[go: nahoru, domu]

EP0386618A1 - Element with wear-resisting layer comprising nickel or cobalt - Google Patents

Element with wear-resisting layer comprising nickel or cobalt Download PDF

Info

Publication number
EP0386618A1
EP0386618A1 EP90103963A EP90103963A EP0386618A1 EP 0386618 A1 EP0386618 A1 EP 0386618A1 EP 90103963 A EP90103963 A EP 90103963A EP 90103963 A EP90103963 A EP 90103963A EP 0386618 A1 EP0386618 A1 EP 0386618A1
Authority
EP
European Patent Office
Prior art keywords
base material
protective layer
coating
component according
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90103963A
Other languages
German (de)
French (fr)
Other versions
EP0386618B1 (en
Inventor
Albin Platz
Klaus Dr. Schweitzer
Peter Dr. Adam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Motoren und Turbinen Union Muenchen GmbH filed Critical MTU Motoren und Turbinen Union Muenchen GmbH
Publication of EP0386618A1 publication Critical patent/EP0386618A1/en
Application granted granted Critical
Publication of EP0386618B1 publication Critical patent/EP0386618B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades

Definitions

  • the invention relates to a component made of a base material based on nickel or cobalt with a protective layer against oxidation, corrosion and thermal fatigue.
  • High temperature resistant super alloys based on nickel or cobalt were developed for use in turbine construction.
  • the blade material is exposed to particularly high loads, which not only withstand the high temperatures (above 950 ° C) in the turbine, but also must have a high creep resistance.
  • the blade material made of superalloys in particular is grown in large crystalline form and partly with a columnar structure using appropriate casting and crystallization techniques.
  • grain boundary deposits of easily oxidizable alloy additives such as vanadium or titanium are disadvantageously formed for the corrosion resistance. This adversely affects the surface properties, such as resistance to oxidation and corrosion, and the thermal fatigue resistance.
  • Diffusion processes have a disadvantage due to the different concentration on both sides of the boundary layer between the layer surface and the coating, which lead to diffusion pores in the region near the boundary layer, so that the protective layer flakes off at locations of high diffusion pore density when thermal voltages are superimposed.
  • the MCrAlX, Y layers tend to suffer from thermal fatigue, since there is a mismatch in the thermal expansion behavior between the base material alloy and the MCrAlYX layer and the MCrAlX, Y layers are very ductile compared to the base material.
  • chromium and / or aluminum-rich diffusion layers on the surface of the base material by powder pack cementing and / or gas diffusion coating.
  • Such layers form oxidation-resistant intermetallic phases with the base material. Due to the higher hardness of these layers with intermetallic phases, the fatigue strength of the components is disadvantageously reduced by up to 30%. Since the thermal expansion behavior is not adapted to the base material, there is a high risk of microcracks for the component, which increases with increasing layer thickness. Therefore, the layer thickness must be limited disadvantageously to less than 100 microns.
  • the components of the base material such as vanadium and titanium, which are sensitive to oxidation and corrosion are avoided and stable oxide formers, such as aluminum, for example up to 20% and chromium, for example up to 40%, are added.
  • stable oxide formers such as aluminum, for example up to 20% and chromium, for example up to 40%.
  • the object of the invention is to provide a component made of a base material based on nickel or cobalt with a protective layer, which has a higher thermal fatigue, oxidation and corrosion resistance at temperatures above 800 ° C than components with previously known coatings and the disadvantages of these Overcomes coatings and specify a method for producing such a component.
  • the invention solves the problems and disadvantages as they exist in the prior art by using the material of the base material for a coating of the same type, so that diffusion processes do not occur and adhesion problems do not occur on the oxide-free surface of the base material.
  • a chipping of protective layer particles is hereby overcome.
  • a uniform, stable and protective oxide layer is advantageously formed on the grain surface when such components are used in the oxidizing hot gas stream from, for example, turbines. Since the grain boundaries of this coating have fewer grain boundary deposits than the base material, the grain boundary corrosion is advantageously reduced.
  • the similarity of the coating material with the base material means that there are no thermal expansion differences between the layer and base material and thus no thermal stresses are induced.
  • the layer thickness is therefore advantageously not limited to less than 100 ⁇ m.
  • the base and coating material is preferably composed of the following elements: 13 to 17% by weight of Co 8 to 11% by weight of Cr 5 to 6 wt.% Al 4.5 to 5% by weight of Ti 2 to 4 wt.% Mo 0.7 to 1.2 wt% V 0.15 to 0.2 wt% C 0.01 to 0.02 wt% B 0.03 to 0.09% by weight of Zr Rest Ni
  • This superalloy is commercially available under the name IN 100, so that both the base material and the coating material are available at low cost.
  • the grain volume of the coating is preferably smaller by at least three powers of ten than the grain volume of the base material.
  • the grain boundaries of the preferred base material IN 100 have titanium and vanadium-containing grain boundary deposits, which form unstable or low-melting oxides.
  • the coating therefore preferably has fewer precipitations at the grain boundaries than the base material, which advantageously improves the resistance to oxidation and corrosion.
  • a particularly preferred embodiment of the protective layer is that the protective layer is a plasma spray layer which, owing to the high rate of solidification, advantageously crystallizes extremely fine-grained and has a low excretion rate.
  • This method has the advantage that it is suitable for mass production.
  • the surface preparation is carried out by plasma etching with an argon plasma.
  • This preparation has the advantage of being free from contamination and is compatible with a low-pressure plasma spraying process, so that both the surface preparation and the coating of the base material can be carried out on a component with an assembly process. This advantageously improves the quality, since it is not necessary to move it to another plant and there are no residence times in a normal atmosphere.
  • the surface preparation is carried out by means of chemical removal, so that a high throughput is advantageously achieved.
  • Abrasive beam processing is preferably used as surface ablation, since this method advantageously allows large-area components such as rotor disks to be prepared for a subsequent coating.
  • the coating by means of plasma spraying with a plasma spraying material in the same chemical composition as the base material can be carried out with high demands on the quality in the low pressure plasma spraying process and with large parts and / or high demands on economy by means of plasma spraying under protective gas.
  • Optimal growth of the coating on the base material is achieved by epitaxial recrystallization at a solution annealing temperature between 1150 ° C and 1250 ° C.
  • the lowest layer of the fine-grained coating recrystallizes in the transition area between the base material and the coating in the same crystal orientation as the large-volume crystallites of the base material at the coating boundary, so that an intensive interlocking between the fine-grain coating and the coarse-grained base material advantageously results, which significantly increases the adhesion compared to conventional non-proprietary coatings .
  • the coated component can then be cooled to 1000 ° C to 800 ° C at 30 ° C / min to 80 ° C / min and subjected to a multi-stage heat treatment.
  • a two-stage aging process has preferably been used to form a suitable ⁇ / ⁇ ′-structure at 1080 ° C. to 1120 ° C. for 2 hours to 6 hours, followed by 900 ° C. to 980 ° C. for Proven for 10 hours to 20 hours with intermediate cooling to 750 to 800 ° C.
  • a heat treatment With such a heat treatment, the properties of the base material which have been changed by the solution annealing are regenerated, and the strength values of the layer are advantageously increased.
  • Mechanical post-treatment of the surface of the protective layer improves the hardness by preferably shot-peening and serves to smooth the surface.
  • the surface can also be smoothed by pressure flow machining or vibratory finishing.
  • a diffusion coating as aftertreatment of the surface can preferably be carried out on the fine-grained coating.
  • This has the advantage that deep diffusions like them along the grain boundary precipitations of the base material, in which fine-grained coating with fewer grain boundary precipitations does not occur.
  • the diffusion zone in the fine-grained coating is thus advantageously more uniform and homogeneous with z.
  • the aluminum doping z. B. increases the oxidation resistance up to temperatures of 1250 ° C.
  • a coarsely crystalline turbine blade made of In 100 as the base material which is composed of the following elements: 13 to 17% by weight of Co 8 to 11% by weight of Cr 5 to 6 wt.% Al 4.5 to 5% by weight of Ti 2 to 4 wt.% Mo 0.7 to 1.2 wt% V 0.15 to 0.2 wt% C 0.01 to 0.02 wt% B 0.03 to 0.09% by weight of Zr Rest Ni the surface of the base material is removed by an average of 0.5 to 10 ⁇ m by means of argon plasma etching at a pressure of 2 kPa to 4 kPa.
  • the base material is coated with plasma spray material with the same chemical composition as the base material at a pressure of 4 kPa and a temperature of the base material of 900 ° C. for 120 seconds.
  • epitaxial recrystallization is carried out in a high vacuum furnace.
  • the component is kept at a solution annealing temperature of 1200 ° C for 4 hours and cooled to 800 ° C at a cooling rate of 60 ° C / min.
  • a two-stage heat treatment is carried out in a high vacuum at 1100 ° C for 4 hours and at 950 ° C for 16 hours with intermediate cooling at 60 ° C / min to 800 ° C.
  • the surface of the component is smoothed and solidified by blasting with zirconium oxide balls of 0.5 mm to 1 mm in diameter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The invention relates to a component which consists of a nickel- or cobalt-based base material having a protective layer against oxidation, corrosion and fatigue at high temperatures, the protective layer and base material consisting of chemically identical material. As a result, the adhesion of the protective layer is increased, the susceptibility to cracking is reduced and the fatigue resistance at high temperatures is improved.

Description

Die Erfindung betrifft ein Bauteil aus einem Grundwerkstoff auf Nickel- oder Kobaltbasis mit einer Schutzschicht gegen Oxydation, Korrosion und Thermoermüdung.The invention relates to a component made of a base material based on nickel or cobalt with a protective layer against oxidation, corrosion and thermal fatigue.

Hochtemperaturfeste Superlegierungen auf Nickel- oder Kobaltbasis wurden für den Einsatz im Turbinenbau entwickelt. Besonders hohen Belastungen ist dabei der Schaufelwerkstoff ausgesetzt, der nicht nur den hohen Temperaturen (über 950 °C) in der Turbine standhalten, son­dern auch eine hohe Kriechfestigkeit besitzen muß. Um eine hohe Kriechfestigkeit zu gewährleisten, wird besonders der Schaufelwerk­stoff aus Superlegierungen großkristallin und teilweise mit Kolumnar­struktur durch entsprechende Gieß- und Kristallisationstechniken ge­züchtet. Bei dieser Züchtung entstehen nachteilig für die Korrosions­beständigkeit Korngrenzenausscheidungen von leicht oxidierbaren Legie­rungszusätzen wie beispielsweise Vanadium oder Titan. Damit ver­schlechtern sich nachteilig die Oberflächeneigenschaften, wie Oxydations- und Korrosionsbeständigkeit, sowie die Thermoermüdungsbe­ständigkeit. Deshalb wurden Beschichtungen wie die MCrAlX,Y-Familie (Metall, Chrom, Aluminium, X = Seltene Erden, Y = Yttrium) entwickelt, die die Oberflächeneigenschaften durch ihren hohen Anteil an Chrom und Aluminium, die ihrerseits stabile Oxyde beim Betreiben der Turbine bilden, verbessern und über das seltene Erd-Metall die Haftung der Oxidschicht auf der Schichtoberfläche heraufsetzen. Nachteilig wirken sich Diffusionsvorgänge aufgrund der unterschiedlichen Konzentration beiderseits der Grenzschicht zwischen Schichtoberfläche und Beschich­tung aus, die zu Diffusionsporen im grenzschichtnahen Bereich führen, so daß die Schutzschicht bei Überlagerung von Thermospannungen an Stellen hoher Diffusionsporendichte abplatzt. Darüber hinaus neigen die MCrAlX,Y-Schichten nachteilig zur Thermoermüdung, da zwischen Grundwerkstofflegierung und MCrAlYX-Schicht ein Mißverhältnis im Wär­medehnungsverhalten vorliegt und die MCrAlX,Y-Schichten sehr duktil sind im Vergleich zum Grundwerkstoff.High temperature resistant super alloys based on nickel or cobalt were developed for use in turbine construction. The blade material is exposed to particularly high loads, which not only withstand the high temperatures (above 950 ° C) in the turbine, but also must have a high creep resistance. In order to ensure a high creep resistance, the blade material made of superalloys in particular is grown in large crystalline form and partly with a columnar structure using appropriate casting and crystallization techniques. In this cultivation, grain boundary deposits of easily oxidizable alloy additives such as vanadium or titanium are disadvantageously formed for the corrosion resistance. This adversely affects the surface properties, such as resistance to oxidation and corrosion, and the thermal fatigue resistance. That is why coatings such as the MCrAlX, Y family (M etal, C hrom, A luminium, X = rare earth, Y = yttrium) developed by their high content of chromium and aluminum, which in turn form stable oxides when operating the turbine, improve the surface properties and the rare earth Metal increase the adhesion of the oxide layer on the surface of the layer. Diffusion processes have a disadvantage due to the different concentration on both sides of the boundary layer between the layer surface and the coating, which lead to diffusion pores in the region near the boundary layer, so that the protective layer flakes off at locations of high diffusion pore density when thermal voltages are superimposed. In addition, the MCrAlX, Y layers tend to suffer from thermal fatigue, since there is a mismatch in the thermal expansion behavior between the base material alloy and the MCrAlYX layer and the MCrAlX, Y layers are very ductile compared to the base material.

Eine weitere technisch bekannte Lösung ist das Bilden von chrom- und/oder aluminiumreichen Diffusionsschichten an der Oberfläche des Grundwerkstoffes durch Pulverpackzementieren und/oder Gasdiffusionsbe­schichten. Derartige Schichten bilden oxydationsfeste Intermetallische Phasen mit dem Grundwerkstoff. Aufgrund der höheren Härte dieser Schichten mit Intermetallischen Phasen wird die Dauerschwingfestigkeit der Bauteile nachteilig bis zu 30 % herabgesetzt. Da das Wärmedeh­nungsverhalten nicht dem Grundwerkstoff angepaßt ist, besteht für das Bauteil eine hohe Mikrorißgefahr, die mit zunehmender Schichtdicke ansteigt. Deshalb muß die Schichtdicke nachteilig auf kleiner 100 µm begrenzt werden.Another technically known solution is the formation of chromium and / or aluminum-rich diffusion layers on the surface of the base material by powder pack cementing and / or gas diffusion coating. Such layers form oxidation-resistant intermetallic phases with the base material. Due to the higher hardness of these layers with intermetallic phases, the fatigue strength of the components is disadvantageously reduced by up to 30%. Since the thermal expansion behavior is not adapted to the base material, there is a high risk of microcracks for the component, which increases with increasing layer thickness. Therefore, the layer thickness must be limited disadvantageously to less than 100 microns.

Bei den bekannten Beschichtungen werden die oxydations- und korro­sionsempfindlichen Komponenten des Grundwerkstoffes wie Vanadium und Titan vermieden und stabile Oxydbildner wie Aluminium bis beispiels­weise 20 % und Chrom bis beispielsweise 40 % zulegiert. Immer um­fangreicher und komplizierter wird dabei die Abstimmung der Zusammen­ setzung der Beschichtung auf die zu beschichtende Superlegierung auf Kobalt- oder Nickelbasis, um Haftungsprobleme zu überwinden oder Dif­fusionsvorgänge zu minimieren oder schützende stabile Oxide an der Oberfläche aufzubauen.In the known coatings, the components of the base material, such as vanadium and titanium, which are sensitive to oxidation and corrosion are avoided and stable oxide formers, such as aluminum, for example up to 20% and chromium, for example up to 40%, are added. The coordination of the team is becoming increasingly extensive and complicated Placement of the coating on the superalloy to be coated, based on cobalt or nickel, in order to overcome adhesion problems or to minimize diffusion processes or to build protective stable oxides on the surface.

Aufgabe der Erfindung ist es, ein Bauteil aus einem Grundwerkstoff auf Nickel- oder Kobaltbasis mit einer Schutzschicht anzugeben, das eine höhere Thermoermüdungs-, Oxydations- und Korrosionsbeständigkeit bei Temperaturen über 800 °C aufweist, als Bauteile mit bisher bekannten Beschichtungen und das die Nachteile dieser Beschichtungen überwindet sowie ein Verfahren zur Herstellung eines derartigen Bauteils anzuge­ben.The object of the invention is to provide a component made of a base material based on nickel or cobalt with a protective layer, which has a higher thermal fatigue, oxidation and corrosion resistance at temperatures above 800 ° C than components with previously known coatings and the disadvantages of these Overcomes coatings and specify a method for producing such a component.

Gelöst wird diese Aufgabe gattungsgemäß dadurch, daß Grundwerkstoff und Schutzschicht aus chemisch gleichem Werkstoff bestehen und die Schutzschicht wesentlich feinkörniger strukturiert ist.This task is generally solved in that the base material and protective layer consist of chemically identical material and the protective layer is structured in a much more fine-grained manner.

Die Erfindung löst die Probleme und Nachteile wie sie im Stand der Technik bestehen, indem der Werkstoff des Grundmaterials für eine artgleiche Beschichtung eingesetzt wird, so daß Diffusionsvorgänge ausbleiben und Haftungsprobleme bei oxydfreier Oberfläche des Grund­werkstoffes nicht auftreten. Ein Abplatzen von Schutzschichtpartikeln wird hiermit überwunden.The invention solves the problems and disadvantages as they exist in the prior art by using the material of the base material for a coating of the same type, so that diffusion processes do not occur and adhesion problems do not occur on the oxide-free surface of the base material. A chipping of protective layer particles is hereby overcome.

Durch eine gleichbleibende Leigerungszusammensetzung im Kornvolumen wird vorteilhaft eine gleichmäßige stabile und schützende Oxidschicht an der Kornoberfläche beim Einsatz derartiger Bauteile im oxydierenden Heißgasstrom von beispielsweise Turbinen gebildet. Da die Korngrenzen dieser Beschichtung weniger Korngrenzenausscheidungen aufweisen als der Grundwerkstoff wird vorteilhaft die Korngrenzenkorrosion ver­mindert.Due to a constant composition in the grain volume, a uniform, stable and protective oxide layer is advantageously formed on the grain surface when such components are used in the oxidizing hot gas stream from, for example, turbines. Since the grain boundaries of this coating have fewer grain boundary deposits than the base material, the grain boundary corrosion is advantageously reduced.

Der bevorzugte Korrosionsangriff an Korngrenzen und die damit ver­bundene Rißanfälligkeit wird durch die wesentlich feinkörnigere Struk­tur gegenüber dem Grundwerkstoff behindert, da sich vorteilhaft keine großflächigen Korrosionskerben ausbilden können.The preferred corrosion attack on grain boundaries and the associated susceptibility to cracking is hampered by the much more fine-grained structure compared to the base material, since advantageously no large-area corrosion notches can form.

Diese Vorteile tragen zusammen dazu bei, daß die Thermoermüdung derar­tiger Bauteile vermindert und die Korrosions- und Oxydationsbeständig­keit verbessert wird.Together, these advantages help reduce thermal fatigue of such components and improve corrosion and oxidation resistance.

Die Artgleichheit des Beschichtungswerkstoffes mit dem Grundwerkstoff führt dazu, daß keine Wärmedehnungsunterschiede zwischen Schicht- und Grundwerkstoff auftreten und somit keine Thermospannungen induziert werden. Deshalb ist vorteilhaft die Schichtdicke nicht auf kleiner 100 µm begrenzt.The similarity of the coating material with the base material means that there are no thermal expansion differences between the layer and base material and thus no thermal stresses are induced. The layer thickness is therefore advantageously not limited to less than 100 μm.

Vorzugsweise setzt sich der Grund- und Beschichtungswerkstoff aus folgenden Elementen zusammen:
13 bis 17 Gew. % Co
8 bis 11 Gew. % Cr
5 bis 6 Gew. % Al
4,5 bis 5 Gew. % Ti
2 bis 4 Gew. % Mo
0,7 bis 1,2 Gew. % V
0,15 bis 0,2 Gew. % C
0,01 bis 0,02 Gew. % B
0,03 bis 0,09 Gew. % Zr
Rest Ni
The base and coating material is preferably composed of the following elements:
13 to 17% by weight of Co
8 to 11% by weight of Cr
5 to 6 wt.% Al
4.5 to 5% by weight of Ti
2 to 4 wt.% Mo
0.7 to 1.2 wt% V
0.15 to 0.2 wt% C
0.01 to 0.02 wt% B
0.03 to 0.09% by weight of Zr
Rest Ni

Diese Superlegierung ist unter dem Namen IN 100 im Handel, so daß sowohl Grundwerkstoff als auch Beschichtungswerkstoff kostengünstig zur Verfügung stehen.This superalloy is commercially available under the name IN 100, so that both the base material and the coating material are available at low cost.

Je feiner das Korn der Beschichtung strukturiert ist, um so gleich­mäßiger erscheint die Zusammensetzung des Kornvolumens und um so per­fekter bildet sich eine stabile einheitliche Oxidschicht von Chrom- und/oder Aluminiumoxiden im Betrieb aus. Deshalb ist das Kornvolumen der Beschichtung vorzugsweise um mindestens drei Zehnerpotenzen klei­ner, als das Kornvolumen des Grundmaterials.The finer the grain of the coating is structured, the more uniform the composition of the grain volume appears and the more perfectly does a stable, uniform oxide layer of chromium and / or aluminum oxides form during operation. Therefore, the grain volume of the coating is preferably smaller by at least three powers of ten than the grain volume of the base material.

Die Korngrenzen des bevorzugten Grundwerkstoffes IN 100 weisen titan- und vanadiumhaltige Korngrenzenausscheidungen auf, die instabile bzw. niedrigschmelzende Oxide bilden. Die Beschichtung hat deshalb vorzugs­weise weniger Ausscheidungen an den Korngrenzen als der Grundwerk­stoff, was vorteilhaft die Oxydations- und Korrosionsbeständigkeit verbessert.The grain boundaries of the preferred base material IN 100 have titanium and vanadium-containing grain boundary deposits, which form unstable or low-melting oxides. The coating therefore preferably has fewer precipitations at the grain boundaries than the base material, which advantageously improves the resistance to oxidation and corrosion.

Eine besonders bevorzugte Ausbildung der Schutzschicht besteht darin, daß die Schutzschicht eine Plasmaspritzschicht ist, die aufgrund der hohen Erstarrungsgeschwindigkeit vorteilhaft äußerst feinkörnig und ausscheidungsarm kristallisiert.A particularly preferred embodiment of the protective layer is that the protective layer is a plasma spray layer which, owing to the high rate of solidification, advantageously crystallizes extremely fine-grained and has a low excretion rate.

Weiterhin hat die Erfindung die Aufgabe, ein Verfahren zur Herstellung eines Bauteils nach Anspruch 1 anzugeben, was mit folgenden Ver­fahrensschritten gelöst wird:

  • a) Oberflächenpräparation durch ein Abtragen der Oberfläche des Grundwerkstoffs zur Verbesserung der Haftung,
  • b) Beschichten des Grundwerkstoffs mittels Plasmaspritzen mit Plasmaspritzmaterial in der chemischen Zusammensetzung des Grund­werkstoffes,
  • c) epitaktische Rekristallisation mittels Lösungsglühen bei Tempera­turen zwischen 1150 und 1250 °C,
  • d) Nachbehandlung der Oberfläche der Schutzschicht durch mechanisches Verdichten zur Glättung und Verfestigung der Oberfläche und/oder Diffusionsbeschichten zur Erhöhung der Oxydationsbeständigkeit.
Furthermore, the invention has the object of specifying a method for producing a component according to claim 1, which is solved with the following method steps:
  • a) surface preparation by removing the surface of the base material to improve the adhesion,
  • b) coating of the base material by means of plasma spraying with plasma spray material in the chemical composition of the base material,
  • c) epitaxial recrystallization by solution annealing at temperatures between 1150 and 1250 ° C,
  • d) aftertreatment of the surface of the protective layer by mechanical compaction to smooth and solidify the surface and / or diffusion coating to increase the resistance to oxidation.

Dieses Verfahren hat den Vorteil, daß es für die Massenproduktion geeignet ist.This method has the advantage that it is suitable for mass production.

Bei hohen Anforderungen an die Qualität der Beschichtung wird die Oberflächenpräparation durch ein Plasmaätzen mit einem Argonplasma durchgeführt. Diese Präparation hat den Vorteil der Kontaminations­freiheit und ist mit einem Niederdruck-Plasmaspritzprozess kompatibel, so daß an einem Bauelement mit einem Bestückungsvorgang, sowohl die Oberflächenpräparation als auch das Beschichten des Grundwerkstoffes erfolgen kann. Damit wird vorteilhaft die Qualität verbessert, da kein Umsetzen in eine weitere Anlage erforderlich ist und Verweilzeiten in Normal-Atmosphäre entfallen.If high demands are placed on the quality of the coating, the surface preparation is carried out by plasma etching with an argon plasma. This preparation has the advantage of being free from contamination and is compatible with a low-pressure plasma spraying process, so that both the surface preparation and the coating of the base material can be carried out on a component with an assembly process. This advantageously improves the quality, since it is not necessary to move it to another plant and there are no residence times in a normal atmosphere.

Bei hohen Anforderungen an die Wirtschaftlichkeit wird die Oberflä­chenpräparation mittels chemischen Abtrag durchgeführt, so daß vor­teilhaft ein hoher Durchsatz erzielt wird.If high demands are placed on economy, the surface preparation is carried out by means of chemical removal, so that a high throughput is advantageously achieved.

Eine abrasive Strahlbearbeitung wird vorzugsweise als Oberflächenab­trag eingesetzt, da sich mit diesem Verfahren vorteilhaft großflächige Bauteile wie beispielsweise Rotorscheiben für eine nachfolgende Be­schichtung präparieren lassen.Abrasive beam processing is preferably used as surface ablation, since this method advantageously allows large-area components such as rotor disks to be prepared for a subsequent coating.

Die Beschichtung mittels Plasmaspritzen mit einem Plasmaspritzmaterial in der gleichen chemischen Zusammensetzung wie der Grundwerkstoff kann bei hohen Anforderungen an die Qualität im Niederdruckplasmaspritzver­fahren und bei großen Teilen und/oder hohen Anforderungen an die Wirt­schaftlichkeit mittels Plasmaspritzen unter Schutzgas erfolgen.The coating by means of plasma spraying with a plasma spraying material in the same chemical composition as the base material can be carried out with high demands on the quality in the low pressure plasma spraying process and with large parts and / or high demands on economy by means of plasma spraying under protective gas.

Ein optimales Anwachsen der Beschichtung auf dem Grundwerkstoff wird durch epitaktische Rekristallisation bei einer Lösungsglühtemperatur zwischen 1150 °C und 1250 °C erreicht. Dabei rekristallisiert im Über­gangsbereich zwischen Grundwerkstoff und Beschichtung die unterste Lage der feinkörnigen Beschichtung in gleicher Kristallorientierung wie die großvolumigen Kristallite des Grundwerkstoffs an der Beschich­tungsgrenze, so daß vorteilhaft eine intensive Verzahnung zwischen feinkörniger Beschichtung und grobkörnigem Grundwerkstoff entsteht, was die Haftung gegenüber herkömmlichen artfremden Beschichtungen wesentlich steigert. Anschließend kann mit 30 °C/min bis 80 °C/min das beschichtete Bauteil auf 1000 °C bis 800 °C abgekühlt und einer mehr­stufigen Auslagerungswarmbehandlung unterzogen werden.Optimal growth of the coating on the base material is achieved by epitaxial recrystallization at a solution annealing temperature between 1150 ° C and 1250 ° C. The lowest layer of the fine-grained coating recrystallizes in the transition area between the base material and the coating in the same crystal orientation as the large-volume crystallites of the base material at the coating boundary, so that an intensive interlocking between the fine-grain coating and the coarse-grained base material advantageously results, which significantly increases the adhesion compared to conventional non-proprietary coatings . The coated component can then be cooled to 1000 ° C to 800 ° C at 30 ° C / min to 80 ° C / min and subjected to a multi-stage heat treatment.

Für gegossene Bauteile aus Superlegierungen auf Nickel- oder Kobaltba­sis hat sich vorzugsweise ein zweistufiges Auslagern zur Ausbildung eines geeigneten γ/γ′-Gefüges bei 1080 °C bis 1120 °C für 2 Stunden bis 6 Stunden gefolgt von 900 °C bis 980 °C für 10 Stunden bis 20 Stunden mit zwischenzeitlicher Abkühlung auf 750 bis 800 °C be­währt. Mit einer derartigen Warmbehandlung werden die Eigenschaften des Grundwerkstoffes regeneriert, die durch das Lösungsglühen verän­dert worden sind, und es werden vorteilhaft die Festigkeitswerte der Schicht angehoben.For cast components made of superalloys based on nickel or cobalt, a two-stage aging process has preferably been used to form a suitable γ / γ′-structure at 1080 ° C. to 1120 ° C. for 2 hours to 6 hours, followed by 900 ° C. to 980 ° C. for Proven for 10 hours to 20 hours with intermediate cooling to 750 to 800 ° C. With such a heat treatment, the properties of the base material which have been changed by the solution annealing are regenerated, and the strength values of the layer are advantageously increased.

Eine mechanische Nachbehanldung der Oberfläche der Schutzschicht ver­bessert die Härte durch vorzugsweise Kugelstrahlbearbeitung und dient der Oberflächenglättung. Die Glättung der Oberfläche kann auch durch Druckfließbearbeitung oder Gleitschleifbearbeitung erfolgen.Mechanical post-treatment of the surface of the protective layer improves the hardness by preferably shot-peening and serves to smooth the surface. The surface can also be smoothed by pressure flow machining or vibratory finishing.

Eine Diffusionsbeschichtung als Nachbehandlung der Oberfläche, wie sie überlicherweise zur Erhöhung der Langzeitoxydationsbeständigkeit auf dem Grundwerkstoff aus Nickel- oder Kobaltbasis Superlegierungen ange­wandt wird, kann vorzugsweise auf der feinkörnigen Beschichtung erfol­gen. Damit ist der Vorteil verbunden, daß Tiefdiffusionen wie sie entlang der Korngrenzenausscheidungen des Grundwerkstoffes vorkommen, in der feinkörnigen Beschichtung mit weniger Korngrenzenausscheidungen nicht auftreten. Die Diffusionszone in der feinkörnigen Beschichtung wird damit vorteilhaft gleichmäßiger und homogener mit z. B. Aluminium oder Chrom dotiert, als es auf dem grobkristallinen Grundwerkstoff möglich ist. Dabei verbessert z. B. die Chromdotierung die Oxydations­betändigkeit bis Temperaturen von 850 °C und bewirkt gleichzeitig eine verbesserte Korrosionsbeständigkeit gegen Sulfidation. Die Alumi­niumdotierung z. B. erhöht die Oxydationsbeständigkeit bis zu Tempe­raturen von 1250 °C.A diffusion coating as aftertreatment of the surface, as is usually used to increase the long-term oxidation resistance on the base material made of nickel or cobalt-based superalloys, can preferably be carried out on the fine-grained coating. This has the advantage that deep diffusions like them along the grain boundary precipitations of the base material, in which fine-grained coating with fewer grain boundary precipitations does not occur. The diffusion zone in the fine-grained coating is thus advantageously more uniform and homogeneous with z. B. aluminum or chromium doped than is possible on the coarsely crystalline base material. It improves z. B. the chromium doping the oxidation resistance up to temperatures of 850 ° C and at the same time brings about an improved corrosion resistance against sulfidation. The aluminum doping z. B. increases the oxidation resistance up to temperatures of 1250 ° C.

Die folgenden Anwendungsbeispiele für ein Bauteil und ein Verfahren stellen bevorzugte Ausführungen der Erfindung dar.The following application examples for a component and a method represent preferred embodiments of the invention.

Beispiel eines Bauteils:Example of a component:

Auf einer grobkristallinen Turbinenschaufel aus IN 100 als Grundwerk­stoff, der sich aus folgenden Elementen zusammensetzt:
13 bis 17 Gew. % Co
8 bis 11 Gew. % Cr
5 bis 6 Gew. % Al
4,5 bis 5 Gew. % Ti
2 bis 4 Gew. % Mo
0,7 bis 1,2 Gew. % V
0,15 bis 0,2 Gew. % C
0,01 bis 0,02 Gew. % B
0,03 bis 0,09 Gew. % Zr
Rest Ni
befindet sich eine Niederdruckplasmaschicht gleicher chemischer Zu­sammensetzung, die ein 3 ·10³fach feineres Kornvolumen als der Grund­ werkstoff aufweist. Bei der Thermoermüdungsprüfung (Prüftemperatur 1050 °C) hält das beschichtete Bauteil einer dreimal höheren Tempera­turlastwechselzahl stand als der unbeschichtete Grundwerkstoff.
On a coarse crystalline turbine blade made of IN 100 as the base material, which consists of the following elements:
13 to 17% by weight of Co
8 to 11% by weight of Cr
5 to 6 wt.% Al
4.5 to 5% by weight of Ti
2 to 4 wt.% Mo
0.7 to 1.2 wt% V
0.15 to 0.2 wt% C
0.01 to 0.02 wt% B
0.03 to 0.09% by weight of Zr
Rest Ni
there is a low-pressure plasma layer of the same chemical composition, which has a grain volume 3 × 10 3 times finer than the reason has material. In the thermal fatigue test (test temperature 1050 ° C), the coated component withstands three times the number of thermal load changes than the uncoated base material.

Beispiel eines VerfahrensExample of a procedure

Ein grobkristalline Turbinenschaufel aus In 100 als Grundwerkstoff, der sich aus den folgenden Elementen zusammensetzt:
13 bis 17 Gew. % Co
8 bis 11 Gew. % Cr
5 bis 6 Gew. % Al
4,5 bis 5 Gew. % Ti
2 bis 4 Gew. % Mo
0,7 bis 1,2 Gew. % V
0,15 bis 0,2 Gew. % C
0,01 bis 0,02 Gew. % B
0,03 bis 0,09 Gew. % Zr
Rest Ni
wird mittels Argonplasmaätzen bei einem Druck von 2 kPa bis 4 kPa die Oberfläche des Grundwerkstoffs um durchschnittliche 0,5 bis 10 µm abgetragen.
A coarsely crystalline turbine blade made of In 100 as the base material, which is composed of the following elements:
13 to 17% by weight of Co
8 to 11% by weight of Cr
5 to 6 wt.% Al
4.5 to 5% by weight of Ti
2 to 4 wt.% Mo
0.7 to 1.2 wt% V
0.15 to 0.2 wt% C
0.01 to 0.02 wt% B
0.03 to 0.09% by weight of Zr
Rest Ni
the surface of the base material is removed by an average of 0.5 to 10 µm by means of argon plasma etching at a pressure of 2 kPa to 4 kPa.

Anschließend wird mittels Plasmaspritzen mit Plasmaspritzmaterial in der gleichen chemischen Zusammensetzung wie der Grundwerkstoff bei einem Druck von 4 kPa und einer Temperatur des Grundwerkstoffes von 900 °C für 120 Sekunden der Grundwerkstoff beschichtet.Subsequently, the base material is coated with plasma spray material with the same chemical composition as the base material at a pressure of 4 kPa and a temperature of the base material of 900 ° C. for 120 seconds.

Nach Ausbau der beschichteten Turbinenschaufel wird eine epitaktische Rekristallisation in einem Hochvakuumofen durchgeführt. Dazu wird das Bauteil auf einer Lösungsglühtemperatur von 1200 °C für 4 Stunden gehalten und mit einer Abkühlrate von 60 °C/min auf 800 °C abgekühlt.After removal of the coated turbine blade, epitaxial recrystallization is carried out in a high vacuum furnace. For this purpose, the component is kept at a solution annealing temperature of 1200 ° C for 4 hours and cooled to 800 ° C at a cooling rate of 60 ° C / min.

Zur Regeneration der Festigkeitseigenschaften des Grundwerkstoffs und zur Anhebung der Schichtfestigkeit wird eine zweistufige Warmbehand­lung im Hochvakuum bei 1100 °C für 4 Stunden und bei 950 °C für 16 Stunden mit zwischenzeitlicher Abkühlung mit 60 °C/min auf 800 °C durchgeführt.To regenerate the strength properties of the base material and to increase the layer strength, a two-stage heat treatment is carried out in a high vacuum at 1100 ° C for 4 hours and at 950 ° C for 16 hours with intermediate cooling at 60 ° C / min to 800 ° C.

Nach Abkühlung auf Raumtemperatur wird das Bauteil in seiner Ober­fläche geglättet und verfestigt durch eine Strahlbearbeitung mit Zir­konoxydkugeln von 0,5 mm bis 1 mm Durchmesser.After cooling to room temperature, the surface of the component is smoothed and solidified by blasting with zirconium oxide balls of 0.5 mm to 1 mm in diameter.

Claims (10)

1. Bauteil aus einem Grundwerkstoff auf Nickel- oder Kobaltbasis mit einer Schutzschicht aus chemisch gleichem Werkstoff gegen Oxydation, Korrosion und Thermoermüdung, dadurch gekennzeichnet, daß die Schutzschicht wesentlich feinkörniger als der Grundwerkstoff strukturiert ist und die unterste Lage der feinkörnigen Beschichtung die gleiche Kristallorientierung wie die großvolumigen Kristallite des Grundwerkstoffes an der Beschichtungs­grenze aufweisen.1. Component made of a base material based on nickel or cobalt with a protective layer of chemically identical material against oxidation, corrosion and thermal fatigue, characterized in that the protective layer is structured much more fine-grained than the base material and the bottom layer of the fine-grained coating has the same crystal orientation as that have large-volume crystallites of the base material at the coating limit. 2. Bauteil nach Anspruch 1, dadurch gekennzeichnet, daß die Schutzschicht weniger Korngrenzenausscheidungen und eine gleichbleibendere Legierungszusammensetzung im Kornvolumen als der Grundwerkstoff aufweist.2. Component according to claim 1, characterized in that the protective layer has fewer grain boundary deposits and a more constant alloy composition in the grain volume than the base material. 3. Bauteil nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Grundwerkstoff und die Schutzschicht eine Zusammen­setzung von:
13 bis 17 Gew.% Co
8 bis 11 Gew.% Cr
5 bis 6 Gew.% Al
4,5 bis 5 Gew.% Ti
2 bis 4 Gew.% Mo
0,7 bis 1,2 Gew% V
0,15 bis 0,2 Gew.% C
0,01 bis 0,02 Gew.% B
0,03 bis 0,09 Gew.% Zr
Rest Ni
aufweisen.
3. Component according to claim 1 or 2, characterized in that the base material and the protective layer have a composition of:
13 to 17% by weight of Co
8 to 11% by weight of Cr
5 to 6 wt.% Al
4.5 to 5% by weight of Ti
2 to 4 wt.% Mo
0.7 to 1.2 wt% V
0.15 to 0.2 wt% C
0.01 to 0.02 wt% B
0.03 to 0.09% by weight of Zr
Rest Ni
exhibit.
4. Bauteil nach einem der Ansprüche 1 bis 3, dadurch gekenn­zeichnet, daß die Schutzschicht ein um mindestens drei Zehnerpotenzen feiner Kornvolumen aufweist als der Grund­werkstoff.4. Component according to one of claims 1 to 3, characterized in that the protective layer has a fine grain volume by at least three powers of ten than the base material. 5. Bauteil nach einem der Ansprüche 1 bis 4, dadurch gekenn­zeichnet, daß die Schutzschicht weniger Vanadium- oder Titanausscheidungen an den Korngrenzen aufweist als ein Grundwerkstoff mit gleichem Vanadium- oder Titangehalt.5. Component according to one of claims 1 to 4, characterized in that the protective layer has fewer vanadium or titanium deposits at the grain boundaries than a base material with the same vanadium or titanium content. 6. Bauteil nach einem der Ansprüche 1 bis 5, dadurch gekenn­zeichnet, daß die Schutzschicht eine Plasmaspritzschicht ist.6. Component according to one of claims 1 to 5, characterized in that the protective layer is a plasma spray layer. 7. Verfahren zur Herstellung eines Bauteils nach Anspruch 1, gekennzeichnet durch folgende Verfahrensschritte: a) Oberflächenvorbehandlung durch ein Abtragen der Ober­fläche des Grundwerkstoffs zur Verbesserung der Haftung, b) Beschichten des Grundwerkstoffs mittels Plasmaspritzen mit Plasmaspritzmaterial in der chemischen Zusammen­setzung des Grundwerkstoffs, c) epitaktische Rekristallisation mittels Lösungsglühen bei Temperaturen zwischen 1150oC und 1250oC, d) Nachbehandlung der Oberfläche der Schutzschicht durch mechanisches Verdichten zur Glättung und Verfestigung der Oberfläche und/oder Diffusionsbeschichten zur Er­höhung der Oxydationsbeständigkeit. 7. A method for producing a component according to claim 1, characterized by the following process steps: a) surface pretreatment by removing the surface of the base material to improve the adhesion, b) coating of the base material by means of plasma spraying with plasma spray material in the chemical composition of the base material, c) epitaxial recrystallization by means of solution annealing at temperatures between 1150 o C and 1250 o C, d) aftertreatment of the surface of the protective layer by mechanical compaction to smooth and solidify the surface and / or diffusion coating to increase the resistance to oxidation. 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß der Abtrag mittels chemischem Ätzen, Plasmaätzen oder abrasiver Strahlbearbeitung durchgeführt wird.8. The method according to claim 7, characterized in that the removal is carried out by means of chemical etching, plasma etching or abrasive beam processing. 9. Verfahren nach einem der Ansprüche 7 oder 8, dadurch gekenn­zeichnet, daß die Oberfläche der Schutzschicht mit eienr Verfestigungsstrahlbearbeitung und/oder Druckfließläpp­bearbeitung und/oder Gleitschleifbearbeitung durchge­führt wird.9. The method according to any one of claims 7 or 8, characterized in that the surface of the protective layer is carried out with hardening blast machining and / or pressure flow lapping and / or vibratory grinding. 10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch ge­kennzeichnet, daß die Oberfläche der Schutzschicht mit einer Diffusionsbeschichtung mit Aluminium und/oder Chrom nach­behandelt wird.10. The method according to any one of claims 1 to 9, characterized in that the surface of the protective layer is post-treated with a diffusion coating with aluminum and / or chromium.
EP90103963A 1989-03-09 1990-03-01 Element with wear-resisting layer comprising nickel or cobalt Expired - Lifetime EP0386618B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3907625 1989-03-09
DE3907625A DE3907625C1 (en) 1989-03-09 1989-03-09

Publications (2)

Publication Number Publication Date
EP0386618A1 true EP0386618A1 (en) 1990-09-12
EP0386618B1 EP0386618B1 (en) 1994-02-16

Family

ID=6375923

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90103963A Expired - Lifetime EP0386618B1 (en) 1989-03-09 1990-03-01 Element with wear-resisting layer comprising nickel or cobalt

Country Status (4)

Country Link
EP (1) EP0386618B1 (en)
JP (1) JPH02277760A (en)
CA (1) CA2011753A1 (en)
DE (1) DE3907625C1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0532150A1 (en) * 1991-09-09 1993-03-17 General Electric Company Strengthened protective coatings for superalloys
WO1997005299A1 (en) * 1995-07-25 1997-02-13 Siemens Aktiengesellschaft Product with a metallic base body provided with cooling channels and its manufacture
EP0863072A3 (en) * 1997-03-05 2001-06-27 United Technologies Corporation Electroformed sheath and airfoiled component construction
EP1162284A1 (en) * 2000-06-05 2001-12-12 Alstom (Switzerland) Ltd Process of repairing a coated component
EP1805344B1 (en) * 2004-10-16 2011-03-16 MTU Aero Engines AG Method for producing a component covered with a wear-resistant coating

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2950436B2 (en) * 1990-03-15 1999-09-20 株式会社東芝 Manufacturing method of composite material
DE102011087159B3 (en) * 2011-11-25 2013-03-28 Mtu Aero Engines Gmbh Priming preparation for cold gas spraying and cold gas spraying device
PL3050997T3 (en) * 2013-09-25 2018-12-31 The Chugoku Electric Power Co., Inc. Method for diffusion coating heat-resistant metal member with creep reinforcement material, and creep-strength-enhanced heat-resistant metal member
KR102182690B1 (en) * 2014-11-11 2020-11-25 (주) 코미코 Internal member applying plasma treatment apparatus and method for manufacturing the same
KR102182699B1 (en) * 2014-11-11 2020-11-25 (주) 코미코 Internal member applying plasma treatment apparatus and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH653375A5 (en) * 1981-08-05 1985-12-31 United Technologies Corp Coating material.
EP0207874A2 (en) * 1985-05-09 1987-01-07 United Technologies Corporation Substrate tailored coatings for superalloys
DE3246507C2 (en) * 1982-12-16 1987-04-09 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau High temperature protection layer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532191A (en) * 1982-09-22 1985-07-30 Exxon Research And Engineering Co. MCrAlY cladding layers and method for making same
US4743514A (en) * 1983-06-29 1988-05-10 Allied-Signal Inc. Oxidation resistant protective coating system for gas turbine components, and process for preparation of coated components
DE3426201A1 (en) * 1984-07-17 1986-01-23 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau PROCESS FOR APPLYING PROTECTIVE LAYERS
DE3522646A1 (en) * 1985-06-25 1987-01-08 Wiederaufarbeitung Von Kernbre MOLDED BODY FROM BAD WELDABLE MATERIAL

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH653375A5 (en) * 1981-08-05 1985-12-31 United Technologies Corp Coating material.
DE3246507C2 (en) * 1982-12-16 1987-04-09 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau High temperature protection layer
EP0207874A2 (en) * 1985-05-09 1987-01-07 United Technologies Corporation Substrate tailored coatings for superalloys

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0532150A1 (en) * 1991-09-09 1993-03-17 General Electric Company Strengthened protective coatings for superalloys
US5316866A (en) * 1991-09-09 1994-05-31 General Electric Company Strengthened protective coatings for superalloys
WO1997005299A1 (en) * 1995-07-25 1997-02-13 Siemens Aktiengesellschaft Product with a metallic base body provided with cooling channels and its manufacture
US5967755A (en) * 1995-07-25 1999-10-19 Siemens Aktiengesellschaft Product with a metallic basic body and method for manufacturing a product
US6156133A (en) * 1995-07-25 2000-12-05 Siemens Aktiengesellschaft Method for manufacturing a product with a metallic basic body
EP0863072A3 (en) * 1997-03-05 2001-06-27 United Technologies Corporation Electroformed sheath and airfoiled component construction
EP1162284A1 (en) * 2000-06-05 2001-12-12 Alstom (Switzerland) Ltd Process of repairing a coated component
US6569492B2 (en) 2000-06-05 2003-05-27 Alstom Ltd Process for repairing a coated component
EP1805344B1 (en) * 2004-10-16 2011-03-16 MTU Aero Engines AG Method for producing a component covered with a wear-resistant coating
US8920881B2 (en) 2004-10-16 2014-12-30 MTU Aero Engines AG Method for producing a component covered with a wear-resistant coating

Also Published As

Publication number Publication date
EP0386618B1 (en) 1994-02-16
CA2011753A1 (en) 1990-09-09
DE3907625C1 (en) 1990-02-15
JPH02277760A (en) 1990-11-14

Similar Documents

Publication Publication Date Title
DE2657288C2 (en) Coated superalloy article and its uses
DE69017574T2 (en) High strength fatigue crack resistant alloy workpiece.
DE60309266T2 (en) Welding material, gas turbine blade or gas turbine injector and method of repairing gas turbine blades and gas turbine injectors
DE3937526C2 (en) Wear-resistant titanium alloy, process for its production and its use
EP0230554B1 (en) High-temperature protective layer and method of manufacturing the same
DE69017339T2 (en) Alloys resistant to creep, breaking load and fatigue cracking.
EP2631327B1 (en) Method for applying a heat insulation layer
EP1123455B1 (en) Product with a heat insulating layer and method for the production of a heat insulating layer
DE3023576C2 (en)
DE2734529C2 (en) Item with improved resistance to oxidation and corrosion at high temperatures
DE3243283C2 (en)
DE3785424T2 (en) Wear body and powder as well as manufacturing processes.
DE3616008C2 (en) Highly corrosion-resistant, glass-like alloy
WO2021004579A1 (en) Nckel base alloy for powder and method for producing a powder
DE2829369A1 (en) PROCESS FOR DESIGNING HARD, WEAR-RESISTANT COVERS AND OBJECTS PROVIDED WITH SUCH A COVER
CH657872A5 (en) COMPOSITE PRODUCT MADE OF AT LEAST TWO SUPER ALLOYS.
EP1754801B1 (en) Coated component
DE2842848C2 (en) Material for covering objects
EP0386618B1 (en) Element with wear-resisting layer comprising nickel or cobalt
DE69717870T2 (en) NICKEL BASED ALLOY
EP2796588A1 (en) Method for producing a high temperature protective coating and correspondingly manufactured component
CH616960A5 (en) Components resistant to high-temperature corrosion.
WO1987004732A1 (en) Process for producing a titanium-carbide containing wear-resistant coating on a metal base
DE3608656C2 (en) Use of a glass-like tantalum-nickel alloy
EP0648283B1 (en) Intermetallic compound component with diffused aluminium coating

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH FR GB IT LI SE

17P Request for examination filed

Effective date: 19901220

17Q First examination report despatched

Effective date: 19920901

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940211

Year of fee payment: 5

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH FR GB IT LI SE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940216

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940217

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940218

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940223

Year of fee payment: 5

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940330

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EAL Se: european patent in force in sweden

Ref document number: 90103963.6

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950331

Ref country code: CH

Effective date: 19950331

Ref country code: BE

Effective date: 19950331

BERE Be: lapsed

Owner name: MOTOREN- UND TURBINEN-UNION MUNCHEN G.M.B.H. MTU

Effective date: 19950331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 90103963.6

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301