inc. Pump clip for a fluid infusion device
EP3515535A1 (en) * 2016-09-23 2019-07-31 Insulet Corporation Fluid delivery device with sensor
EP4386533A3 (en) 2016-09-27 2024-08-07 Bigfoot Biomedical, Inc. Personalizing preset meal sizes in insulin delivery system
WO2018067734A1 (en) * 2016-10-04 2018-04-12 Craig M D H Randall Medication delivery method and device with remote control
US10751478B2 (en) 2016-10-07 2020-08-25 Insulet Corporation Multi-stage delivery system
US10780217B2 (en) 2016-11-10 2020-09-22 Insulet Corporation Ratchet drive for on body delivery system
AU2017360970A1 (en) 2016-11-15 2019-05-30 Insulet Corporation Basal insulin management
US11278665B2 (en) 2016-11-22 2022-03-22 Eitan Medical Ltd. Method for delivering a therapeutic substance
CA3037432A1 (en) 2016-12-12 2018-06-21 Bigfoot Biomedical, Inc. Alarms and alerts for medication delivery devices and related systems and methods
USD836769S1 (en) 2016-12-12 2018-12-25 Bigfoot Biomedical, Inc. Insulin delivery controller
US10722620B2 (en) * 2016-12-12 2020-07-28 Intai Technology Corp. Surgical irrigation and suction control apparatus and control method thereof
KR102476516B1 (en) 2016-12-21 2022-12-09 감브로 룬디아 아베 A medical device system that includes an information technology infrastructure with secure cluster domains supporting external domains.
US10854322B2 (en) 2016-12-21 2020-12-01 Medtronic Minimed, Inc. Infusion systems and methods for patient activity adjustments
US10709834B2 (en) 2016-12-21 2020-07-14 Medtronic Minimed, Inc. Medication fluid infusion set component with integrated physiological analyte sensor, and corresponding fluid infusion device
US10272201B2 (en) 2016-12-22 2019-04-30 Medtronic Minimed, Inc. Insertion site monitoring methods and related infusion devices and systems
EP3568859A1 (en) 2017-01-13 2019-11-20 Bigfoot Biomedical, Inc. Insulin delivery methods, systems and devices
US10881792B2 (en) 2017-01-13 2021-01-05 Bigfoot Biomedical, Inc. System and method for adjusting insulin delivery
US10384001B2 (en) 2017-01-17 2019-08-20 Nxp B.V. Fluid flow device
US11197949B2 (en) 2017-01-19 2021-12-14 Medtronic Minimed, Inc. Medication infusion components and systems
US10603440B2 (en) 2017-01-19 2020-03-31 Insulet Corporation Cartridge hold-up volume reduction
US10821225B2 (en) 2017-01-20 2020-11-03 Medtronic Minimed, Inc. Cannulas for drug delivery devices
CN115444410A (en) 2017-01-23 2022-12-09 雅培糖尿病护理公司 Applicator and assembly for inserting an in vivo analyte sensor
US10552580B2 (en) 2017-02-07 2020-02-04 Medtronic Minimed, Inc. Infusion system consumables and related calibration methods
US10646649B2 (en) 2017-02-21 2020-05-12 Medtronic Minimed, Inc. Infusion devices and fluid identification apparatuses and methods
US11045603B2 (en) 2017-02-22 2021-06-29 Insulet Corporation Needle insertion mechanisms for drug containers
US11986288B2 (en) 2017-03-06 2024-05-21 Medtronic Minimed, Inc. Colorometric sensor for the non-invasive screening of glucose in sweat in pre and type 2 diabetes
US10695485B2 (en) 2017-03-07 2020-06-30 Insulet Corporation Very high volume user filled drug delivery device
USD872733S1 (en) 2017-03-14 2020-01-14 Insulet Corporation Display screen with a graphical user interface
USD872734S1 (en) 2017-03-14 2020-01-14 Insulet Corporation Display screen with a graphical user interface
US11134868B2 (en) 2017-03-17 2021-10-05 Medtronic Minimed, Inc. Metal pillar device structures and methods for making and using them in electrochemical and/or electrocatalytic applications
US11000236B2 (en) 2017-03-24 2021-05-11 Medtronic Minimed, Inc. Patient data management systems and conversational interaction methods
BR112019020705A2 (en) 2017-05-05 2020-05-12 Regeneron Pharmaceuticals, Inc. AUTOINJECTOR
US20180328877A1 (en) 2017-05-11 2018-11-15 Medtronic Minimed, Inc. Analyte sensors and methods for fabricating analyte sensors
CN110869072B (en) 2017-05-30 2021-12-10 西部制药服务有限公司(以色列) Modular drive mechanism for a wearable injector
USD839294S1 (en) 2017-06-16 2019-01-29 Bigfoot Biomedical, Inc. Display screen with graphical user interface for closed-loop medication delivery
US10856784B2 (en) 2017-06-30 2020-12-08 Medtronic Minimed, Inc. Sensor initialization methods for faster body sensor response
CN113274578B (en) 2017-07-07 2022-06-03 纽罗德姆有限公司 Device for subcutaneous delivery of fluid drugs
US20230123806A1 (en) 2017-07-07 2023-04-20 Neuroderm, Ltd. Device for subcutaneous delivery of fluid medicament
EP3651647A1 (en) 2017-07-13 2020-05-20 Bigfoot Biomedical, Inc. Multi-scale display of blood glucose information
EP3662161B1 (en) 2017-08-03 2024-05-01 Insulet Corporation Micro piston pump
US10973978B2 (en) 2017-08-03 2021-04-13 Insulet Corporation Fluid flow regulation arrangements for drug delivery devices
WO2019032512A1 (en) * 2017-08-10 2019-02-14 West Pharma. Services IL, Ltd. Injector power-up mechanism
JP6840891B2 (en) * 2017-08-10 2021-03-10 ウェスト ファーマ サービシーズ イスラエル リミテッド Syringe self-test and corresponding syringe door unlocking mechanism
US10596295B2 (en) 2017-08-28 2020-03-24 Medtronic Minimed, Inc. Adhesive patch arrangement for a physiological characteristic sensor, and related sensor assembly
US11412960B2 (en) 2017-08-28 2022-08-16 Medtronic Minimed, Inc. Pedestal for sensor assembly packaging and sensor introducer removal
US10814062B2 (en) * 2017-08-31 2020-10-27 Becton, Dickinson And Company Reservoir with low volume sensor
US11247032B1 (en) * 2017-09-07 2022-02-15 Massachusetts Mutual Life Insurance Company Wearable band for transdermal drug delivery
US11445951B2 (en) 2017-09-13 2022-09-20 Medtronic Minimed, Inc. Methods, systems, and devices for calibration and optimization of glucose sensors and sensor output
US11786668B2 (en) 2017-09-25 2023-10-17 Insulet Corporation Drug delivery devices, systems, and methods with force transfer elements
US10874300B2 (en) 2017-09-26 2020-12-29 Medtronic Minimed, Inc. Waferscale physiological characteristic sensor package with integrated wireless transmitter
US10898656B2 (en) 2017-09-26 2021-01-26 Insulet Corporation Needle mechanism module for drug delivery device
US10524730B2 (en) 2017-09-28 2020-01-07 Medtronic Minimed, Inc. Medical devices with microneedle arrays and methods for operating such medical devices
US10525244B2 (en) 2017-09-28 2020-01-07 Medtronic Minimed, Inc. Microneedle arrays and methods for fabricating microneedle arrays
US11676734B2 (en) 2017-11-15 2023-06-13 Medtronic Minimed, Inc. Patient therapy management system that leverages aggregated patient population data
US11147931B2 (en) 2017-11-17 2021-10-19 Insulet Corporation Drug delivery device with air and backflow elimination
WO2019110839A1 (en) 2017-12-08 2019-06-13 Advanced Microfluidics Sa Drug delivery device
US11213230B2 (en) 2017-12-13 2022-01-04 Medtronic Minimed, Inc. Optional sensor calibration in continuous glucose monitoring
US11471082B2 (en) 2017-12-13 2022-10-18 Medtronic Minimed, Inc. Complex redundancy in continuous glucose monitoring
JP7402799B2 (en) 2017-12-22 2023-12-21 ウェスト ファーマ サービシーズ イスラエル リミテッド Syringes available with different cartridge sizes
US10089055B1 (en) 2017-12-27 2018-10-02 Icu Medical, Inc. Synchronized display of screen content on networked devices
US11439352B2 (en) 2018-01-17 2022-09-13 Medtronic Minimed, Inc. Medical device with adhesive patch longevity
US12042284B2 (en) 2018-01-23 2024-07-23 Medtronic Minimed, Inc. Implantable polymer surfaces exhibiting reduced in vivo inflammatory responses
US11186859B2 (en) 2018-02-07 2021-11-30 Medtronic Minimed, Inc. Multilayer electrochemical analyte sensors and methods for making and using them
US11220735B2 (en) 2018-02-08 2022-01-11 Medtronic Minimed, Inc. Methods for controlling physical vapor deposition metal film adhesion to substrates and surfaces
US11583213B2 (en) 2018-02-08 2023-02-21 Medtronic Minimed, Inc. Glucose sensor electrode design
US11672446B2 (en) 2018-03-23 2023-06-13 Medtronic Minimed, Inc. Insulin delivery recommendations based on nutritional information
US11583633B2 (en) 2018-04-03 2023-02-21 Amgen Inc. Systems and methods for delayed drug delivery
WO2019199952A1 (en) 2018-04-10 2019-10-17 Tandem Diabetes Care, Inc. System and method for inductively charging a medical device
US11158413B2 (en) 2018-04-23 2021-10-26 Medtronic Minimed, Inc. Personalized closed loop medication delivery system that utilizes a digital twin of the patient
US11147919B2 (en) 2018-04-23 2021-10-19 Medtronic Minimed, Inc. Methodology to recommend and implement adjustments to a fluid infusion device of a medication delivery system
WO2019209963A1 (en) 2018-04-24 2019-10-31 Deka Products Limited Partnership Apparatus and system for fluid delivery
US20190336682A1 (en) 2018-05-02 2019-11-07 Insulet Corporation Code scanning for drug delivery
AU2019263490A1 (en) 2018-05-04 2020-11-26 Insulet Corporation Safety constraints for a control algorithm-based drug delivery system
US20190341149A1 (en) 2018-05-07 2019-11-07 Medtronic Minimed, Inc. Augmented reality guidance for medical devices
US10874803B2 (en) 2018-05-31 2020-12-29 Insulet Corporation Drug cartridge with drive system
US11229736B2 (en) 2018-06-06 2022-01-25 Insulet Corporation Linear shuttle pump for drug delivery
WO2020018433A1 (en) 2018-07-16 2020-01-23 Kaleo, Inc. Medicament delivery devices with wireless connectivity and compliance detection
US10964428B2 (en) 2018-07-17 2021-03-30 Icu Medical, Inc. Merging messages into cache and generating user interface using the cache
US10861592B2 (en) 2018-07-17 2020-12-08 Icu Medical, Inc. Reducing infusion pump network congestion by staggering updates
WO2020018642A1 (en) 2018-07-17 2020-01-23 Insulet Corporation Low force valves for drug delivery pumps
WO2020018389A1 (en) 2018-07-17 2020-01-23 Icu Medical, Inc. Systems and methods for facilitating clinical messaging in a network environment
EP3823580A1 (en) 2018-07-17 2021-05-26 Insulet Corporation Semi-rigid and flexible elements for wearable drug delivery device reservoir
NZ771914A (en) 2018-07-17 2023-04-28 Icu Medical Inc Updating infusion pump drug libraries and operational software in a networked environment
US11174852B2 (en) 2018-07-20 2021-11-16 Becton, Dickinson And Company Reciprocating pump
US10692595B2 (en) 2018-07-26 2020-06-23 Icu Medical, Inc. Drug library dynamic version management
CA3107315C (en) 2018-07-26 2023-01-03 Icu Medical, Inc. Drug library management system
US11761077B2 (en) 2018-08-01 2023-09-19 Medtronic Minimed, Inc. Sputtering techniques for biosensors
US11122697B2 (en) 2018-08-07 2021-09-14 Medtronic Minimed, Inc. Method of fabricating an electronic medical device, including overmolding an assembly with thermoplastic material
US11021731B2 (en) 2018-08-23 2021-06-01 Medtronic Minimed, Inc. Analyte sensing layers, analyte sensors and methods for fabricating the same
WO2020045096A1 (en) * 2018-08-29 2020-03-05 株式会社村田製作所 Humidifying device, and humidifying and air delivering device with same for respiratory organs
US11241532B2 (en) 2018-08-29 2022-02-08 Insulet Corporation Drug delivery system with sensor having optimized communication and infusion site
CA3051543A1 (en) 2018-08-30 2020-02-29 Becton, Dickinson And Company Liquid medicament reservoir empty detection sensor and occlusion sensor for medicament delivery device
US10828419B2 (en) 2018-09-04 2020-11-10 Medtronic Minimed, Inc. Infusion set with pivoting metal cannula and strain relief
US11547799B2 (en) 2018-09-20 2023-01-10 Medtronic Minimed, Inc. Patient day planning systems and methods
US10894126B2 (en) 2018-09-28 2021-01-19 Medtronic Minimed, Inc. Fluid infusion system that automatically determines and delivers a correction bolus
US11628251B2 (en) 2018-09-28 2023-04-18 Insulet Corporation Activity mode for artificial pancreas system
US11097052B2 (en) 2018-09-28 2021-08-24 Medtronic Minimed, Inc. Insulin infusion device with configurable target blood glucose value for automatic basal insulin delivery operation
US11071821B2 (en) 2018-09-28 2021-07-27 Medtronic Minimed, Inc. Insulin infusion device with efficient confirmation routine for blood glucose measurements
US10980942B2 (en) 2018-09-28 2021-04-20 Medtronic Minimed, Inc. Infusion devices and related meal bolus adjustment methods
EP3744368A1 (en) 2018-10-05 2020-12-02 Sorrel Medical Ltd. Triggering sequence
US10946140B2 (en) 2018-10-11 2021-03-16 Medtronic Minimed, Inc. Systems and methods for measurement of fluid delivery
US20200116748A1 (en) 2018-10-11 2020-04-16 Medtronic Minimed, Inc. Systems and methods for measurement of fluid delivery
US11565039B2 (en) 2018-10-11 2023-01-31 Insulet Corporation Event detection for drug delivery system
US20200289373A1 (en) 2018-10-31 2020-09-17 Medtronic Minimed, Inc. Automated detection of a physical behavior event and corresponding adjustment of a physiological characteristic sensor device
US11363986B2 (en) 2018-10-31 2022-06-21 Medtronic Minimed, Inc. Automated detection of a physical behavior event and corresponding adjustment of a medication dispensing system
US11367516B2 (en) 2018-10-31 2022-06-21 Medtronic Minimed, Inc. Automated detection of a physical behavior event and corresponding adjustment of a medication dispensing system
US11367517B2 (en) 2018-10-31 2022-06-21 Medtronic Minimed, Inc. Gesture-based detection of a physical behavior event based on gesture sensor data and supplemental information from at least one external source
US11382541B2 (en) 2018-11-16 2022-07-12 Medtronic Minimed, Inc. Miniaturized analyte sensor
AU2019390474B2 (en) 2018-11-28 2023-03-30 Insulet Corporation Drug delivery shuttle pump system and valve assembly
US11540750B2 (en) 2018-12-19 2023-01-03 Medtronic Minimed, Inc Systems and methods for physiological characteristic monitoring
USD920343S1 (en) 2019-01-09 2021-05-25 Bigfoot Biomedical, Inc. Display screen or portion thereof with graphical user interface associated with insulin delivery
US11439752B2 (en) 2019-02-01 2022-09-13 Medtronic Minimed, Inc. Methods and devices for occlusion detection using actuator sensors
US12114972B2 (en) 2019-02-01 2024-10-15 Medtronic Minimed, Inc. Methods, systems, and devices for continuous glucose monitoring
US11389587B2 (en) 2019-02-06 2022-07-19 Medtronic Minimed, Inc. Patient monitoring systems and related presentation methods
US11191899B2 (en) 2019-02-12 2021-12-07 Medtronic Minimed, Inc. Infusion systems and related personalized bolusing methods
US12082910B2 (en) 2019-02-12 2024-09-10 Medtronic Minimed, Inc. Miniaturized noninvasive glucose sensor and continuous glucose monitoring system
US10888655B2 (en) 2019-02-19 2021-01-12 Tandem Diabetes Care, Inc. System and method of pairing an infusion pump with a remote control device
WO2020198422A1 (en) 2019-03-26 2020-10-01 Tandem Diabetes Care, Inc. Method of pairing an infusion pump with a remote control device
US11311215B2 (en) 2019-04-04 2022-04-26 Medtronic Minimed, Inc. Measurement of device materials using non-Faradaic electrochemical impedance spectroscopy
US11986629B2 (en) 2019-06-11 2024-05-21 Medtronic Minimed, Inc. Personalized closed loop optimization systems and methods
US11224361B2 (en) 2019-04-23 2022-01-18 Medtronic Minimed, Inc. Flexible physiological characteristic sensor assembly
US11317867B2 (en) 2019-04-23 2022-05-03 Medtronic Minimed, Inc. Flexible physiological characteristic sensor assembly
US10939488B2 (en) 2019-05-20 2021-03-02 Medtronic Minimed, Inc. Method and system for controlling communication between devices of a wireless body area network for an medical device system
US11642454B2 (en) 2019-06-06 2023-05-09 Medtronic Minimed, Inc. Fluid infusion systems
USD1002852S1 (en) 2019-06-06 2023-10-24 Abbott Diabetes Care Inc. Analyte sensor device
US11448611B2 (en) 2019-07-03 2022-09-20 Medtronic Minimed, Inc. Structurally reinforced sensor and method for manufacturing the same
US11617828B2 (en) 2019-07-17 2023-04-04 Medtronic Minimed, Inc. Reservoir connection interface with detectable signature
US11718865B2 (en) 2019-07-26 2023-08-08 Medtronic Minimed, Inc. Methods to improve oxygen delivery to implantable sensors
US11523757B2 (en) 2019-08-01 2022-12-13 Medtronic Minimed, Inc. Micro-pillar working electrodes design to reduce backflow of hydrogen peroxide in glucose sensor
US11617522B2 (en) 2019-08-06 2023-04-04 Medtronic Minimed, Inc. Sensor inserter with disposal lockout state
US11883208B2 (en) 2019-08-06 2024-01-30 Medtronic Minimed, Inc. Machine learning-based system for estimating glucose values based on blood glucose measurements and contextual activity data
US20220039755A1 (en) 2020-08-06 2022-02-10 Medtronic Minimed, Inc. Machine learning-based system for estimating glucose values
CA3145580A1 (en) 2019-08-09 2021-02-18 Kaleo, Inc. Devices and methods for delivery of substances within a prefilled syringe
US11724045B2 (en) 2019-08-21 2023-08-15 Medtronic Minimed, Inc. Connection of a stopper and piston in a fluid delivery device
USD939079S1 (en) 2019-08-22 2021-12-21 Icu Medical, Inc. Infusion pump
US20210060244A1 (en) 2019-08-28 2021-03-04 Medtronic Minimed, Inc. Method and system for verifying whether a non-medical client device is operating correctly with a medical device controlled by the non-medical client device and causing a notification to be generated
US11992656B2 (en) 2019-08-29 2024-05-28 Medtronic Minimed, Inc. Controlling medical infusion device operation and features based on detected patient sleeping status
US11654235B2 (en) 2019-09-12 2023-05-23 Medtronic Minimed, Inc. Sensor calibration using fabrication measurements
US11565044B2 (en) 2019-09-12 2023-01-31 Medtronic Minimed, Inc. Manufacturing controls for sensor calibration using fabrication measurements
US11801344B2 (en) 2019-09-13 2023-10-31 Insulet Corporation Blood glucose rate of change modulation of meal and correction insulin bolus quantity
US11241537B2 (en) 2019-09-20 2022-02-08 Medtronic Minimed, Inc. Contextual personalized closed-loop adjustment methods and systems
US11213623B2 (en) 2019-09-20 2022-01-04 Medtronic Minimed, Inc. Infusion systems and related personalized bolusing methods
US11935637B2 (en) 2019-09-27 2024-03-19 Insulet Corporation Onboarding and total daily insulin adaptivity
US11511099B2 (en) 2019-10-08 2022-11-29 Medtronic Minimed, Inc. Apparatus for detecting mating of a cap with a fluid delivery device and method
US11638545B2 (en) 2019-10-16 2023-05-02 Medtronic Minimed, Inc. Reducing sensor foreign body response via high surface area metal structures
US11369735B2 (en) 2019-11-05 2022-06-28 Insulet Corporation Component positioning of a linear shuttle pump
US11496083B2 (en) 2019-11-15 2022-11-08 Medtronic Minimed, Inc. Devices and methods for controlling electromechanical actuators
US11944784B2 (en) 2019-11-18 2024-04-02 Medtronic Minimed, Inc. Combined analyte sensor and infusion set
US11324881B2 (en) 2019-11-21 2022-05-10 Medtronic Minimed, Inc. Systems for wearable infusion port and associated pump
US11559624B2 (en) 2019-11-21 2023-01-24 Medtronic Minimed, Inc. Systems for wearable infusion port and associated pump
US11278671B2 (en) 2019-12-04 2022-03-22 Icu Medical, Inc. Infusion pump with safety sequence keypad
EP4069082B1 (en) 2019-12-06 2024-06-05 Insulet Corporation Techniques and devices providing adaptivity and personalization in diabetes treatment
US12119119B2 (en) 2019-12-09 2024-10-15 Medtronic Minimed, Inc. Methods and systems for real-time sensor measurement simulation
US11786655B2 (en) 2019-12-13 2023-10-17 Medtronic Minimed, Inc. Context-sensitive predictive operation of a medication delivery system in response to gesture-indicated activity changes
US11938301B2 (en) 2019-12-13 2024-03-26 Medtronic Minimed, Inc. Controlling medication delivery system operation and features based on automatically detected muscular movements
US11488700B2 (en) 2019-12-13 2022-11-01 Medtronic Minimed, Inc. Medical device configuration procedure guidance responsive to detected gestures
US11887712B2 (en) 2019-12-13 2024-01-30 Medtronic Minimed, Inc. Method and system for classifying detected events as labeled event combinations for processing at a client application
US11375955B2 (en) 2019-12-18 2022-07-05 Medtronic Minimed, Inc. Systems for skin patch gravity resistance
US11690573B2 (en) 2019-12-18 2023-07-04 Medtronic Minimed, Inc. Systems for skin patch gravity resistance
CN115135356A (en) * 2019-12-19 2022-09-30 詹森生物科技公司 Liquid drug pump with flexible drug reservoir
US11833329B2 (en) 2019-12-20 2023-12-05 Insulet Corporation Techniques for improved automatic drug delivery performance using delivery tendencies from past delivery history and use patterns
US11821022B2 (en) 2019-12-23 2023-11-21 Medtronic Minimed, Inc. Ethylene oxide absorption layer for analyte sensing and method
JP7512395B2 (en) 2020-01-06 2024-07-08 インスレット コーポレイション Predicting dietary and/or exercise behavior based on persistence residuals
US11244753B2 (en) 2020-01-30 2022-02-08 Medtronic Minimed, Inc. Activity monitoring systems and methods
US11957488B2 (en) 2020-02-07 2024-04-16 Medtronic Minimed, Inc. Systems for medical device breathability
US11551802B2 (en) 2020-02-11 2023-01-10 Insulet Corporation Early meal detection and calorie intake detection
US11547800B2 (en) 2020-02-12 2023-01-10 Insulet Corporation User parameter dependent cost function for personalized reduction of hypoglycemia and/or hyperglycemia in a closed loop artificial pancreas system
US11986630B2 (en) 2020-02-12 2024-05-21 Insulet Corporation Dual hormone delivery system for reducing impending hypoglycemia and/or hyperglycemia risk
US11324889B2 (en) 2020-02-14 2022-05-10 Insulet Corporation Compensation for missing readings from a glucose monitor in an automated insulin delivery system
US11833327B2 (en) 2020-03-06 2023-12-05 Medtronic Minimed, Inc. Analyte sensor configuration and calibration based on data collected from a previously used analyte sensor
USD958167S1 (en) 2020-03-23 2022-07-19 Companion Medical, Inc. Display screen with graphical user interface
US11305333B2 (en) 2020-03-31 2022-04-19 Insulet Corporation Methods for forming low stress component for medical devices
USD958817S1 (en) 2020-03-31 2022-07-26 Medtronic Minimed, Inc. Display screen with graphical user interface
US11607493B2 (en) 2020-04-06 2023-03-21 Insulet Corporation Initial total daily insulin setting for user onboarding
US11596359B2 (en) 2020-04-09 2023-03-07 Medtronic Minimed, Inc. Methods and systems for mitigating sensor error propagation
US11690955B2 (en) 2020-04-23 2023-07-04 Medtronic Minimed, Inc. Continuous analyte sensor quality measures and related therapy actions for an automated therapy delivery system
US11583631B2 (en) 2020-04-23 2023-02-21 Medtronic Minimed, Inc. Intuitive user interface features and related functionality for a therapy delivery system
US11272884B2 (en) 2020-06-04 2022-03-15 Medtronic Minimed, Inc. Liner for adhesive skin patch
USD977502S1 (en) 2020-06-09 2023-02-07 Insulet Corporation Display screen with graphical user interface
US12064236B2 (en) 2020-06-11 2024-08-20 Medtronic Minimed, Inc. Methods, systems, and devices for improved sensors for continuous glucose monitoring
AU2021311443A1 (en) 2020-07-21 2023-03-09 Icu Medical, Inc. Fluid transfer devices and methods of use
US11650248B2 (en) 2020-07-28 2023-05-16 Medtronic Minimed, Inc. Electrical current measurement system
US11960311B2 (en) 2020-07-28 2024-04-16 Medtronic Minimed, Inc. Linear voltage regulator with isolated supply current
US12082924B2 (en) 2020-07-31 2024-09-10 Medtronic Minimed, Inc. Sensor identification and integrity check design
US11445807B2 (en) 2020-07-31 2022-09-20 Medtronic Minimed, Inc. Pump clip with tube clamp for a fluid infusion device
US11684716B2 (en) 2020-07-31 2023-06-27 Insulet Corporation Techniques to reduce risk of occlusions in drug delivery systems
AU2021333768A1 (en) 2020-08-27 2023-04-20 Insulet Corporation Wearable micro-dosing drug delivery device
EP4205134A1 (en) 2020-08-31 2023-07-05 Insulet Corporation Post meal compensation for automatic insulin delivery systems
US20220088303A1 (en) 2020-09-21 2022-03-24 Insulet Corporation Techniques for determining automated insulin delivery dosages
US12115351B2 (en) 2020-09-30 2024-10-15 Insulet Corporation Secure wireless communications between a glucose monitor and other devices
EP4221781A2 (en) 2020-10-02 2023-08-09 Insulet Corporation Fluid delivery device having multiple penetrating elements
US11839743B2 (en) 2020-10-07 2023-12-12 Medtronic Minimed, Inc. Graphic user interface for automated infusate delivery
US11737783B2 (en) 2020-10-16 2023-08-29 Medtronic Minimed, Inc. Disposable medical device introduction system
US11844930B2 (en) 2020-10-29 2023-12-19 Medtronic Minimed, Inc. User-mountable electronic device with accelerometer-based activation feature
US11806503B2 (en) 2020-10-29 2023-11-07 Medtronic Minimed, Inc. Removable wearable device and related attachment methods
US11534086B2 (en) 2020-10-30 2022-12-27 Medtronic Minimed, Inc. Low-profile wearable medical device
US11951281B2 (en) 2020-11-11 2024-04-09 Medtronic Minimed, Inc. Fluid conduit insertion devices
US11241530B1 (en) 2020-11-23 2022-02-08 Amf Medical Sa Insulin patch pump having photoplethysmography module
US11135360B1 (en) 2020-12-07 2021-10-05 Icu Medical, Inc. Concurrent infusion with common line auto flush
US11688501B2 (en) 2020-12-07 2023-06-27 Beta Bionics, Inc. Ambulatory medicament pump with safe access control
USD999913S1 (en) 2020-12-21 2023-09-26 Abbott Diabetes Care Inc Analyte sensor inserter
US11998330B2 (en) 2021-01-29 2024-06-04 Medtronic Minimed, Inc. Interference rejection membranes useful with analyte sensors
US11160925B1 (en) 2021-01-29 2021-11-02 Insulet Corporation Automatic drug delivery system for delivery of a GLP-1 therapeutic
EP4288971A1 (en) 2021-02-02 2023-12-13 Medtronic MiniMed, Inc. Dynamic adjustments of physiological data
US11311666B1 (en) 2021-02-18 2022-04-26 Fresenius Kabi Deutschland Gmbh Modular wearable medicament delivery device and method of use thereof
US11464902B1 (en) * 2021-02-18 2022-10-11 Fresenius Kabi Deutschland Gmbh Wearable medicament delivery device with compressible reservoir and method of use thereof
US11904140B2 (en) 2021-03-10 2024-02-20 Insulet Corporation Adaptable asymmetric medicament cost component in a control system for medicament delivery
WO2022191972A1 (en) 2021-03-12 2022-09-15 Insulet Corporation Improved drive mechanisms for positive displacement pumps
US20220323674A1 (en) 2021-04-07 2022-10-13 Insulet Corporation Fluid delivery pump valve assembly
US20220347386A1 (en) 2021-04-28 2022-11-03 Insulet Corporation Devices and methods for initialization of drug delivery devices using measured analyte sensor information
EP4337283A1 (en) 2021-05-12 2024-03-20 Insulet Corporation Devices for determining fluid delivery pump information
EP4346945A1 (en) 2021-05-28 2024-04-10 Insulet Corporation Spring-based status sensors
US11857757B2 (en) 2021-06-01 2024-01-02 Tandem Diabetes Care Switzerland Sàrl Systems and methods for delivering microdoses of medication
US11712514B2 (en) 2021-06-01 2023-08-01 Tandem Diabetes Care Switzerland Sàrl Cannulas for systems and methods for delivering microdoses of medication
US11679199B2 (en) 2021-06-01 2023-06-20 Amf Medical Sa Systems and methods for delivering microdoses of medication
WO2022254286A1 (en) 2021-06-01 2022-12-08 Amf Medical Sa Systems and methods for delivering microdoses of medication
US11904146B2 (en) 2021-06-08 2024-02-20 Medtronic Minimed, Inc. Medicine injection devices, systems, and methods for medicine administration and tracking
US11792714B2 (en) 2021-06-16 2023-10-17 Medtronic Minimed, Inc. Medicine administration in dynamic networks
US12090498B2 (en) 2021-08-19 2024-09-17 Insulet Corporation Low-friction rolling plunger for a wearable drug delivery device
US20230062884A1 (en) 2021-08-31 2023-03-02 Insulet Corporation Devices and methods for controlling drug dosage delivery for automatically providing a drug to a patient
US11587742B1 (en) 2021-09-02 2023-02-21 Medtronic Minimed, Inc. Ingress-tolerant input devices
US11817285B2 (en) 2021-09-02 2023-11-14 Medtronic Minimed, Inc. Ingress-tolerant input devices comprising sliders
EP4409581A1 (en) 2021-09-27 2024-08-07 Insulet Corporation Techniques enabling adaptation of parameters in aid systems by user input
EP4166169A1 (en) 2021-10-18 2023-04-19 Insulet Corporation Flexible linkage for positive displacement pumps
WO2023069909A1 (en) 2021-10-18 2023-04-27 Insulet Corporation Drive mechanism for positive displacement pumps
USD1007676S1 (en) 2021-11-16 2023-12-12 Regeneron Pharmaceuticals, Inc. Wearable autoinjector
US11439754B1 (en) 2021-12-01 2022-09-13 Insulet Corporation Optimizing embedded formulations for drug delivery
WO2023102114A1 (en) 2021-12-01 2023-06-08 Insulet Corporation Optimizing embedded formulations for drug delivery
WO2023141415A1 (en) 2022-01-18 2023-07-27 Insulet Corporation Systems and methods for ensuring sufficient bolus dosing for meal compensation
CN118632718A (en) 2022-01-28 2024-09-10 英赛罗公司 Positive displacement pumping mechanism with dual reservoirs
WO2023150737A1 (en) 2022-02-07 2023-08-10 Insulet Corporation Techniques for determining medication correction factors in automatic medication delivery systems
WO2023168284A1 (en) 2022-03-01 2023-09-07 Insulet Corporation Single package automated drug delivery system
US11896447B2 (en) 2022-03-14 2024-02-13 Medtronic Minimed, Inc. Safeguards against separation from portable medicine delivery devices
US20230310741A1 (en) 2022-03-31 2023-10-05 Insulet Corporation Automatic drug delivery system having multiple communication options
EP4261835A1 (en) 2022-04-14 2023-10-18 Insulet Corporation System and method for creating or adjusting manual basal profiles
US12011293B2 (en) 2022-04-26 2024-06-18 Medtronic Minimed, Inc. Energy management based on a closed switch configuration
US11997806B2 (en) 2022-04-26 2024-05-28 Medtronic Minimed, Inc. Energy management based on an open switch configuration
WO2023230015A1 (en) * 2022-05-23 2023-11-30 Megahed Ahmed Methods, systems, apparatuses, and devices for facilitating maintaining patency of a medical catheter
USD1024314S1 (en) 2022-06-01 2024-04-23 Insulet Corporation Automated drug delivery device
US20230414864A1 (en) 2022-06-28 2023-12-28 Insulet Corporation Methods and systems for optical-based fluid control in a fluid delivery system
EP4300514A1 (en) 2022-07-01 2024-01-03 Insulet Corporation System and method for evaluating risk of hypoglycemia or hyperglycemia
US20240009390A1 (en) 2022-07-07 2024-01-11 Insulet Corporation System and method for detecting occlusions in a fluid path
US20240042126A1 (en) 2022-08-04 2024-02-08 Insulet Corporation Pump mechanism with double reservoir and stationary fluid ports
US20240079111A1 (en) 2022-08-24 2024-03-07 Insulet Corporation System and method for adjusting insulin delivery to account for insulin resistance
US20240075208A1 (en) 2022-09-01 2024-03-07 Insulet Corporation Method for detecting occlusions in a fluid path using blood glucose readings
US20240091435A1 (en) 2022-09-16 2024-03-21 Insulet Corporation Mechanism providing variable fill capability for a liquid reservoir and pump
WO2024081559A1 (en) 2022-10-11 2024-04-18 Insulet Corporation System and method for determining the effect of ingestion of meals of varying carbohydrate content
US20240173472A1 (en) 2022-11-30 2024-05-30 Tandem Diabetes Care Switzerland Sàrl Devices for inserting transcutaneous cannulas for patch pumps
US12097355B2 (en) 2023-01-06 2024-09-24 Insulet Corporation Automatically or manually initiated meal bolus delivery with subsequent automatic safety constraint relaxation
US20240268724A1 (en) 2023-02-13 2024-08-15 Insulet Corporation System and method for reducing cgm warm-up time by application of optical energy

Family Cites Families (193)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US306691A (en) * 1884-10-14 Cord-holder for assisting in tying plants
US303013A (en) * 1884-08-05 Pen-holder
US489578A (en) * 1893-01-10 Sulky-axle
US405524A (en) * 1889-06-18 Whip-socket
US311735A (en) * 1885-02-03 Printing-press
US581015A (en) * 1897-04-20 Machine for cutting
US315727A (en) * 1885-04-14 Odometer for vehicles
US5338157B1 (en) * 1992-09-09 1999-11-02 Sims Deltec Inc Systems and methods for communicating with ambulat
US5935099A (en) * 1992-09-09 1999-08-10 Sims Deltec, Inc. Drug pump systems and methods
US3631847A (en) 1966-03-04 1972-01-04 James C Hobbs Method and apparatus for injecting fluid into the vascular system
US3812843A (en) 1973-03-12 1974-05-28 Lear Siegler Inc Method and apparatus for injecting contrast media into the vascular system
US3885662A (en) 1973-12-26 1975-05-27 Ibm Steerable follower selection mechanism
FR2348709A1 (en) 1976-04-23 1977-11-18 Pistor Michel MESOTHERAPIC TREATMENT PROCESS AND INJECTION DEVICE, FORMING AUTOMATIC MICRO-INJECTOR, INCLUDING APPLICATION
US4067000A (en) 1976-05-28 1978-01-03 Rca Corporation Remote control transmitter with an audible battery life indicator
US4273122A (en) 1976-11-12 1981-06-16 Whitney Douglass G Self contained powered injection system
DE2738155A1 (en) 1977-08-24 1979-03-08 Stierlen Maquet Ag REMOTE CONTROL ARRANGEMENT FOR A MEDICAL DEVICE
DE2738406A1 (en) 1977-08-25 1979-03-08 Stierlen Maquet Ag PROCEDURE AND REMOTE CONTROL ARRANGEMENT FOR REMOTE CONTROL OF A MEDICAL DEVICE
US4151845A (en) 1977-11-25 1979-05-01 Miles Laboratories, Inc. Blood glucose control apparatus
US4193397A (en) 1977-12-01 1980-03-18 Metal Bellows Corporation Infusion apparatus and method
DE2758467C2 (en) * 1977-12-28 1985-04-04 Siemens AG, 1000 Berlin und 8000 München Device for the pre-programmable infusion of liquids
US4559037A (en) 1977-12-28 1985-12-17 Siemens Aktiengesellschaft Device for the pre-programmable infusion of liquids
US4373527B1 (en) 1979-04-27 1995-06-27 Univ Johns Hopkins Implantable programmable medication infusion system
US4268150A (en) 1980-01-28 1981-05-19 Laurence Chen Disposable camera with simplified film advance and indicator
CA1169323A (en) 1980-06-03 1984-06-19 Anthony M. Albisser Insulin infusion device
AU546785B2 (en) 1980-07-23 1985-09-19 Commonwealth Of Australia, The Open-loop controlled infusion of diabetics
US4559033A (en) 1980-10-27 1985-12-17 University Of Utah Research Foundation Apparatus and methods for minimizing peritoneal injection catheter obstruction
US4424720A (en) 1980-12-15 1984-01-10 Ivac Corporation Mechanism for screw drive and syringe plunger engagement/disengagement
US4364385A (en) 1981-03-13 1982-12-21 Lossef Steven V Insulin delivery device
JPS57163309A (en) 1981-04-01 1982-10-07 Olympus Optical Co Ltd Capsule apparatus for medical use
JPS57211361A (en) 1981-06-23 1982-12-25 Terumo Corp Liquid injecting apparatus
US4529401A (en) 1982-01-11 1985-07-16 Cardiac Pacemakers, Inc. Ambulatory infusion pump having programmable parameters
US4435173A (en) 1982-03-05 1984-03-06 Delta Medical Industries Variable rate syringe pump for insulin delivery
US4498843A (en) 1982-08-02 1985-02-12 Schneider Philip H Insulin infusion pump
US4551134A (en) 1982-08-06 1985-11-05 Nuvatec, Inc. Intravenous set
US4514732A (en) 1982-08-23 1985-04-30 General Electric Company Technique for increasing battery life in remote control transmitters
US4624661A (en) 1982-11-16 1986-11-25 Surgidev Corp. Drug dispensing system
DE3314664C2 (en) 1983-04-22 1985-02-21 B. Braun Melsungen Ag, 3508 Melsungen Procedure for triggering a pre-alarm in a pressure infusion apparatus
US4781693A (en) 1983-09-02 1988-11-01 Minntech Corporation Insulin dispenser for peritoneal cavity
EP0143895B1 (en) 1983-09-07 1987-12-23 Disetronic Ag Portable infusion apparatus
US4685903A (en) 1984-01-06 1987-08-11 Pacesetter Infusion, Ltd. External infusion pump apparatus
US4678408A (en) 1984-01-06 1987-07-07 Pacesetter Infusion, Ltd. Solenoid drive apparatus for an external infusion pump
US4562751A (en) 1984-01-06 1986-01-07 Nason Clyde K Solenoid drive apparatus for an external infusion pump
US4684368A (en) 1984-06-01 1987-08-04 Parker Hannifin Corporation Inverted pump
US4855746A (en) 1984-07-30 1989-08-08 Zenith Electronics Corporation Multiple device remote control transmitter
US4634427A (en) 1984-09-04 1987-01-06 American Hospital Supply Company Implantable demand medication delivery assembly
CA1254091A (en) 1984-09-28 1989-05-16 Vladimir Feingold Implantable medication infusion system
US4655767A (en) * 1984-10-29 1987-04-07 Dow Corning Corporation Transdermal drug delivery devices with amine-resistant silicone adhesives
US4755173A (en) 1986-02-25 1988-07-05 Pacesetter Infusion, Ltd. Soft cannula subcutaneous injection set
US5349852A (en) 1986-03-04 1994-09-27 Deka Products Limited Partnership Pump controller using acoustic spectral analysis
US4778451A (en) 1986-03-04 1988-10-18 Kamen Dean L Flow control system using boyle's law
AT384737B (en) 1986-04-04 1987-12-28 Thoma Dipl Ing Dr Techn Herwig DEVICE FOR CONTINUOUSLY DELIVERING LIQUID MEDICINAL PRODUCTS
USD306691S (en) 1986-05-23 1990-03-20 Fuji Photo Film Co., Ltd. Disposable camera
USD303013S (en) 1986-06-19 1989-08-22 Pacesetter Infusion, Ltd. Female luer connector
USD311735S (en) 1986-06-30 1990-10-30 Fuji Photo Film Co., Ltd. Disposable camera
USD315727S (en) 1986-06-30 1991-03-26 Fuji Photo Film Co., Ltd. Disposable camera
CA1283827C (en) 1986-12-18 1991-05-07 Giorgio Cirelli Appliance for injection of liquid formulations
GB8701731D0 (en) 1987-01-27 1987-03-04 Patcentre Benelux Nv Sa Pumps
US4734092A (en) * 1987-02-18 1988-03-29 Ivac Corporation Ambulatory drug delivery device
EP0315656B1 (en) 1987-05-18 1993-07-07 Disetronic Ag Infusion apparatus
US4898579A (en) 1987-06-26 1990-02-06 Pump Controller Corporation Infusion pump
US5189609A (en) 1987-10-09 1993-02-23 Hewlett-Packard Company Medical monitoring system with softkey control
US4784693A (en) * 1987-10-30 1988-11-15 Aqualon Company Cementing composition and aqueous hydraulic cementing solution comprising water-soluble, nonionic hydrophobically modified hydroxyethyl cellulose
US4836752A (en) 1987-11-02 1989-06-06 Fisher Scientific Company Partial restriction detector
US4898578A (en) 1988-01-26 1990-02-06 Baxter International Inc. Drug infusion system with calculator
US4801957A (en) 1988-02-18 1989-01-31 Eastman Kodak Company Disposable single-use camera and accessory re-usable electronic flash unit
US5062841A (en) 1988-08-12 1991-11-05 The Regents Of The University Of California Implantable, self-regulating mechanochemical insulin pump
US4882600A (en) 1989-04-07 1989-11-21 Eastman Kodak Company Underwater disposable single-use camera
US5205819A (en) 1989-05-11 1993-04-27 Bespak Plc Pump apparatus for biomedical use
US5129891A (en) 1989-05-19 1992-07-14 Strato Medical Corporation Catheter attachment device
US5411480A (en) 1989-06-16 1995-05-02 Science Incorporated Fluid delivery apparatus
US5045871A (en) 1989-06-30 1991-09-03 Reinholdson Mark R Disposable camera
US4973998A (en) 1990-01-16 1990-11-27 Eastman Kodak Company Disposable single-use camera and accessory re-usable electronic flash unit
US5109850A (en) 1990-02-09 1992-05-05 Massachusetts Institute Of Technology Automatic blood monitoring for medication delivery method and apparatus
US5492534A (en) 1990-04-02 1996-02-20 Pharmetrix Corporation Controlled release portable pump
US5318540A (en) 1990-04-02 1994-06-07 Pharmetrix Corporation Controlled release infusion device
US5007458A (en) 1990-04-23 1991-04-16 Parker Hannifin Corporation Poppet diaphragm valve
US5125415A (en) 1990-06-19 1992-06-30 Smiths Industries Medical Systems, Inc. Syringe tip cap with self-sealing filter
JPH0451966A (en) 1990-06-19 1992-02-20 Toichi Ishikawa Medical fluid continuous injector
US5779696A (en) * 1990-07-23 1998-07-14 Sunrise Technologies International, Inc. Method and apparatus for performing corneal reshaping to correct ocular refractive errors
US5176662A (en) 1990-08-23 1993-01-05 Minimed Technologies, Ltd. Subcutaneous injection set with improved cannula mounting arrangement
US5242406A (en) 1990-10-19 1993-09-07 Sil Medics Ltd. Liquid delivery device particularly useful for delivering drugs
US5245447A (en) 1991-05-20 1993-09-14 Xerox Corporation Indexing mechanism for compact scanner
US5213483A (en) 1991-06-19 1993-05-25 Strato Medical Corporation Peristaltic infusion pump with removable cassette and mechanically keyed tube set
US5207645A (en) 1991-06-25 1993-05-04 Medication Delivery Devices Infusion pump, treatment fluid bag therefor, and method for the use thereof
US5239326A (en) 1991-08-07 1993-08-24 Kabushiki Kaisha Senshukai Film-loaded disposable camera
DE4129271C1 (en) 1991-09-03 1992-09-17 Fresenius Ag, 6380 Bad Homburg, De
DE4139006C3 (en) * 1991-11-27 2003-07-10 Electro Chem Eng Gmbh Process for producing oxide ceramic layers on barrier layer-forming metals and objects produced in this way from aluminum, magnesium, titanium or their alloys with an oxide ceramic layer
US5244463A (en) 1991-12-06 1993-09-14 Block Medical, Inc. Programmable infusion pump
DE4200595C2 (en) 1992-01-13 1994-10-13 Michail Efune Assembly for the infusion set for an insulin pump
US5911716A (en) * 1992-01-24 1999-06-15 I-Flow Corporation Platen pump
US5267956A (en) 1992-02-05 1993-12-07 Alcon Surgical, Inc. Surgical cassette
US5346476A (en) 1992-04-29 1994-09-13 Edward E. Elson Fluid delivery system
IE930532A1 (en) 1993-07-19 1995-01-25 Elan Med Tech Liquid material dispenser and valve
US5254096A (en) 1992-09-23 1993-10-19 Becton, Dickinson And Company Syringe pump with graphical display or error conditions
US5232439A (en) 1992-11-02 1993-08-03 Infusion Technologies Corporation Method for pumping fluid from a flexible, variable geometry reservoir
US5342313A (en) 1992-11-02 1994-08-30 Infusion Technologies Corporation Fluid pump for a flexible, variable geometry reservoir
US5378231A (en) * 1992-11-25 1995-01-03 Abbott Laboratories Automated drug infusion system
US5433710A (en) 1993-03-16 1995-07-18 Minimed, Inc. Medication infusion pump with fluoropolymer valve seat
DE4310808C2 (en) * 1993-04-02 1995-06-22 Boehringer Mannheim Gmbh Liquid dosing system
US5257980A (en) 1993-04-05 1993-11-02 Minimed Technologies, Ltd. Subcutaneous injection set with crimp-free soft cannula
DE69431994T2 (en) 1993-10-04 2003-10-30 Res Int Inc MICRO-MACHINED FLUID TREATMENT DEVICE WITH FILTER AND CONTROL VALVE
US5531697A (en) * 1994-04-15 1996-07-02 Sims Deltec, Inc. Systems and methods for cassette identification for drug pumps
JP3259267B2 (en) 1993-12-28 2002-02-25 ニプロ株式会社 Chemical injection device
FR2716286A1 (en) * 1994-02-16 1995-08-18 Debiotech Sa Installation of remote monitoring of controllable equipment.
US5630710A (en) 1994-03-09 1997-05-20 Baxter International Inc. Ambulatory infusion pump
US5643213A (en) 1994-03-09 1997-07-01 I-Flow Corporation Elastomeric syringe actuation device
DE4415896A1 (en) 1994-05-05 1995-11-09 Boehringer Mannheim Gmbh Analysis system for monitoring the concentration of an analyte in the blood of a patient
US5576781A (en) 1994-05-16 1996-11-19 Deleeuw; Paul Disposable camera
US5685859A (en) 1994-06-02 1997-11-11 Nikomed Aps Device for fixating a drainage tube and a drainage tube assembly
US5452033A (en) 1994-06-06 1995-09-19 Eastman Kodak Company Single use photographic film package and camera
US5582593A (en) 1994-07-21 1996-12-10 Hultman; Barry W. Ambulatory medication delivery system
JPH0858897A (en) * 1994-08-12 1996-03-05 Japan Storage Battery Co Ltd Fluid supply device
US5569187A (en) * 1994-08-16 1996-10-29 Texas Instruments Incorporated Method and apparatus for wireless chemical supplying
US5505709A (en) 1994-09-15 1996-04-09 Minimed, Inc., A Delaware Corporation Mated infusion pump and syringe
US5545152A (en) 1994-10-28 1996-08-13 Minimed Inc. Quick-connect coupling for a medication infusion system
CA2159052C (en) 1994-10-28 2007-03-06 Rainer Alex Injection device
IE72524B1 (en) * 1994-11-04 1997-04-23 Elan Med Tech Analyte-controlled liquid delivery device and analyte monitor
US5685844A (en) * 1995-01-06 1997-11-11 Abbott Laboratories Medicinal fluid pump having multiple stored protocols
DE19500529C5 (en) 1995-01-11 2007-11-22 Dräger Medical AG & Co. KG Control unit for a ventilator
US5637095A (en) 1995-01-13 1997-06-10 Minimed Inc. Medication infusion pump with flexible drive plunger
US5665070A (en) 1995-01-19 1997-09-09 I-Flow Corporation Infusion pump with magnetic bag compression
US5741228A (en) * 1995-02-17 1998-04-21 Strato/Infusaid Implantable access device
US5647853A (en) 1995-03-03 1997-07-15 Minimed Inc. Rapid response occlusion detector for a medication infusion pump
US5575770A (en) 1995-04-05 1996-11-19 Therex Corporation Implantable drug infusion system with safe bolus capability
EP0821566B1 (en) 1995-04-20 2003-10-15 ACIST Medical Systems, Inc. Angiographic injector
US5665065A (en) 1995-05-26 1997-09-09 Minimed Inc. Medication infusion device with blood glucose data input
US5702363A (en) 1995-06-07 1997-12-30 Flaherty; J. Christopher Septumless implantable treatment material device
US5695490A (en) 1995-06-07 1997-12-09 Strato/Infusaid, Inc. Implantable treatment material device
US5584813A (en) 1995-06-07 1996-12-17 Minimed Inc. Subcutaneous injection set
US5573342A (en) 1995-06-20 1996-11-12 Patalano; Christine S. Body lotion applicator system
US5810015A (en) * 1995-09-01 1998-09-22 Strato/Infusaid, Inc. Power supply for implantable device
IE77523B1 (en) * 1995-09-11 1997-12-17 Elan Med Tech Medicament delivery device
EP0763369B1 (en) 1995-09-18 2002-01-09 Becton, Dickinson and Company Needle shield with collapsible cover
US5726751A (en) * 1995-09-27 1998-03-10 University Of Washington Silicon microchannel optical flow cytometer
US5776103A (en) * 1995-10-11 1998-07-07 Science Incorporated Fluid delivery device with bolus injection site
US5779676A (en) * 1995-10-11 1998-07-14 Science Incorporated Fluid delivery device with bolus injection site
US5800405A (en) * 1995-12-01 1998-09-01 I-Flow Corporation Syringe actuation device
US6206850B1 (en) * 1996-03-14 2001-03-27 Christine O'Neil Patient controllable drug delivery system flow regulating means
US5865806A (en) * 1996-04-04 1999-02-02 Becton Dickinson And Company One step catheter advancement automatic needle retraction system
US5976109A (en) 1996-04-30 1999-11-02 Medtronic, Inc. Apparatus for drug infusion implanted within a living body
US5785688A (en) * 1996-05-07 1998-07-28 Ceramatec, Inc. Fluid delivery apparatus and method
US5726404A (en) * 1996-05-31 1998-03-10 University Of Washington Valveless liquid microswitch
IL118689A (en) * 1996-06-20 2000-10-31 Gadot Amir Intravenous infusion apparatus
DE69722414T2 (en) * 1996-07-03 2004-05-19 Altea Therapeutics Corp. MULTIPLE MECHANICAL MICROPERFORATION OF SKIN OR MUCOSA
US6689091B2 (en) * 1996-08-02 2004-02-10 Tuan Bui Medical apparatus with remote control
US5755682A (en) * 1996-08-13 1998-05-26 Heartstent Corporation Method and apparatus for performing coronary artery bypass surgery
US5748827A (en) * 1996-10-23 1998-05-05 University Of Washington Two-stage kinematic mount
US5886647A (en) * 1996-12-20 1999-03-23 Badger; Berkley C. Apparatus and method for wireless, remote control of multiple devices
US5858239A (en) * 1997-02-14 1999-01-12 Aksys, Ltd. Methods and apparatus for adjustment of blood drip chamber of dialysis machines using touchscreen interface
US5785681A (en) * 1997-02-25 1998-07-28 Minimed Inc. Flow rate controller for a medication infusion pump
US6061580A (en) * 1997-02-28 2000-05-09 Randice-Lisa Altschul Disposable wireless telephone and method for call-out only
US5875393A (en) * 1997-02-28 1999-02-23 Randice-Lisa Altschul Disposable wireless telephone and method
US5871470A (en) * 1997-04-18 1999-02-16 Becton Dickinson And Company Combined spinal epidural needle set
US5957890A (en) * 1997-06-09 1999-09-28 Minimed Inc. Constant flow medication infusion pump
US6071292A (en) * 1997-06-28 2000-06-06 Transvascular, Inc. Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures
US5965848A (en) * 1997-07-22 1999-10-12 Randice-Lisa Altschul Disposable portable electronic devices and method of making
US6485462B1 (en) * 1997-08-27 2002-11-26 Science Incorporated Fluid delivery device with heat activated energy source
US6527744B1 (en) 1997-08-27 2003-03-04 Science Incorporated Fluid delivery device with light activated energy source
US5858005A (en) 1997-08-27 1999-01-12 Science Incorporated Subcutaneous infusion set with dynamic needle
US5961492A (en) 1997-08-27 1999-10-05 Science Incorporated Fluid delivery device with temperature controlled energy source
US6019747A (en) * 1997-10-21 2000-02-01 I-Flow Corporation Spring-actuated infusion syringe
EP1131118A1 (en) * 1997-12-19 2001-09-12 Phiscience GmbH, Entwicklung von Sensoren Portable device and method for the mobile supply of medicaments with wireless transmission of data for control or programming purposes
DE19920896A1 (en) 1999-05-06 2000-11-09 Phiscience Gmbh Entwicklung Vo Portable unit for the supply of medicaments to a patient comprises a delivery unit connected to the patient by e.g. a catheter, and an operating unit which has wireless communication with the delivery unit
US5897530A (en) * 1997-12-24 1999-04-27 Baxter International Inc. Enclosed ambulatory pump
US6244776B1 (en) * 1998-01-05 2001-06-12 Lien J. Wiley Applicators for health and beauty products
US5957895A (en) 1998-02-20 1999-09-28 Becton Dickinson And Company Low-profile automatic injection device with self-emptying reservoir
US5919167A (en) * 1998-04-08 1999-07-06 Ferring Pharmaceuticals Disposable micropump
US6283944B1 (en) 1998-04-30 2001-09-04 Medtronic, Inc. Infusion systems with patient-controlled dosage features
USD405524S (en) * 1998-05-01 1999-02-09 Elan Medical Technologies Limited Drug delivery device
US5906597A (en) * 1998-06-09 1999-05-25 I-Flow Corporation Patient-controlled drug administration device
US6554798B1 (en) * 1998-08-18 2003-04-29 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
US5993423A (en) 1998-08-18 1999-11-30 Choi; Soo Bong Portable automatic syringe device and injection needle unit thereof
AU6142799A (en) 1998-09-11 2000-03-27 Amira Medical Device for determination of an analyte in a body fluid intergrated with an insulin pump
US6260060B1 (en) * 1998-11-13 2001-07-10 Motorola Inc. Method and apparatus for enhancing a message preview mode in a messaging unit
WO2000029049A1 (en) 1998-11-13 2000-05-25 Elan Pharma International Limited Drug delivery systems and methods
ATE269730T1 (en) 1998-11-20 2004-07-15 Novo Nordisk As INJECTION NEEDLE
US20040158193A1 (en) 1999-02-10 2004-08-12 Baxter International Inc. Medical apparatus using selective graphical interface
US6375638B2 (en) 1999-02-12 2002-04-23 Medtronic Minimed, Inc. Incremental motion pump mechanisms powered by shape memory alloy wire or the like
US6349740B1 (en) 1999-04-08 2002-02-26 Abbott Laboratories Monolithic high performance miniature flow control unit
US6233476B1 (en) * 1999-05-18 2001-05-15 Mediguide Ltd. Medical positioning system
EP1183059A1 (en) 1999-06-08 2002-03-06 Medical Research Group, Inc. Method and apparatus for infusing liquids using a chemical reaction in an implanted infusion device
AU5833800A (en) 1999-07-20 2001-02-05 William David Steadman Opening assembly
US6635014B2 (en) 2000-01-21 2003-10-21 Timothy J. Starkweather Ambulatory medical apparatus and method having telemetry modifiable control software
WO2001056634A1 (en) * 2000-02-03 2001-08-09 Medtronic, Inc. Variable infusion rate catheter
AU2001250924A1 (en) * 2000-03-22 2001-10-03 Docusys, Inc. A drug delivery and monitoring system
US6485461B1 (en) 2000-04-04 2002-11-26 Insulet, Inc. Disposable infusion device
US6589229B1 (en) * 2000-07-31 2003-07-08 Becton, Dickinson And Company Wearable, self-contained drug infusion device
ES2287156T3 (en) 2000-09-08 2007-12-16 Insulet Corporation DEVICES AND SYSTEMS FOR THE INFUSION OF A PATIENT.
US6363609B1 (en) * 2000-10-20 2002-04-02 Short Block Technologies, Inc. Method and apparatus for aligning crankshaft sections
KR100407467B1 (en) * 2001-07-12 2003-11-28 최수봉 Insulin pump operated by remote-controller
US6692457B2 (en) * 2002-03-01 2004-02-17 Insulet Corporation Flow condition sensor assembly for patient infusion device
US6723072B2 (en) * 2002-06-06 2004-04-20 Insulet Corporation Plunger assembly for patient infusion device
US20040068224A1 (en) * 2002-10-02 2004-04-08 Couvillon Lucien Alfred Electroactive polymer actuated medication infusion pumps

Similar Documents

Publication Publication Date Title
US6740059B2 (en) Devices, systems and methods for patient infusion
AU2001288575A1 (en) Devices, systems and methods for patient infusion
EP1332440B1 (en) Data collection assembly for patient infusion system
US6749587B2 (en) Modular infusion device and method
US20040260233A1 (en) Data collection assembly for patient infusion system
AU2001296588A1 (en) Data collection assembly for patient infusion system
EP1341569B1 (en) Transcutaneous delivery means
US7887505B2 (en) Flow condition sensor assembly for patient infusion device
US20060282290A1 (en) Components and Methods For Patient Infusion Device
JP2008531159A (en) Device for changing the drug delivery flow rate
AU2002247194A1 (en) Modular infusion device and method