[go: nahoru, domu]

DE3334395A1 - Optical measuring device for bending and deflection - Google Patents

Optical measuring device for bending and deflection

Info

Publication number
DE3334395A1
DE3334395A1 DE19833334395 DE3334395A DE3334395A1 DE 3334395 A1 DE3334395 A1 DE 3334395A1 DE 19833334395 DE19833334395 DE 19833334395 DE 3334395 A DE3334395 A DE 3334395A DE 3334395 A1 DE3334395 A1 DE 3334395A1
Authority
DE
Germany
Prior art keywords
light
light guide
guide tube
tube
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19833334395
Other languages
German (de)
Inventor
Karl Dipl.-Phys. Dr. 7800 Freiburg Spenner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to DE19833334395 priority Critical patent/DE3334395A1/en
Publication of DE3334395A1 publication Critical patent/DE3334395A1/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/32Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using rotatable arms or other pivotable transmission elements
    • G01F23/36Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using rotatable arms or other pivotable transmission elements using electrically actuated indicating means
    • G01F23/366Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using rotatable arms or other pivotable transmission elements using electrically actuated indicating means using optoelectrically actuated indicating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35341Sensor working in transmission
    • G01D5/35345Sensor working in transmission using Amplitude variations to detect the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/243Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using means for applying force perpendicular to the fibre axis

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

This device consists of a flexible piece of tube (1) at one end of which the light of a light source (2) is coupled in, which light, after passing through the tube, is measured by a suitably arranged detector (3). The said piece of tube is constructed as an optical waveguide, the optical attenuation of which depends on the bending or deflection of the optical waveguide tube (1). The optical waveguide tube either has a reflecting inside wall or is filled with a liquid or deformable transparent material, the index of refraction of which is greater than that of the inside wall of the tube so that total reflection can occur. <IMAGE>

Description

Beschreibung description

Optische Meßvorrichtung für Biegung und Aus lenkung Die Erfindung betrifft eine Meßvorrichtung für Biegung und Auslenkung, die aus einem biegbaren, elastischen Rohr (1) besteht, das so aufgebaut ist, daß es als optischer Lichtleiter dienen kann. Der prinzipielle Aufbau der Meßvorrichtung ist in Fig. 1 skizziert. Das von einer Lichtquelle (2) in das Rohrstück eingekoppelte Licht läuft durch Vielfachreflexion längs des Rohres und wird auf der gegenüberliegenden Seite von einem Detektor gemessen. Ein möglicher Strahlenverlauf (4) ist für einen Ausbreitungswinkel skizziert. Damit das Rohr in der beschriebenen Weise als Lichtleiter dienen kann, muß entweder die Innenwand des Rohres einen hohen Reflexionskoeffizienten haben oder das Rohr muß mit einem transparenten flüssigen oder verformbaren Material gefüllt sein, dessen Brechzahl größer ist als die Brechzahl der inneren Rohroberfläche. In diesem Fall tritt Totaireflexion für kleine Ausbreitungswinkel bis zu einem gewissen Grenzwinkel auf, der vom Brechzahlunterschied zwischen Rohrfüllung und Rohrinnenwand abhängt. Rohrfüllung und innere Rohrwandung müssen soweit optisch transparent sein, daß die verbleibende Lichtintensität nach dem Passieren des Rohres mit einem Detektor gemessen werden kann.Optical measuring device for bending and steering from the invention relates to a measuring device for bending and deflection, which consists of a bendable, elastic tube (1), which is constructed so that it is used as an optical light guide can serve. The basic structure of the measuring device is sketched in FIG. The light coupled into the pipe section from a light source (2) runs through multiple reflections along the pipe and is measured on the opposite side by a detector. A possible ray path (4) is sketched for an angle of propagation. In order to the tube can serve as a light guide in the manner described, either must Inner wall of the pipe have a high reflection coefficient or the pipe must be filled with a transparent liquid or deformable material, its Refractive index is greater than the refractive index of the inner pipe surface. In this case total reflection occurs for small propagation angles up to a certain critical angle which depends on the difference in refractive index between the pipe filling and the inner wall of the pipe. Pipe filling and inner pipe wall must be optically transparent to the extent that the remaining light intensity measured with a detector after passing the tube can be.

Lichtquelle (2) und Detektor (3) sind mit dem Lichtleitrohr (1) fest verbunden. Die von der Lichtquelle eingekoppelte Lichtleistung ist unabhängig von der Biegung und Aus lenkung. Die in den Detektor ausgekoppelte Lichtleistung ist eine Funktion der Rohrbiegung. Ändert sich nämlich der Krümmungsradius des Lichtleitrohres (1), so wird der Lichtweg (4) verändert, und damit auch die optische Dämpfung. Mit zunehmender Krümmung nimmt die zum Detektor gelangende Lichtintensität ab. Zur Messung einer bestimmten Auslenkung (13) wird eine Seite des Lichtleitrohres (1) zweckmäßig durch eine Halterung (10) fixiert, während die andere Seite frei beweglich der Aus lenkung folgen kann. Bei bekannter Eingangslichtleistung kann die Auslenkung mit Hilfe einer Eichung aus der optischen Dämpfung bestimmt werden. Eine für die praktische Anwendung zweckmäßige Modifikation der erfindungsgemäßen Meßvorrichtung leitet das Licht von der Quelle (2) zum Lichtleitrohr (1) und vom Lichtleitrohr zum Detektor (3) mit üblichen Lichtwellenleitern, wie es in Fig. 2 skizziert ist. Quelle (2) und Detektor (3) können so weit entfernt vom Meßort aufgebaut werden. Mit dieser Meßanordnung wurde der Zusammenhang zwischen Lichtintensität und Drehwinkel zwischen den beiden Rohrenden auf einem Drehtisch gemessen. Das Ergebnis ist in Fig. 6 dargestellt. Eine Winkelauflösung von besser als 0,50 konnte erreicht werden.The light source (2) and detector (3) are fixed to the light guide tube (1) tied together. The light output coupled in by the light source is independent of the bending and deflection. The light power coupled out into the detector is a function of pipe bending. This is because the radius of curvature of the light guide tube changes (1), the light path (4) is changed, and with it the optical attenuation. With increasing curvature takes the to the detector incoming light intensity away. One side of the light guide tube is used to measure a certain deflection (13) (1) Appropriately fixed by a bracket (10), while the other side is free movably the deflection can follow. If the input light power is known, the deflection can be determined from the optical attenuation with the aid of a calibration. A modification of the inventive modification which is expedient for practical use Measuring device guides the light from the source (2) to the light guide tube (1) and from Light guide tube to the detector (3) with conventional light waveguides, as shown in FIG. 2 is sketched. Source (2) and detector (3) can be set up so far away from the measurement location will. With this measuring arrangement the relationship between light intensity and angle of rotation between the two pipe ends measured on a turntable. The result is shown in FIG. 6. An angular resolution of better than 0.50 was achieved will.

Eine weitere Modifikation der erfindungsgemäßen Meßvorrichtung ist in Fig. 3 dargestellt. In dieser Anordnung wird das Licht der Lichtquelle (2) in einen Lichtwellenleiter eingekoppelt und über einen faseroptischen Koppler (7) zu dem einen Ende des Lichtleitrohres (1) geführt. Am anderen Ende des Lichtleitrohres ist ein Reflektor (8) angebracht, der das Licht spiegelt, so daß das eingekoppelte Licht das Lichtleitrohr zweimal durchläuft. Ein Teil des reflektierten Lichts wird von dem Lichtwellenleiter(5) wieder aufgefangen und über den Koppler (7) und den Lichtwellenleiter (9) zum Detektor (3) geführt. Eine solche Spiegelanordnung ist vorteilhaft, weil damit das nicht fixierte Rohrende frei von allen Zuführungsleitungen ist.Another modification of the measuring device according to the invention is shown in FIG. 3. In this arrangement the light from the light source (2) in an optical waveguide is coupled in and via a fiber optic coupler (7) guided at one end of the light guide tube (1). At the other end of the light guide tube a reflector (8) is attached, which reflects the light so that the coupled Light passes through the light guide tube twice. Part of the reflected light will caught again by the optical waveguide (5) and via the coupler (7) and the Optical fiber (9) led to the detector (3). One such mirror arrangement is advantageous because the non-fixed pipe end is free of all supply lines is.

In einer weiteren Modifikation kann die Lichtzuführung von der Lichtquelle durch einen Lichtwellenleiter (5) auch ohne faseroptischen Koppler erfolgen, wie es in Fig. 4 skizziert ist. Die Rückleitung des reflektierten Lichts zum Detektor (3) erfolgt dann über einen weiteren Lichtwellenleiter (11). Die beiden Lichtwellenleiter zur Hin-und Rückleitung führen zweckmäßigerweise auf der festgehaltenen Seite zu dem Lichtleitrohr (1), während der Reflektor am beweglichen Ende des Lichtleitrohres (1) montiert ist.In a further modification, the light supply can be from the light source by means of an optical waveguide (5) even without a fiber-optic coupler, such as it is sketched in FIG. 4. The return of the reflected light to the detector (3) then takes place via a further optical waveguide (11). The two optical fibers to the outward and return lines expediently lead on the held page to the light guide tube (1), while the reflector is at the movable end of the light guide tube (1) is mounted.

Die beschriebene Meßvorrichtung mißt primär Biegung, Krümmung, Verschiebung oder Auslenkung des Lichtleitrohres.The measuring device described primarily measures bending, curvature, displacement or deflection of the light guide tube.

Durch geeignete Zusatzvorrichtungen kann mit dem beweglichen Lichtleitrohr eine viel größere Anzahl von Parameter gemessen werden, wie z.B. Druck, Winkel oder Füllhöhe.Suitable additional devices can be used with the movable light guide tube a much larger number of parameters can be measured, such as pressure, angle or Filling level.

Als Beispiel für eine mögliche Ausgestaltung der erfindungsgemäßen Meßvorrichtung sei eine optische Füllhöhen-Anzeigevorrichtung mit einem Schwimmer näher erläutert.As an example of a possible embodiment of the invention The measuring device is an optical level indicator with a float explained in more detail.

Mechanische oder elektrische Füllhöhen-Anzeigevorrichtungen mit Schwimmern sind seit langem bekannt. Bei diesen wird üblicherweise die Höhenposition des Schwimmers rein mechanisch oder -mechanisch-elektrisch bestimmt. Bei der erz in dungsgemäßen optischen Meßvorrichtung für Biegung und Auslenkung ergibt sich gegenüber der rein mechanischen Vorrichtung der Vorteil, daß das Meßsignal vom Meßort durch den Lichtwellenleiter über weite Entfernungen übertragen werden kann. Der Vorteil gegenüber der elektrischen Anordnung ist das Fehlen jeglicher elektrischer Leistung im Meßbereich, so daß die Probleme der elektrischen Gefährdung und die Probleme der Sicherheit in explosionsgefährdeter Umgebung ausgeschaltet sind.Mechanical or electrical level indicators with floats have long been known. These are usually the height position of the swimmer purely mechanically or mechanically-electrically determined. When the ore is in accordance with the regulations optical measuring device for bending and deflection results compared to the pure mechanical device has the advantage that the measurement signal from the measurement site through the optical waveguide can be transmitted over long distances. The advantage over the electric Arrangement is the absence of any electrical power in the measurement area, so that the Problems of electrical hazard and the problems of safety in hazardous areas Environment are switched off.

Die optische Füllhöhen-Anzeigevorrichtung besteht aus der erfindungsgemäßen Meßvorrichtung für Biegung und Auslenkung und einem Schwimmer, der an dem beweglichen Ende des Lichtleitrohres geeignet befestigt ist. Die Anordnung ist in Fig. 5 skizziert. Die Durchbiegung des Lichtleitrohres (1) hängt von der Position des auf der Flüssigkeit (13) schwimmenden Schwimmers (12) ab. Bei hohem Flüssigkeitsstand ist die Biegung des Lichtleitrohres (1) gering; die am Detektor gemessene Lichtintensität ist groß. Umgekehrt wird bei niedrigem Flüssigkeitsstand die Biegung groß und die Lichtintensität geht zurück. Mit dieser Meßanordnung erhält man Intensitätsänderungen von etwa 100 zu 1. Die Füllhöhe kann so kontinuierlich aus der Lichtintensität bestimmt werden.The optical filling level display device consists of the inventive Measuring device for bending and deflection and a float attached to the movable End of the light guide tube is attached appropriately. The arrangement is sketched in FIG. 5. The deflection of the light guide tube (1) depends on the position of the on the liquid (13) floating float (12). When the liquid level is high, the bend is of the light guide tube (1) low; the light intensity measured at the detector is high. Conversely, when the liquid level is low, the bend becomes large and the light intensity becomes large go back. With this measuring arrangement, changes in intensity of about 100 are obtained Regarding 1. The filling level can thus be determined continuously from the light intensity.

Claims (6)

Optische Meßvorrichtung für Biegung und Auslenkung Patentansprüche 1. Optische Meßvorrichtung für Biegung und Auslenkung, bestehend aus einem biegsamen Rohrstück (1), zu dessen einen Ende das Licht einer Lichtquelle (2) geleitet wird, das nach dem Durchlaufen des Rohres (1) von einem geeignet angeordneten Detektor (3) gemessen wird, dadurch gekennzeichnet, daß das genannte biegsame Rohr (1) als optischer Lichtleiter so ausgebildet ist, daß Licht entweder an der spiegelnden Innenwand durch Vielfachreflexion im Rohr weitergeleitet wird oder daß das Rohr mit einem optisch transparenten, flüssigen oder verformbaren Material gefüllt ist, dessen Brechzahl größer ist als die Brechzahl der inneren Rohrwandung, so daß Lichtleitung längs des genannten Rohres durch Totalreflexion möglich ist (Fig. 1). Dieses genannte Rohr wird im folgenden als Lichtleitrohr bezeichnet. Optical measuring device for bending and deflection claims 1. Optical measuring device for bending and deflection, consisting of a flexible Pipe section (1), to one end of which the light from a light source (2) is directed, after passing through the pipe (1) by a suitably arranged detector (3) is measured, characterized in that said flexible tube (1) as optical light guide is designed so that light is either at the reflective Inner wall is passed on by multiple reflections in the pipe or that the pipe is filled with an optically transparent, liquid or deformable material, whose refractive index is greater than the refractive index of the inner pipe wall, so that light conduction is possible along said tube by total reflection (Fig. 1). This called Tube is referred to below as a light guide tube. 2. Meßvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das eine Ende des Lichtleitrohres mittels einer Halterung (10) fest eingespannt ist, während das andere Ende des Lichtleitrohres so bewegt werden kann, daß es der zu messenden Biegung (12) oder Auslenkung (13) folgen kann (Fig. 1). 2. Measuring device according to claim 1, characterized in that the one end of the light guide tube is firmly clamped in by means of a holder (10), while the other end of the light guide tube can be moved so that it is too measuring bend (12) or deflection (13) can follow (Fig. 1). 3. Meßvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß an einem oder an beiden Enden des Lichtleitrohres (1) übliche Lichtwellenleiter zur Zuführung (5) des Lichtes von-der Lichtquelle (2) und/oder zur Weiterleitung des Lichts vom genannten Lichtleitrohr (1) zum Dedektor (3) angebracht sind (Fig. 2). 3. Measuring device according to claim 1, characterized in that on one or both ends of the light guide tube (1) conventional optical waveguides for Feeding (5) of the light from the light source (2) and / or for forwarding the Light from said light guide tube (1) to Dedektor (3) are attached (Fig. 2). 4. Meßvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das eine Ende des Lichtleitrohres (1) mit einem op- Wischen Rellektor o so abgeschlossen ist, dalS das am anderen Ende des Rohres eingekoppelte Licht reflektiert wird und das Lichtleitrohr (1) ein zweites Mal durchläuft, um dann von einem geeignet angebrachten Detektor gemessen zu werden (Fig. 3). 4. Measuring device according to claim 1, characterized in that the one end of the light guide tube (1) with an op- Wipe Rellektor o is completed in such a way that the light coupled in at the other end of the tube is reflected and the fiber optic tube (1) passes through a second time to then by to be measured with a suitably mounted detector (Fig. 3). 5. Meßvorrichtung nach Anspruch 1 und 4, dadurch gekennzeichnet, daß das Licht einer Lichtquelle (2) über einen üblicnen Lientwellenleiter (5) und einem faseroptischen Koppler (7) zu dem Lichtleitrohr (1) geleitet wird, und daß ein Teil des reflektierten Lichts von dem gleichen Lichtwellenleiter (5) aufgefangen und über den Faserkoppler (7) unddem Lichtwellenleiter (9) zum Detektor (3) geleitet wird (Fig. 3).5. Measuring device according to claim 1 and 4, characterized in that the light from a light source (2) via a usual Lient waveguide (5) and a fiber optic coupler (7) is guided to the light guide tube (1), and that a part of the reflected light captured by the same optical waveguide (5) and via the fiber coupler (7) and the optical waveguide (9) to the detector (3) becomes (Fig. 3). 6. Meßvorrichtung nach Anspruch 1 und 4, dadurch gekennzeichnet, daß das Licht von der Lichtquelle (2) durch einen üblichen Lichtwellenleiter (5) zu dem dem Reflektor gegenüberliegenden Ende des Lichtleitrohrs (1) geführt und das im Lichtleitrohr reflektierte Licht durch einen zweiten Lichtwellenleiter (11), der am gleichen Ende des Lichtleitrohres (1) wie der erste Lichtwellenleiter montiert ist, zum Detektor geleitet wird (Fig. 4).6. Measuring device according to claim 1 and 4, characterized in that the light from the light source (2) through a conventional optical waveguide (5) the end of the light guide tube (1) opposite the reflector and that light reflected in the light guide tube through a second light waveguide (11), which is mounted on the same end of the light guide tube (1) as the first light waveguide is passed to the detector (Fig. 4).
DE19833334395 1983-09-23 1983-09-23 Optical measuring device for bending and deflection Ceased DE3334395A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19833334395 DE3334395A1 (en) 1983-09-23 1983-09-23 Optical measuring device for bending and deflection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19833334395 DE3334395A1 (en) 1983-09-23 1983-09-23 Optical measuring device for bending and deflection

Publications (1)

Publication Number Publication Date
DE3334395A1 true DE3334395A1 (en) 1985-04-11

Family

ID=6209829

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19833334395 Ceased DE3334395A1 (en) 1983-09-23 1983-09-23 Optical measuring device for bending and deflection

Country Status (1)

Country Link
DE (1) DE3334395A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0209097A1 (en) * 1985-07-15 1987-01-21 HELBA Elektronik-Baugruppen GmbH &amp; Co. KG Acceleration sensor
EP0211984A1 (en) * 1985-08-19 1987-03-04 Inc. Vpl Research Computer data entry and manipulation apparatus
DE3802527A1 (en) * 1987-01-29 1988-08-11 Bridgestone Corp PRESSURE SENSITIVE PROBE
EP0352291A1 (en) * 1987-03-24 1990-01-31 Vpl Research, Inc. Motion sensor
US4988981A (en) * 1987-03-17 1991-01-29 Vpl Research, Inc. Computer data entry and manipulation apparatus and method
WO1993022624A1 (en) * 1992-05-05 1993-11-11 The University Of Queensland Optical displacement sensor
DE4423104A1 (en) * 1994-07-01 1996-01-04 Leon Helma Christina Pressure sensitive sensor system
AU668958B2 (en) * 1992-05-05 1996-05-23 University Of Queensland, The Optical displacement sensor
US5588139A (en) * 1990-06-07 1996-12-24 Vpl Research, Inc. Method and system for generating objects for a multi-person virtual world using data flow networks
WO1999013306A2 (en) * 1997-09-05 1999-03-18 University Of Portsmouth Enterprise Ltd. An optical sensor for measuring forces applied to a body and items of clothing incorporating such sensors
US5986643A (en) * 1987-03-24 1999-11-16 Sun Microsystems, Inc. Tactile feedback mechanism for a data processing system
US6885361B1 (en) 1987-03-24 2005-04-26 Sun Microsystems, Inc. Tactile feedback mechanism for a data processing system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2034344A1 (en) * 1970-07-10 1972-01-13 Ulrich H Device for measuring physical quantities by measuring the intensity of a bundle of light rays
DE2856183A1 (en) * 1978-12-27 1980-07-10 Aeg Telefunken Kabelwerke Mechanical or thermo-optical transducer with dielectric waveguide - is coiled around measurement body and uses waveguide attenuation load variation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2034344A1 (en) * 1970-07-10 1972-01-13 Ulrich H Device for measuring physical quantities by measuring the intensity of a bundle of light rays
DE2856183A1 (en) * 1978-12-27 1980-07-10 Aeg Telefunken Kabelwerke Mechanical or thermo-optical transducer with dielectric waveguide - is coiled around measurement body and uses waveguide attenuation load variation

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0209097A1 (en) * 1985-07-15 1987-01-21 HELBA Elektronik-Baugruppen GmbH &amp; Co. KG Acceleration sensor
EP0211984A1 (en) * 1985-08-19 1987-03-04 Inc. Vpl Research Computer data entry and manipulation apparatus
DE3802527A1 (en) * 1987-01-29 1988-08-11 Bridgestone Corp PRESSURE SENSITIVE PROBE
US7205979B2 (en) 1987-03-17 2007-04-17 Sun Microsystems, Inc. Computer data entry and manipulation apparatus and method
US4988981A (en) * 1987-03-17 1991-01-29 Vpl Research, Inc. Computer data entry and manipulation apparatus and method
US5986643A (en) * 1987-03-24 1999-11-16 Sun Microsystems, Inc. Tactile feedback mechanism for a data processing system
EP0352291A4 (en) * 1987-03-24 1991-12-04 Vpl Research, Inc. Motion sensor
US6222523B1 (en) 1987-03-24 2001-04-24 Sun Microsystems, Inc. Tactile feedback mechanism for a data processing system
US6885361B1 (en) 1987-03-24 2005-04-26 Sun Microsystems, Inc. Tactile feedback mechanism for a data processing system
EP0352291A1 (en) * 1987-03-24 1990-01-31 Vpl Research, Inc. Motion sensor
US5588139A (en) * 1990-06-07 1996-12-24 Vpl Research, Inc. Method and system for generating objects for a multi-person virtual world using data flow networks
WO1993022624A1 (en) * 1992-05-05 1993-11-11 The University Of Queensland Optical displacement sensor
AU668958B2 (en) * 1992-05-05 1996-05-23 University Of Queensland, The Optical displacement sensor
DE4423104A1 (en) * 1994-07-01 1996-01-04 Leon Helma Christina Pressure sensitive sensor system
WO1999013306A2 (en) * 1997-09-05 1999-03-18 University Of Portsmouth Enterprise Ltd. An optical sensor for measuring forces applied to a body and items of clothing incorporating such sensors
WO1999013306A3 (en) * 1997-09-05 1999-05-06 Univ Portsmouth Enterprise Ltd An optical sensor for measuring forces applied to a body and items of clothing incorporating such sensors

Similar Documents

Publication Publication Date Title
DE3003059C2 (en)
DE3784719T2 (en) Collimator lens for glass fibers.
DE2914262A1 (en) OPTICAL ATTENUATOR FOR FIBER OPERATING FIBERS
DE3334395A1 (en) Optical measuring device for bending and deflection
EP0025565A2 (en) Optical device for measuring pressure differences by means of light intensity changes
DE2752688C3 (en) Optical transmitter of a device for measuring the attenuation of optical waves on optical transmission lines
DE68903183T2 (en) FIBER OPTICAL LEVEL SENSOR FOR DISCRETE OR CONTINUOUS DISPLAY OF A LIQUID LEVEL.
DE3034942C2 (en) Measuring device for determining the extinction value of laser range finders
EP0297669A2 (en) Method for measuring a reflected optical radiation
EP1346079A2 (en) Device for the transmission of optical signals by means of planar light guides
DE3415242C1 (en) Fibre-optical sensor
DE2645997C3 (en) Temperature measuring device
EP0304993B1 (en) Coupling arrangement for directing a light beam emitted through the end of a light guide onto the light-sensitive area of a photodiode of a measuring device
DE3726412A1 (en) Fibreoptic refractometer
DE69225226T2 (en) LIGHT TRANSFER METHOD
DE2835491C3 (en) Arrangement for measuring properties of optical fibers
DE2813591B2 (en) Opto-electronic distance measuring device with a transmitting lens optic tube inserted into a receiving lens optic opening
EP0450175B1 (en) Optoelectrical liquid level indication device
DE3816045C2 (en)
CH447382A (en) Photoelectric liquid detector
DE3236436C1 (en) Spirit level
DE3108239A1 (en) Arrangement and method for measuring optical wavelengths
DE3903881C1 (en)
DE3236960C2 (en) Liquid thermometer
DE2748921C2 (en)

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection