[go: nahoru, domu]

DE2631951A1 - Measuring the volume of a drop, esp. a glass gob - using a television camera and an electronic circuit processing the video signals - Google Patents

Measuring the volume of a drop, esp. a glass gob - using a television camera and an electronic circuit processing the video signals

Info

Publication number
DE2631951A1
DE2631951A1 DE19762631951 DE2631951A DE2631951A1 DE 2631951 A1 DE2631951 A1 DE 2631951A1 DE 19762631951 DE19762631951 DE 19762631951 DE 2631951 A DE2631951 A DE 2631951A DE 2631951 A1 DE2631951 A1 DE 2631951A1
Authority
DE
Germany
Prior art keywords
volume
drop
measuring
drops
rotationally symmetrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19762631951
Other languages
German (de)
Inventor
Alfred Dr Ing Schief
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to DE19762631951 priority Critical patent/DE2631951A1/en
Publication of DE2631951A1 publication Critical patent/DE2631951A1/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/022Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of tv-camera scanning

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The drop and/or its background is illuminated to provide a high contrast image for the image converter tube of a television camera. The video signals are subjected to a threshold value operation and a time measuring circuit which determines the time taken by each line or trace to cross the drop. The times are each electronically squared and fed to a summing network for addn. The electronic circuits required pref. include digital circuits or microprocessors; for drops radiating heat, e.g. molten glass drops. the background is pref. dark and a colour filter used to obtain a high contrast image. Measuring errors due to deviations from the rotational symmetry of the drop are pref. reduced by taking the picture in two directions aligned at 90 degrees to each other. The exact measurement of a gob is very important in the glass industry, as it determines the wall thickness of a vessel made from the gob. The invention provides a rapid and simple method.

Description

Verfahren zur Messung des Volumens von rotations- Procedure for measuring the volume of rotational

symmetrischen Körpern Die Erfindung betrifft ein Verfahren zur schnellen und einfachen Messung des Volumens von rotationssymmetrischen Körpern, z.B. von Tropfen flüssigen Glases, durch Auswertung des Bildes des Körpers mit fernseh- und digitaltechnischen Methoden. symmetrical bodies The invention relates to a method for rapid and simple measurement of the volume of rotationally symmetrical bodies, e.g. of Drops of liquid glass, by evaluating the image of the body with television and digital technical methods.

Die genaue Messung und Einstellung des Volumens eines Tropfens ist von besonderer Bedeutung in der Glasindustrie. Die Größe des Tropfens bestimmt die Wandstärke, damit die Stabilität und das Volumen, von Gefäßen, die aus dem Tropfen flüssigen Glases hergestellt werden. Ein schnelles Meßverfahren für das Tropfenvolumen ermöglicht die genaue Einstellung des Volumens für jeden einzelnen Tropfen.The exact measurement and adjustment of the volume of a drop is of particular importance in the glass industry. The size of the drop determines that Wall thickness, so that the stability and volume, of vessels that are made of the drop liquid glass. A quick method of measuring drop volume allows the exact setting of the volume for each individual drop.

Bei den heute üblichen Verfahren,z.B. mittels Wägung, ist die schnelle Messung des Volumens eines einzelnen Tropfens nicht möglich. Die Dosiereinrichtung wird fest eingestellt und an die Eigenschaften des flüssigen Materials, z.B. die temperatur- und zusammensetzungsabhängige Viskosität, angepaßt.With the methods common today, e.g. by means of weighing is the quick one Cannot measure the volume of a single drop. The dosing device is fixed and adapted to the properties of the liquid material, e.g. the temperature and composition dependent viscosity, adapted.

Heute zur Verfügung stehende Verfahren der Fernsehtechnik und der schnellen Digitalelektronik ermöglichen die rasche Auswertung von Bildern (tglo DT-OS 2 500 182). Eine besonders günstige Lösung für die vorliegende Aufgabe ergibt sich, wenn die Düse, aus der der Tropfen austritt, kreisrund und senkrecht nach unten gerichtet ist. Das Prinzip der Erfindung wird nachfolgend am Beispiel der Volumenmessung eines Glastropfens beschrieben.Methods of television technology and of the fast digital electronics enable the quick evaluation of images (tglo DT-OS 2 500 182). A particularly favorable solution for the task at hand results if the nozzle from which the drop emerges is circular and perpendicular directed downwards. The principle of the invention is illustrated below using the example of Volume measurement of a glass drop described.

In Figo 1 ist eine senkrecht stehende Düse 1 dargestellt, aus der ein Tropfen 2 aus flüssigem Glas ausgedrückt wird0 Wegen des kreisförmigen Querschnitts der Düse bildet sich unter dem Einfluß der Schwerkraft und der Oberflächenspannung ein Tropfen, der rotationssymmetrisch zu der senkrechten Achse 3 ist.In Figo 1, a vertical nozzle 1 is shown, from the a drop 2 of liquid glass is expressed 0 ways of the circular Cross section of the nozzle is formed under the influence of gravity and surface tension a drop that is rotationally symmetrical to the vertical axis 3.

Durch einen horizontal beweglichen Schieber 4 kann der Tropfen von der Düse 1 getrennt werden.By means of a horizontally movable slide 4, the drop of the nozzle 1 can be disconnected.

Wegen der hohen Temperatur des flüssigen Glases strahlt der Tropfen, insbesondere am langwelligen Ende des sichtbaren und im infraroten Spektralbereich. Der Hintergrund 5 wird dunkel gehalten. Durch das Objektiv einer handelsüblichen Fernsehkamera, ggfs. unter Verwendung eines Farbfilters, wird der durch das Rechteck 6 berandete Bereich auf eine Bildwandlerröhre, z.B. ein Vidikon, abgebildet. Bei der Abtastung des Bildes nach einem Fernsehraster schneiden die einzelnen Zeilen das Bild des Tropfens. Die eingezeichnete Zeile 7 geht am Punkt 8 vom dunklen Hintergrund auf den hell strahlenden Tropfen über und tritt am Punkt 9 wieder in den Hintergrund ein. Der grundsätzliche Verlauf des Videosignales der Zeile 7 ist in Figur 2 dargestellt. An den den Punkten 8 und 9 entsprechenden Zeitpunkten t1 und t2 tritt ein Sprung auf. Durch eine Schwelle 10 können die Zeitpunkte t1 und t2 erfaßt werden; die Differenz ly = t2 - t1 kann in bekannter Weise durch einen elektronischen Zähler gemessen werden, der zum Zeitpunkt t1 gestartet, zum Zeitpunkt t1 gestoppt wird und der in der dazwischenliegender Zeit die Zahl der Perioden einer genügend hochfrequenten periodischen Spannung zählt. Die Differenz T ist proportional dem Durchmesser des Kreises, den die Zeile 7 auf dem rotationssymmetrischen Tropfen bestimmt.Because of the high temperature of the liquid glass, the drop shines, especially at the long-wave end of the visible and in the infrared spectral range. The background 5 is kept dark. Through the lens of a commercially available TV camera, if necessary using a color filter, is indicated by the rectangle 6 bordered area shown on an image converter tube, e.g. a vidicon. at the scanning of the image according to a television grid cut the individual lines the image of the drop. Line 7 drawn goes from the dark background at point 8 to the brightly radiating drop and recede into the background at point 9 a. The basic course of the video signal of line 7 is shown in FIG. A jump occurs at times t1 and t2 corresponding to points 8 and 9 on. The times t1 and t2 can be detected by a threshold 10; the difference ly = t2 - t1 can be measured in a known manner by an electronic counter which is started at time t1, stopped at time t1 and the in the intervening time is the number of periods of a sufficiently high frequency periodic voltage counts. The difference T is proportional to the diameter of the Circle determined by line 7 on the rotationally symmetrical drop.

Aus den bei allen Zeilen des Fernsehbildes durch die obige Zählschaltung gemessenen Durchmessern ergibt sich das Volumen V des Tropfens nach der Beziehung Dabei ist p die laufende Nummer der Fernsehzeile,l/g die dazu gehörende Zeitdifferenz. In der durch Eichung festzustellenden Konstanten K sind u.a. der Abbildungsmaßstab und die Konstante T enthalten.From the diameters measured by the above counting circuit for all lines of the television picture, the volume V of the drop results from the relationship Here p is the serial number of the television line, l / g the associated time difference. The constant K to be determined by calibration includes the image scale and the constant T, among other things.

Für die elektronische Realisierung ergibt sich das in Fig. 3 dargestellte Blockschaltbild. Das Ausgangssignal der Fernsehkamera 11 wird einem Schwelldiskriminator 12 zugeführt, der den Zähler 13 in der beschriebenen Weise ansteuert. Die vom Oszillator 14 gelieferte periodische Spannung wird dem Zähleingang des Zählers 13 zugeführt. Die Zählergebnisse der einzelnen Zeilen werden im Quadrierer 15 quadriert; im Zähler 16 werden die Quadrate während eines Fernsehbild-Durchgangs addiert. Die Endsumme ist proportional dem Volumen des Tropfens.That shown in FIG. 3 results for the electronic implementation Block diagram. The output signal of the television camera 11 becomes a threshold discriminator 12 supplied, which controls the counter 13 in the manner described. The one from the oscillator The periodic voltage supplied is fed to the counting input of the counter 13. The counting results of the individual lines are squared in the squarer 15; in the counter 16 the squares are added during a television picture pass. The grand total is proportional to the volume of the drop.

Ein Teil der Baugruppen 12 bis 16 kann auch durch einen Mikroprozessor realisiert werden. Bei der üblichen Fernsehnorm ist alle 20 m sec eine Messung des Volumens möglich; die erforderliche Zeit zur Bildung des Volumens V nach der angegebenen Formel beträgt bei heutigen schnellen Digital schaltungen wenige Millisekunden.A part of the assemblies 12 to 16 can also be carried out by a microprocessor will be realized. With the usual television standard there is a measurement of the every 20 m sec Volume possible; the time required to form the volume V after the specified With today's fast digital circuits, the formula is a few milliseconds.

Wenn der gemessene Wert des Volumens eine vorgegebene Größe erreicht hat, kann mit dem Schieber 4 der Tropfen abgetrennt und weiterverarbeitet werden.When the measured value of the volume reaches a predetermined size has, the drop can be separated with the slide 4 and processed further.

Bei der Messung des Volumens von Tropfen anderer Substanzen kann durch geeignete Farbe des Hintergrundes und durch Beleuchtungsmaßnahmen erreicht werden, daß die Begrenzungen des Tropfens durch eine Schwellwertoperation nach Fig. 2 erfaßt werden können.When measuring the volume of drops of other substances can by suitable color of the background and lighting measures can be achieved, that the boundaries of the drop are detected by a threshold operation according to FIG can be.

Die niedrigen Kosten für Digitalschaltungen erlauben heute eine preisgünstige Realisierung eines Gerätes nach Fig. 3 Bei nicht rotationssymmetrischen Körpern kann eine gute Näherung der Volumenmessung erzielt werden, wenn der Körper aus zwei zueinander senkrechten Richtungen und zwei Fernsehkameras beobachtet wird.The low costs for digital circuits now allow an inexpensive one Realization of a device according to FIG. 3 in the case of non-rotationally symmetrical bodies a good approximation of the volume measurement can be obtained when the body is made up of two mutually perpendicular directions and two television cameras is observed.

L e e r s e i t eL e r s e i t e

Claims (3)

Patentansprüche Verfahren zur Messung des Volumens von rotationssymmetri-- - schen Körpern, z.B. von Tropfen, dadurch gekennzeichnet, daß durch Beleuchtungsmaßnahmen und/oder Gestaltung des optischen hintergrundes des Körpers ein konstrastreiches Bild auf der Bildwandlerröhre einer Fernsehkamera erzeugt wird, daß aus dem Videosignal durch eine Schweliwertoperation und durch eine Zeitmeßschaltung die Zeitdauer bestimmt wird, während der jede Zeile des Fernsehbildes das Bild des Körpers überquert, daß diese Zeitdauern für jede Zeile einzeln elektronisch quadriert werden und daß mit einem Summierer die Summe der Quadrate aller Zeilen gebildet wird. Claims method for measuring the volume of rotationally symmetrical- - bodies, e.g. of drops, characterized by the fact that lighting measures and / or design of the optical background of the body is rich in contrast Image on the image converter tube of a television camera is generated from the video signal determined by a threshold operation and by a time measuring circuit the duration during which each line of the television picture crosses the picture of the body that these time periods are individually squared electronically for each line and that with the sum of the squares of all rows is formed using a summer. 2. Verfahren zur Messung des Volumens von rotationssymmetrischen Körpern, z.B. von Tropfen, nach Anspruch 1, dadurch gekennzeichnet, daß die erforderlichen elektronischen Schaltungen zur Zeitmessung, Quadrierung und Addition ganz oder teilweise durch Digitaischaltungen oder Mikroprozessoren realisiert werden.2. Procedure for measuring the volume of rotationally symmetrical bodies, e.g. of drops, according to claim 1, characterized in that the necessary electronic circuits for time measurement, squaring and addition in whole or in part can be realized by digital circuits or microprocessors. 3. Verfahren zur Messung des Volumens von rotationssymmetrischen KQlern, z.B. von Tropfen, nach den Ansprüchen hen 1 und 2, dadurch gtakennzeichnet daß bei thermisch strahlenden Körpern, z.B. bei flüssigen Glastropfen, der Hintergrund dunkel gehalten wird und durch angepaßte Farbfilter ein konstrastreiches Bild erzeugt wird.3. Procedure for measuring the volume of rotationally symmetrical KQlers, e.g. of drops, according to claims 1 and 2, characterized in that at thermally radiating bodies, e.g. liquid glass drops, the background is dark is held and a high-contrast image is generated by adapted color filters. 4o Verfahren zur Messung des Volumens von rotationssymmetrischen Körpern, z.B. von Tropfen, nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß Meßfehler, die durch Abweichungen von der Rotationssymmetrie bedingt sind, durch Erfassung des Bildes des Körpers aus zwei zueinander senkrechten Richtungen reduziert werden. 4o method for measuring the volume of rotationally symmetrical Bodies, e.g. of drops, according to Claims 1 to 3, characterized in that that measurement errors caused by deviations from the rotational symmetry through Capture of the image of the body from two mutually perpendicular directions is reduced will.
DE19762631951 1976-07-15 1976-07-15 Measuring the volume of a drop, esp. a glass gob - using a television camera and an electronic circuit processing the video signals Ceased DE2631951A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19762631951 DE2631951A1 (en) 1976-07-15 1976-07-15 Measuring the volume of a drop, esp. a glass gob - using a television camera and an electronic circuit processing the video signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19762631951 DE2631951A1 (en) 1976-07-15 1976-07-15 Measuring the volume of a drop, esp. a glass gob - using a television camera and an electronic circuit processing the video signals

Publications (1)

Publication Number Publication Date
DE2631951A1 true DE2631951A1 (en) 1978-01-19

Family

ID=5983134

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19762631951 Ceased DE2631951A1 (en) 1976-07-15 1976-07-15 Measuring the volume of a drop, esp. a glass gob - using a television camera and an electronic circuit processing the video signals

Country Status (1)

Country Link
DE (1) DE2631951A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2935941A1 (en) * 1978-11-08 1980-05-14 Owens Illinois Inc MEASURING THE VOLUME AND SHAPE OF A LOT OF GLASS
WO1990005033A1 (en) * 1988-10-17 1990-05-17 Micro Robotics Systems Inc. Method for controlling accurate dispensing of adhesive droplets
WO1992020994A1 (en) * 1991-05-22 1992-11-26 Bh-F (Engineering) Limited Gob weight and dimension sensor
EP0722078A2 (en) * 1995-01-12 1996-07-17 Erin Technologies, Inc. Gob measuring apparatus
DE10312550B3 (en) * 2003-03-21 2004-07-29 Heye International Gmbh Device for determining volume or weight of glass gob used in manufacture of glass containers comprises optical units for measuring expansion of gob, and unit for determining each cross-sectional surface
US20120013735A1 (en) * 2010-07-15 2012-01-19 Kai Tao IV monitoring by video and image processing
EP2447224A1 (en) * 2010-10-27 2012-05-02 Saint-Gobain Oberland AG Glass machine for producing container glass
US9372486B2 (en) 2011-12-21 2016-06-21 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US9435455B2 (en) 2011-12-21 2016-09-06 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US9724467B2 (en) 2011-12-21 2017-08-08 Deka Products Limited Partnership Flow meter
US9746093B2 (en) 2011-12-21 2017-08-29 Deka Products Limited Partnership Flow meter and related system and apparatus
US9746094B2 (en) 2011-12-21 2017-08-29 Deka Products Limited Partnership Flow meter having a background pattern with first and second portions
US9759343B2 (en) 2012-12-21 2017-09-12 Deka Products Limited Partnership Flow meter using a dynamic background image
USD799025S1 (en) 2013-11-06 2017-10-03 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD802118S1 (en) 2013-11-06 2017-11-07 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD813376S1 (en) 2013-11-06 2018-03-20 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD815730S1 (en) 2013-11-06 2018-04-17 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD816829S1 (en) 2013-11-06 2018-05-01 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
US10088346B2 (en) 2011-12-21 2018-10-02 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US10228683B2 (en) 2011-12-21 2019-03-12 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
USD854145S1 (en) 2016-05-25 2019-07-16 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
US10488848B2 (en) 2011-12-21 2019-11-26 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
USD905848S1 (en) 2016-01-28 2020-12-22 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD964563S1 (en) 2019-07-26 2022-09-20 Deka Products Limited Partnership Medical flow clamp
US11744935B2 (en) 2016-01-28 2023-09-05 Deka Products Limited Partnership Apparatus for monitoring, regulating, or controlling fluid flow
US11839741B2 (en) 2019-07-26 2023-12-12 Deka Products Limited Partneship Apparatus for monitoring, regulating, or controlling fluid flow

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2935941A1 (en) * 1978-11-08 1980-05-14 Owens Illinois Inc MEASURING THE VOLUME AND SHAPE OF A LOT OF GLASS
WO1990005033A1 (en) * 1988-10-17 1990-05-17 Micro Robotics Systems Inc. Method for controlling accurate dispensing of adhesive droplets
WO1992020994A1 (en) * 1991-05-22 1992-11-26 Bh-F (Engineering) Limited Gob weight and dimension sensor
EP0722078A2 (en) * 1995-01-12 1996-07-17 Erin Technologies, Inc. Gob measuring apparatus
EP0722078A3 (en) * 1995-01-12 1998-07-15 Erin Technologies, Inc. Gob measuring apparatus
DE10312550B3 (en) * 2003-03-21 2004-07-29 Heye International Gmbh Device for determining volume or weight of glass gob used in manufacture of glass containers comprises optical units for measuring expansion of gob, and unit for determining each cross-sectional surface
US20120013735A1 (en) * 2010-07-15 2012-01-19 Kai Tao IV monitoring by video and image processing
US8531517B2 (en) * 2010-07-15 2013-09-10 Kai Tao IV monitoring by video and image processing
EP2447224A1 (en) * 2010-10-27 2012-05-02 Saint-Gobain Oberland AG Glass machine for producing container glass
US10088346B2 (en) 2011-12-21 2018-10-02 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US10436342B2 (en) 2011-12-21 2019-10-08 Deka Products Limited Partnership Flow meter and related method
US9724467B2 (en) 2011-12-21 2017-08-08 Deka Products Limited Partnership Flow meter
US9724466B2 (en) 2011-12-21 2017-08-08 Deka Products Limited Partnership Flow meter
US9724465B2 (en) 2011-12-21 2017-08-08 Deka Products Limited Partnership Flow meter
US9746093B2 (en) 2011-12-21 2017-08-29 Deka Products Limited Partnership Flow meter and related system and apparatus
US9746094B2 (en) 2011-12-21 2017-08-29 Deka Products Limited Partnership Flow meter having a background pattern with first and second portions
US12100507B2 (en) 2011-12-21 2024-09-24 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US9772044B2 (en) 2011-12-21 2017-09-26 Deka Products Limited Partnership Flow metering using a difference image for liquid parameter estimation
US11793928B2 (en) 2011-12-21 2023-10-24 Deka Products Limited Partnership Flow meter and related method
US11738143B2 (en) 2011-12-21 2023-08-29 Deka Products Limited Partnership Flow meier having a valve
US9856990B2 (en) 2011-12-21 2018-01-02 Deka Products Limited Partnership Flow metering using a difference image for liquid parameter estimation
US11574407B2 (en) 2011-12-21 2023-02-07 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US11449037B2 (en) 2011-12-21 2022-09-20 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US11339887B2 (en) 2011-12-21 2022-05-24 Deka Products Limited Partnership Flow meter and related method
US9976665B2 (en) 2011-12-21 2018-05-22 Deka Products Limited Partnership Flow meter
US9372486B2 (en) 2011-12-21 2016-06-21 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US10113660B2 (en) 2011-12-21 2018-10-30 Deka Products Limited Partnership Flow meter
US10228683B2 (en) 2011-12-21 2019-03-12 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US10894638B2 (en) 2011-12-21 2021-01-19 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US10876868B2 (en) 2011-12-21 2020-12-29 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US9435455B2 (en) 2011-12-21 2016-09-06 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US10488848B2 (en) 2011-12-21 2019-11-26 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US10718445B2 (en) 2011-12-21 2020-07-21 Deka Products Limited Partnership Flow meter having a valve
US10739759B2 (en) 2011-12-21 2020-08-11 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
US10844970B2 (en) 2011-12-21 2020-11-24 Deka Products Limited Partnership Flow meter
US9759343B2 (en) 2012-12-21 2017-09-12 Deka Products Limited Partnership Flow meter using a dynamic background image
USD813376S1 (en) 2013-11-06 2018-03-20 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD816829S1 (en) 2013-11-06 2018-05-01 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD799025S1 (en) 2013-11-06 2017-10-03 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD815730S1 (en) 2013-11-06 2018-04-17 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD802118S1 (en) 2013-11-06 2017-11-07 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD905848S1 (en) 2016-01-28 2020-12-22 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD943736S1 (en) 2016-01-28 2022-02-15 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
US11744935B2 (en) 2016-01-28 2023-09-05 Deka Products Limited Partnership Apparatus for monitoring, regulating, or controlling fluid flow
USD972718S1 (en) 2016-05-25 2022-12-13 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD854145S1 (en) 2016-05-25 2019-07-16 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD972125S1 (en) 2016-05-25 2022-12-06 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD860437S1 (en) 2016-05-25 2019-09-17 Deka Products Limited Partnership Apparatus to control fluid flow through a tube
USD964563S1 (en) 2019-07-26 2022-09-20 Deka Products Limited Partnership Medical flow clamp
US11839741B2 (en) 2019-07-26 2023-12-12 Deka Products Limited Partneship Apparatus for monitoring, regulating, or controlling fluid flow

Similar Documents

Publication Publication Date Title
DE2631951A1 (en) Measuring the volume of a drop, esp. a glass gob - using a television camera and an electronic circuit processing the video signals
US4829374A (en) Surface inspection apparatus
DE69410913T2 (en) Synchronization circuit with a fast digital slip frequency counter
GB2057124A (en) Crack development measuring equipment
DE2817333A1 (en) PHOTOMETRIC DEVICE
DE69629139T2 (en) Color measuring device for a display screen
DE2916361A1 (en) Video testing of transparent container rims for defects - compares chord length signals derived from video image
DE2059106C3 (en) Method and auxiliary device for the automatic measurement of line widths or edge distances of small objects
DE112004000873T5 (en) Automatic discrimination system
WO1991011705A1 (en) Process for measuring fibre parameters by image data processing
DE2945445A1 (en) METHOD AND DEVICE FOR DETERMINING THE DEW POINT
DE3315591C2 (en) Surface testing device
DE1772105B1 (en) Device for determining the photometric transmission of cut diamonds
DE4116313A1 (en) Sediment elasticity measurement - has centrifuge speed varied by computer on time scale for image on screen to be converted into signals for computer evaluation
DE10161914C1 (en) Non-destructive stress measurement in glass, compensates laser beam attenuation by use of neutral wedge filter and increases imaging unit sensitivity
DE2065764A1 (en) DEVICE FOR DETECTING PARAMETERS OF OBJECTS PRESENT IN AN IMAGE FIELD
Brand et al. Measurement of three-dimensional fiber crimp
GB1405783A (en) Method of and apparatus for determining the concentration of a substance in a solution
DE1938083A1 (en) Process for automatic error monitoring of flat goods and device for carrying out the process
DE2211235C3 (en) Measuring microscope with evaluation logic and a display device for photoelectric measurement of linear quantities
US2824487A (en) Apparatus for grading anisotropic fibers
DE19947819A1 (en) Optical surface reference measurement unit has two sensors compares differences with original calibration detects measurement errors and optics degradation
JPS5952979B2 (en) How to measure the electrophoretic mobility of particles
DE920447C (en) Procedure for optical yarn evenness testing
JPH0528913A (en) Shadow mask inspection device for color cathode-ray tube

Legal Events

Date Code Title Description
OD Request for examination
8131 Rejection