EP2647435B1 - System with a fluidic cell and a tempering element - Google Patents
System with a fluidic cell and a tempering element Download PDFInfo
- Publication number
- EP2647435B1 EP2647435B1 EP12163321.8A EP12163321A EP2647435B1 EP 2647435 B1 EP2647435 B1 EP 2647435B1 EP 12163321 A EP12163321 A EP 12163321A EP 2647435 B1 EP2647435 B1 EP 2647435B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- temperature control
- composite film
- fluid
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005496 tempering Methods 0.000 title description 4
- 239000010408 film Substances 0.000 claims description 102
- 239000002131 composite material Substances 0.000 claims description 52
- 239000012530 fluid Substances 0.000 claims description 46
- 239000000758 substrate Substances 0.000 claims description 34
- 229920003023 plastic Polymers 0.000 claims description 15
- 239000004033 plastic Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 238000003860 storage Methods 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 230000003321 amplification Effects 0.000 claims description 5
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229920000098 polyolefin Polymers 0.000 claims description 2
- 239000010409 thin film Substances 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 claims 1
- 230000002093 peripheral effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000013039 cover film Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502707—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L7/00—Heating or cooling apparatus; Heat insulating devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L7/00—Heating or cooling apparatus; Heat insulating devices
- B01L7/52—Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0684—Venting, avoiding backpressure, avoid gas bubbles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0816—Cards, e.g. flat sample carriers usually with flow in two horizontal directions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0877—Flow chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0887—Laminated structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/18—Means for temperature control
- B01L2300/1805—Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
- B01L2300/1822—Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/18—Means for temperature control
- B01L2300/1838—Means for temperature control using fluid heat transfer medium
- B01L2300/185—Means for temperature control using fluid heat transfer medium using a liquid as fluid
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/6416—With heating or cooling of the system
- Y10T137/6579—Circulating fluid in heat exchange relationship
Definitions
- the invention relates to an arrangement of a flow cell and a temperature control element according to claim 1.
- Microfluidic flow cells are used increasingly, in particular as disposable products, in analysis and diagnostics or in medicine for the conditioning of liquids before they are applied to the human body, and also for synthetic purposes.
- temperature control devices While the function of a flow cell in the temperature control of a fluid can be exhausted, temperature control devices often only form components of flow cells with far more extensive functionality.
- the temperature control function is particularly important in flow cells for carrying out molecular genetic analyzes, including processes that amplify PCR or other nucleic acids, since the amplification reaction requires constant or changing reaction temperatures, typically between 30 ° C. and 95 ° C., which are above ambient temperature.
- the production of temperature-resistant flow cells with reproducible temperature control properties which allow a particularly rapid and homogeneous temperature transition between an active temperature control element and the fluid to be temperature-controlled, in particular the production of such flow cells as inexpensive disposable products, poses considerable problems for production.
- a flow cell with a temperature control device is from the US 6,613,560 B1 known.
- the flow cell is used to carry out the PCR process.
- a reaction chamber for the The PCR process also forms the temperature chamber.
- the temperature control chamber is delimited by a recess in a substrate and the thin, heat-transferring film mentioned at the outset, which covers the recess.
- a disadvantage of the temperature control process is the low thermal conductivity of plastics, which is why films with a small film thickness in the range of 50-200 ⁇ m are preferred.
- the manufacture, handling and assembly of such thin foils is very complex. Disadvantageously, the cover film does not form an exact plane due to its low mechanical rigidity.
- thermal and mechanical influences during assembly of the film using adhesive or welding processes can easily lead to deformation of the film and thus to deviations from the plane in the range of a few 10-100 ⁇ m.
- This makes it more difficult to couple in heat by pressing on a temperature control element, with remaining air gaps in particular impairing the heat transfer and preventing a rapid balance between the temperature of the temperature control element and the temperature of the fluid in the temperature control chamber, in particular its uniform heating or cooling.
- Reproducible temperature control properties cannot be achieved, especially under the conditions of inexpensive mass production of this flow cell.
- Flow cells with temperature chambers and temperature elements come from the US 2005/0153430 A1 and the WO 2008/157801 A2 forth.
- the metal layer of the film Due to its high thermal conductivity, which is typically approx. 1000 times higher than that of plastic, the metal layer of the film also ensures rapid heat spreading laterally, ie parallel to the film plane. Even if a temperature control element is only partially in contact with the film, the film therefore assumes the temperature of the temperature control element sufficiently quickly and uniformly and transfers it further to the fluid. Production-related fluctuations in the size of the contact surface between the temperature control element and the film are negligible.
- the plastic layer facing the fluid consists of a plastic compatible with the amplification reaction, preferably an olefin polymer such as PP, PE, COC or PC.
- the at least one metal layer preferably comprises aluminum or a magnetizable metal, e.g. Nickel, on.
- a magnetizable metal e.g. Nickel
- the film layer of the composite film facing the temperature control element can also consist of a plastic, in particular the plastic from which the layer facing the fluid is also made.
- the layer facing the temperature control element expediently consists of a material which counteracts adhesive adhesion of the film to the temperature control element.
- the thickness of the layers forming the film is in each case between 1 ⁇ m and 100 ⁇ m.
- the temperature control chamber is covered by a film that is covered with the composite film Recess is formed in a substrate, which is preferably produced using inexpensive injection molding, and the composite film is connected to the substrate, preferably welded or glued.
- the film is preferably connected to a flat surface of the substrate bordering the recess.
- the substrate can consist of the same plastic as the layer of the composite film facing the fluid and the entire temperature control chamber can thus be formed from only one material which is compatible with the fluids to be temperature-controlled.
- the temperature control element has a fixed temperature control body that can be placed against the composite film for heat transfer.
- the temperature control element can only be used in an edge area adjacent to the temperature control chamber, in which the composite film e.g. is connected to the surface of the substrate.
- the film is expediently supported in the edge region in such a way that the temperature control element can be applied to the film under high contact pressure.
- the application of the temperature control element to only a part of the composite film forming the temperature control chamber has the advantage that a pressure build-up generated by heating and the associated expansion of the fluid in the chamber due to expansion of the composite film and thus accompanying increase in the volume of the temperature control chamber can be at least partially compensated for.
- the pressure build-up prevented in the temperature control chamber in turn reduces the valve requirements which may be necessary for a hermetic seal of the chamber.
- devices for sucking the composite film onto the temperature control body can be formed.
- the thermal contact is improved by pressing the temperature control body against the film.
- the temperature control body can be provided with a permanent magnet or electromagnet in order to improve the pressure of the temperature control body against the film by magnetic interaction.
- the composite film is deep-drawn while increasing its surface contacting the fluid.
- the composite film can perform further functions within the flow cell, for example covering functions or a valve function.
- the flow cell with the temperature control chamber can have an inflow and outflow for the fluid, possibly for the flow of the fluid through the chamber during the temperature control.
- the flow cell can also have channel structures, mixing and distribution elements for the fluids, liquid storage, reaction and detection chambers and the like elements which are customary in the prior art for carrying out analyzes and syntheses in microfluidic flow cells.
- the composite film expediently extends only over the partial area of the flow cell which contains the temperature control chamber in order to ensure that little or no heat flows into the other areas of the flow cell during the temperature control process.
- the temperature control of a fluid in a temperature control chamber is always associated with a change in the volume of the fluid, it can be advantageous for the temperature control chamber to be hermetically sealed against adjacent channel and / or functional areas during the temperature control process. This may be necessary especially when heating up to close to the boiling point of the fluid. This prevents the fluid from leaving the temperature control chamber resulting from a change in volume and / or partial vapor formation. Due to the releasability of the closure, the fluid can be transported, processed or, e.g. in molecular genetic analyzes.
- valve seat in the channel-shaped inflow and outflow of the temperature control chamber, the composite film not being firmly connected to the substrate in the region of the valve seat, but lying loosely and evenly on the substrate.
- the extensibility of the composite film allows a fluid to pass under pressure before or after the tempering process between the valve seat and the composite film and to be transported into or out of the chamber.
- the inlet and outlet are hermetically sealed by pressing mechanical stamps of an external actuation device against the composite film lying on the substrate in the region of the valve seats.
- the temperature control chamber according to the invention can also serve as a liquid store, for example to store a reagent in the flow cell before it is used.
- the volume of the stored reagent can be smaller than that of the tempering and storage chamber, so that the chamber, for example, before or with a fluid to be analyzed and mixed with the reagent completely or can be partially replenished.
- a channel-shaped inflow and outflow of the temperature control chamber can advantageously be geometrically interrupted and the composite film can be firmly connected to the substrate in the interrupted channel area, for example by welding to form a sealing seam closing the channel. After opening the sealing seam, the fluids can be transported into and out of the chamber by means of pressure, and the closure points can then be used as valves.
- the metal layer in the composite film delimiting the storage chamber prevents liquid or gas from passing through the chamber wall during storage.
- Microfluidic flow cell shown in sections which in the exemplary embodiment shown serves to carry out an amplification process, comprises a plate-shaped substrate 1 and a film 2 that is welded or glued to the substrate 1 in a fluid-tight manner.
- a temperature-absorbing chamber 3 receiving a fluid is formed by a recess in the substrate 1 and the film 2, which covers this recess.
- the temperature control chamber 3 is connected via channels 4 and 5 to an inlet / outlet 6 and 7, respectively. It goes without saying that the temperature control chamber could deviate from or be connected to other chambers provided in the flow cell for other purposes.
- the film 2 consists of a composite of several layers, an inner layer 8 made of a plastic compatible with amplification reactions, a metal layer 9, in the example shown a layer of aluminum, and an outer layer 10 which, like the inner layer 8, consists of plastic .
- the inner layer 9 and the substrate 1 can be formed from the same material, which facilitates the fluid-tight welding of the film 2 to the substrate 1.
- a temperature control element 11 is placed on the wall of the temperature control chamber 3 formed by the film 2 and is kept at a temperature which corresponds to the desired temperature of the fluid in the temperature control chamber 3.
- the temperature control element 11 can be a heating or cooling element. In the first case, heat is transferred from the temperature control element 11 to the fluid in the temperature control chamber 3, in the second case, conversely, heat flows from the fluid to the temperature control element 11.
- the temperature control element 11 cannot lie flat against the film 2 in such a way that heat transfer is uniform over the entire contact surface.
- the temperature control element 11 due to the high thermal conductivity of the metal layer 9 contained in the film 2, which is primarily able to conduct heat in the lateral direction parallel to the film plane, there is a rapid heat exchange between the temperature control element 11 and the fluid in the temperature control chamber 3, whereby uniform heating of the fluid whose temperature matches the temperature of the temperature control element 11.
- the fluid can stand still in the temperature control chamber 3 during the temperature control or can flow through the temperature control chamber 3 at a speed that allows temperature compensation.
- the temperature control element 11a shown has suction channels 12 through which a negative pressure which pulls the film 2a against the temperature control element 11a can be generated, so that there is a uniform heat transfer between the temperature control element 11a and the film 2a over the contact surface.
- a temperature control chamber 3b is essentially formed by a cap-like or chamber-like deformation 13 of a composite film 2b.
- An annular temperature control element 11b bears around the deformation 13 against the film 2b connected to a substrate 1b.
- the support of the film 2b by the substrate 1b permits an increased pressing force of the temperature control element 11b against the film 2b. Heat therefore transfers more evenly and is laterally conducted quickly through the metal layer contained in the film 2b into the center, so that temperature compensation between a fluid contained in the temperature control chamber 3b and the temperature control element 11b can take place in a short time.
- an annular temperature control element 11c is also an in Fig. 5 Embodiment shown used as the embodiment of Fig. 4 .
- a temperature chamber 3c is, as in the embodiments of 1 to 3 , formed by a recess in a substrate 1c.
- a composite film 2c covering the recess has a deformation 14 in the region of the recess, which increases the surface of the film 2c adjacent to the fluid while increasing the heat transfer performance, so that compared to the exemplary embodiment of FIG Fig. 4 an even faster adjustment of the temperature of the fluid in the temperature control chamber 3c to the temperature of the temperature control element 11c results.
- Fig. 6 shows an embodiment with a film 2d, which in an area in which it forms a wall of a temperature control chamber 3d, is expandable by a temperature control element 11d into a recess forming the temperature control chamber 3d in a substrate 1d.
- a stop 15 on the bottom of the temperature control chamber 3d limits the expansion.
- the temperature control element 11d lies evenly against the elastically or plastically stretchable film 2d, so that there is a uniform heat transfer and temperature exchange between the temperature control element and the fluid over the entire contact surface.
- An arrangement of the temperature control element 11d and further temperature control elements 11d 'and 11d " can be shifted according to arrow 16, so that one of the temperature control elements 11d, 11d', 11d” can be extended according to arrow 17 by stretching the film 2d up to the stop 15.
- the fluid can then be successively tempered differently according to temperatures T1, T2 and T3 of the temperature control elements 11d, 11d ', 11d ".
- FIG. 7 An in Fig. 7
- the exemplary embodiment shown for a flow cell comprises a substrate 24 that is welded or glued to an arrangement of composite films 2e and 2e '.
- the composite films 2e, 2e ' are also connected to one another by welding or gluing.
- a temperature control element 11e which can be moved in the through opening 25 according to arrow 17e can the composite films 2e, 2e 'in the in Fig. 7 shown manner to form a temperature chamber 3e between the composite films 2e, 2e '.
- both composite films 2e, 2e ' are like those in FIG Fig. 1 shown film formed with a metal layer. Deviating from the shown In the exemplary embodiment, only the film 2e facing the temperature control element 11e could be designed as such a composite film.
- Fig. 8 shows an embodiment of a flow cell with a temperature control chamber 3f.
- the temperature control chamber 3f is formed from two composite foils 2f and 2f 'welded or glued together. While the composite film 2f is flat, the composite film 2f 'has a deformation 13f formed by deep drawing and is also connected to inlets / outlets 6f, 7f.
- a temperature control element 11f which is movable according to arrow 17f is opposite two temperature control elements 26 and 27 which can be moved in the opposite direction and which can be attached to the composite film 2f '. While the temperature control element 11f covers the entire side of the temperature control chamber 3f facing it and adjacent areas, the temperature control elements 26, 27 only bear against areas adjacent to the temperature control chamber 3f. Accordingly, heat is conducted laterally into the temperature control chamber.
- the free area formed by the deep-drawn deformation 13f can expand when the pressure in the temperature control chamber 3f builds up, partially compensating for the pressure.
- Fig. 9 shows an embodiment of a flow cell with a substrate 1g and a film 2g and a temperature control chamber 3g that the flow cell of Fig. 1 corresponds.
- a temperature control element 11g is not formed by a fixed temperature control body, as in the previous exemplary embodiments, but rather comprises a chamber 18 arranged symmetrically to the temperature control chamber 3g for receiving a temperature-regulating fluid.
- the chamber 18 is located in a recess in a substrate 19 which is connected to the composite film 2g in the same way as the substrate 1g.
- the chamber 18 receives a fluid maintained at a certain temperature, which in the exemplary embodiment shown enters the chamber 18 via an inlet 20 and a channel 21 and flows out via a channel 22 and an outlet 23.
- the substrate 1g and the substrate 19 consist of the same material.
- An inner layer 8g of the film 2g is also similar in material to the outer layer 10g facing the substrate 19.
- Fig. 10 flow cell shown differs from the flow cell of Fig. 1 in that a valve with an actuator element 28 and 29 is provided in channels 4h and 5h, which are connected to a temperature control chamber 3h.
- the respective actuator element presses a composite film 2h in the closed state of the valve against a valve seat 30 or 31.
- a temperature control element 11 h has a recess 32 in the middle of its temperature control surface that can be placed against the film 2 h, into which the composite film 2 h can expand during temperature control with increasing internal pressure in the temperature control chamber 3 h.
- the actuators 28, 29 can be connected in one piece to the temperature control element 11h and can be moved together with it.
- Fig. 11 shows a flow cell with a chamber 3i, which initially serves as a storage chamber for a reagent 33. At predetermined breaking points at 34 and 35, openings can be formed which allow access to the reagent 33 and the further use of the chamber 3i as a temperature control chamber.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Hematology (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
Die Erfindung betrifft eine Anordnung aus einer Flusszelle und einem Temperierelement gemäß Anspruch 1.The invention relates to an arrangement of a flow cell and a temperature control element according to
Mikrofluidische Flusszellen werden, insbesondere als Einwegprodukte, in zunehmendem Maße in der Analytik und Diagnostik oder in der Medizin zur Konditionierung von Flüssigkeiten, bevor sie in den menschlichen Körper appliziert werden, sowie auch zu Synthesezwecken eingesetzt.Microfluidic flow cells are used increasingly, in particular as disposable products, in analysis and diagnostics or in medicine for the conditioning of liquids before they are applied to the human body, and also for synthetic purposes.
Während sich die Funktion einer Flusszelle in der Temperierung eines Fluids erschöpfen kann, bilden Temperiereinrichtungen häufig nur Bestandteile von Flusszellen mit weitaus umfangreicherer Funktionalität. Insbesondere in Flusszellen zur Durchführung molekulargenetischer Analysen einschließlich von PCR- oder anderer Nukleinsäure amplifizierender Prozessen ist die Temperierfunktion von großer Bedeutung, indem die Amplifikationsreaktion konstante oder wechselnde, über der Umgebungstemperatur liegende Reaktionstemperaturen, typischerweise zwischen 30°C und 95°C, erfordert. Die Herstellung temperaturbeständiger Flusszellen mit reproduzierbaren Temperierungseigenschaften, welche einen besonders schnellen und homogenen Temperaturübergang zwischen einem aktiven Temperierelement und dem zu temperierenden Fluid erlauben, insbesondere die Herstellung solcher Flusszellen als preiswerte Einwegprodukte, stellt die Fertigung vor erhebliche Probleme.While the function of a flow cell in the temperature control of a fluid can be exhausted, temperature control devices often only form components of flow cells with far more extensive functionality. The temperature control function is particularly important in flow cells for carrying out molecular genetic analyzes, including processes that amplify PCR or other nucleic acids, since the amplification reaction requires constant or changing reaction temperatures, typically between 30 ° C. and 95 ° C., which are above ambient temperature. The production of temperature-resistant flow cells with reproducible temperature control properties, which allow a particularly rapid and homogeneous temperature transition between an active temperature control element and the fluid to be temperature-controlled, in particular the production of such flow cells as inexpensive disposable products, poses considerable problems for production.
Eine Flusszelle mit einer Temperiereinrichtung ist aus der
Anordnungen der eingangs erwähnten Art mit einer eine Metallschicht aufweisenden Verbundfolie gehen aus der
Flusszellen mit Temperierkammern und Temperierelemente umfassende Anordnungen gehen aus der
Die Metallschicht der Folie sorgt aufgrund ihrer hohen, im Vergleich zum Kunststoff typischerweise ca. 1000fach höheren Wärmeleitfähigkeit für eine schnelle Wärmeausbreitung auch lateral, d.h. parallel zur Folienebene. Selbst bei nur teilweisem Anliegen eines Temperierelements an der Folie nimmt die Folie daher ausreichend schnell und gleichmäßig die Temperatur des Temperierelements an und überträgt sie weiter auf das Fluid. Fertigungsbedingte Schwankungen der Größe der Kontaktfläche zwischen Temperierelement und Folie fallen nicht ins Gewicht.Due to its high thermal conductivity, which is typically approx. 1000 times higher than that of plastic, the metal layer of the film also ensures rapid heat spreading laterally, ie parallel to the film plane. Even if a temperature control element is only partially in contact with the film, the film therefore assumes the temperature of the temperature control element sufficiently quickly and uniformly and transfers it further to the fluid. Production-related fluctuations in the size of the contact surface between the temperature control element and the film are negligible.
In einer bevorzugten Ausführungsform der Erfindung besteht die dem Fluid zugewandte Kunststoffschicht aus einem mit der Amplifikationsreaktion kompatiblen Kunststoff, vorzugsweise einem Olefinpolymer, wie PP, PE, COC oder PC.In a preferred embodiment of the invention, the plastic layer facing the fluid consists of a plastic compatible with the amplification reaction, preferably an olefin polymer such as PP, PE, COC or PC.
Die wenigstens eine Metallschicht weist vorzugsweise Aluminium oder ein magnetisierbares Metall, wie z.B. Nickel, auf. In letzterem Fall lässt sich durch Magnetkraft die Anhaftung eines Temperierelements an der Folie und damit der Wärmeübergang zwischen dem Temperierelement und der Folie verbessern.The at least one metal layer preferably comprises aluminum or a magnetizable metal, e.g. Nickel, on. In the latter case, the adhesion of a temperature control element to the film and thus the heat transfer between the temperature control element and the film can be improved by magnetic force.
Auch die dem Temperierelement zugewandte Folienschicht der Verbundfolie kann aus einem Kunststoff bestehen, insbesondere demjenigen Kunststoff, aus dem auch die dem Fluid zugewandte Schicht hergestellt ist. Zweckmäßig besteht die dem Temperierelement zugewandte Schicht aus einem Material, das einer Klebeanhaftung der Folie am Temperierelement entgegenwirkt.The film layer of the composite film facing the temperature control element can also consist of a plastic, in particular the plastic from which the layer facing the fluid is also made. The layer facing the temperature control element expediently consists of a material which counteracts adhesive adhesion of the film to the temperature control element.
In der bevorzugten Ausführungsform der Erfindung liegt die Dicke der die Folie bildenden Schichten jeweils zwischen 1 µm und 100 µm.In the preferred embodiment of the invention, the thickness of the layers forming the film is in each case between 1 μm and 100 μm.
Während es möglich wäre, die Temperierkammer ausschließlich aus der dünnen Verbundfolie herzustellen, beispielsweise durch zwei in entgegengesetzten Richtungen tiefgezogene, miteinander verschweißte oder verklebte Folienteile oder ein tiefgezogenes Folienteil verschweißt mit einem ebenen unverformten Folienteil, ist gemäß der Erfindung die Temperierkammer durch eine mit der Verbundfolie abgedeckte Ausnehmung in einem bevorzugt unter preiswertem Spritzgießen hergestellten Substrat gebildet und die Verbundfolie mit dem Substrat verbunden, vorzugsweise verschweißt oder verklebt.While it would be possible to produce the temperature control chamber exclusively from the thin composite film, for example by means of two film parts that are thermoformed, welded or glued in opposite directions, or a thermoformed film part is welded to a flat, undeformed film part, according to the invention the temperature control chamber is covered by a film that is covered with the composite film Recess is formed in a substrate, which is preferably produced using inexpensive injection molding, and the composite film is connected to the substrate, preferably welded or glued.
Vorzugsweise ist die Folie mit einer ebenen, an die Ausnehmung grenzenden Oberfläche des Substrats verbunden.The film is preferably connected to a flat surface of the substrate bordering the recess.
Das Substrat kann aus dem gleichen Kunststoff wie die dem Fluid zugewandte Schicht der Verbundfolie bestehen und somit die gesamte Temperierkammer aus nur einem Material gebildet sein, welches mit den zu temperierenden Fluiden kompatibel ist.The substrate can consist of the same plastic as the layer of the composite film facing the fluid and the entire temperature control chamber can thus be formed from only one material which is compatible with the fluids to be temperature-controlled.
Gemäß der Erfindung weist das Temperierelement einen festen, zur Wärmeübertragung gegen die Verbundfolie anlegbaren Temperierkörper auf.According to the invention, the temperature control element has a fixed temperature control body that can be placed against the composite film for heat transfer.
Das Temperierelement kann gemäß der Erfindung nur in einem an die Temperierkammer angrenzenden Randbereich, in dem die Verbundfolie z.B. mit der Oberfläche des Substrats verbunden ist, anliegen. Zweckmäßig ist die Folie in dem Randbereich derart abgestützt, dass das Temperierelement unter hohem Anpressdruck an die Folie anlegbar ist. Ist die Temperierkammer während der Temperierung hermetisch abgeschlossen, so hat das Anlegen des Temperierelements nur an einen Teil der die Temperierkammer bildenden Verbundfolie den Vorteil, dass ein durch Erwärmung und damit verbundene Ausdehnung des Fluids in der Kammer erzeugter Druckaufbau durch eine Ausdehnung der Verbundfolie und die damit einhergehende Vergrößerung des Volumens der Temperierkammer wenigstens teilweise kompensiert werden kann. Der dadurch verhinderte Druckaufbau in der Temperierkammer verringert wiederum die Anforderungen an Ventile die ggf. für einen hermetischen Abschluss der Kammer notwendig sind.According to the invention, the temperature control element can only be used in an edge area adjacent to the temperature control chamber, in which the composite film e.g. is connected to the surface of the substrate. The film is expediently supported in the edge region in such a way that the temperature control element can be applied to the film under high contact pressure. If the temperature control chamber is hermetically sealed during temperature control, the application of the temperature control element to only a part of the composite film forming the temperature control chamber has the advantage that a pressure build-up generated by heating and the associated expansion of the fluid in the chamber due to expansion of the composite film and thus accompanying increase in the volume of the temperature control chamber can be at least partially compensated for. The pressure build-up prevented in the temperature control chamber in turn reduces the valve requirements which may be necessary for a hermetic seal of the chamber.
In weiterer Ausgestaltung der Erfindung können Einrichtungen zum Ansaugen der Verbundfolie an den Temperierkörper gebildet sein. Durch festeren Andruck des Temperierkörpers gegen die Folie verbessert sich der Wärmekontakt. Besitzt die Verbundfolie eine magnetisierbare Metallschicht, kann der Temperierkörper mit einem Dauer- oder Elektromagneten versehen sein, um den Andruck des Temperierkörpers gegen die Folie durch magnetischer Wechselwirkung zu verbessern.
In einer Ausführungsform der Erfindung ist die Verbundfolie unter Vergrößerung ihrer das Fluid kontaktierenden Oberfläche tiefgezogen.In a further embodiment of the invention, devices for sucking the composite film onto the temperature control body can be formed. The thermal contact is improved by pressing the temperature control body against the film. If the composite film has a magnetizable metal layer, the temperature control body can be provided with a permanent magnet or electromagnet in order to improve the pressure of the temperature control body against the film by magnetic interaction.
In one embodiment of the invention, the composite film is deep-drawn while increasing its surface contacting the fluid.
Die Verbundfolie kann innerhalb der Flusszelle weitere Funktionen erfüllen, z.B. Abdeckfunktionen oder eine Ventilfunktion.The composite film can perform further functions within the flow cell, for example covering functions or a valve function.
Es versteht sich, dass die Flusszelle mit der Temperierkammer einen Zu- und Abfluss für das Fluid, ggf. zum Durchfluss des Fluids durch die Kammer während der Temperierung, aufweisen kann. Ebenso kann die Flusszelle ferner Kanalstrukturen, Misch- und Verteilerelemente für die Fluide, Flüssigkeitsspeicher, Reaktions- und Detektionskammern und dergleichen Elemente aufweisen, welche nach dem Stand der Technik für die Durchführung von Analysen und Synthesen in mikrofluidischen Flusszellen gebräuchlich sind. Zweckmäßig erstreckt sich die Verbundfolie nur über den Teilbereich der Flusszelle, welcher die Temperierkammer beinhaltet, um zu sichern, dass während des Temperierprozesses keine oder wenig Wärme in die übrigen Bereiche der Flusszelle abfließt.It goes without saying that the flow cell with the temperature control chamber can have an inflow and outflow for the fluid, possibly for the flow of the fluid through the chamber during the temperature control. Likewise, the flow cell can also have channel structures, mixing and distribution elements for the fluids, liquid storage, reaction and detection chambers and the like elements which are customary in the prior art for carrying out analyzes and syntheses in microfluidic flow cells. The composite film expediently extends only over the partial area of the flow cell which contains the temperature control chamber in order to ensure that little or no heat flows into the other areas of the flow cell during the temperature control process.
Da das Temperieren eines Fluids in einer Temperierkammer immer mit einer Veränderung des Volumens des Fluids verbunden ist, kann es vorteilhaft sein, dass sich die Temperierkammer während des Temperierprozesses hermetisch gegenüber angrenzenden Kanal- oder/und Funktionsbereichen verschließen lässt. Dies kann insbesondere bei Erwärmungen bis nahe an die Siedetemperatur des Fluids erforderlich sein. Dadurch wird ein aus Volumenänderung und/oder partieller Dampfbildung resultierender Abgang des Fluids aus der Temperierkammer unterbunden. Durch Lösbarkeit des Verschlusses kann das Fluid nach dem Temperierprozess weitertransportiert, -verarbeitet oder, wie z.B. bei molekulargenetischen Analysen, analysiert werden. Zum Verschließen ist es vorteilhaft, im kanalförmigen Zu- und Abfluss der Temperierkammer einen Ventilsitz zu bilden, wobei im Bereich des Ventilsitzes die Verbundfolie nicht fest mit dem Substrat verbunden ist, sondern lose und eben am Substrat anliegt. Die Dehnbarkeit der Verbundfolie erlaubt es, dass ein Fluid unter Druck vor oder nach dem Temperierprozess zwischen dem Ventilsitz und der Verbundfolie hindurchtreten und in die Kammer oder aus der Kammer heraustransportiert werden kann. Während der Temperierung werden der Zu- und Ablauf hermetisch verschlossen, indem mechanische Stempel einer externen Aktuierungseinrichtung an die im Bereich der Ventilsitze an dem Substrat anliegende Verbundfolie angedrückt werden.Since the temperature control of a fluid in a temperature control chamber is always associated with a change in the volume of the fluid, it can be advantageous for the temperature control chamber to be hermetically sealed against adjacent channel and / or functional areas during the temperature control process. This may be necessary especially when heating up to close to the boiling point of the fluid. This prevents the fluid from leaving the temperature control chamber resulting from a change in volume and / or partial vapor formation. Due to the releasability of the closure, the fluid can be transported, processed or, e.g. in molecular genetic analyzes. To close it, it is advantageous to form a valve seat in the channel-shaped inflow and outflow of the temperature control chamber, the composite film not being firmly connected to the substrate in the region of the valve seat, but lying loosely and evenly on the substrate. The extensibility of the composite film allows a fluid to pass under pressure before or after the tempering process between the valve seat and the composite film and to be transported into or out of the chamber. During the temperature control, the inlet and outlet are hermetically sealed by pressing mechanical stamps of an external actuation device against the composite film lying on the substrate in the region of the valve seats.
Die erfindungsgemäße Temperierkammer kann ferner als Flüssigkeitsspeicher dienen, um z.B. ein Reagenz vor dessen Verwendung in der Flusszelle zu speichern. Das Volumen der gespeicherten Reagenz kann dabei kleiner als das der Temperier- und Speicherkammer sein, sodass die Kammer z.B. vor einer Temperierung noch mit einem zu analysierenden und mit dem Reagenz zu mischenden Fluid vollständig oder teilweise aufgefüllt werden kann. Bei Nutzung der Temperierkammer als Speicherkammer kann vorteilhaft ein kanalförmiger Zu- und Abfluss der Temperierkammer geometrisch unterbrochen und im unterbrochenen Kanalbereich die Verbundfolie fest mit dem Substrat z.B. durch Schweißen unter Bildung einer den Kanal verschließenden Siegelnaht verbunden werden. Nach Öffnen der Siegelnaht lassen sich die Fluide mittels Druck in die Kammer hinein- und aus dieser heraustransportieren und die Verschlussstellen fortan als Ventile nutzen. Die Metallschicht in der die Speicherkammer begrenzenden Verbundfolie verhindert einen Flüssigkeits- oder Gasdurchtritt durch die Kammerwand während der Lagerung.The temperature control chamber according to the invention can also serve as a liquid store, for example to store a reagent in the flow cell before it is used. The volume of the stored reagent can be smaller than that of the tempering and storage chamber, so that the chamber, for example, before or with a fluid to be analyzed and mixed with the reagent completely or can be partially replenished. When the temperature control chamber is used as a storage chamber, a channel-shaped inflow and outflow of the temperature control chamber can advantageously be geometrically interrupted and the composite film can be firmly connected to the substrate in the interrupted channel area, for example by welding to form a sealing seam closing the channel. After opening the sealing seam, the fluids can be transported into and out of the chamber by means of pressure, and the closure points can then be used as valves. The metal layer in the composite film delimiting the storage chamber prevents liquid or gas from passing through the chamber wall during storage.
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen und der beiliegenden, sich auf diese Ausführungsbeispiele beziehenden Zeichnungen weiter erläutert. Es zeigen:
- Fig. 1
- einen Ausschnitt aus einer eine Temperierkammer aufweisenden Flusszelle,
- Fig. 2
- die Flusszelle von
Fig. 1 mit einem angesetzten Temperierelement, - Fig. 3
- die Flusszelle von
Fig. 1 mit einem Ansaugkanäle aufweisenden Temperierelement, - Fig. 4
- eine Flusszelle mit einer tiefgezogen Folie und ein Temperierelement,
- Fig. 5
- eine weitere Flusszelle mit einer tiefgezogenen Folie,
- Fig. 6
- eine Flusszelle mit einer in eine Ausnehmung in einem Substrat hinein durch Temperierelemente dehnbaren Folie,
- Fig. 7
- eine Flusszelle mit einer aus zwei dehnbaren Verbundfolien durch Auslenkung eines Temperierelements gebildeten Temperierkammer,
- Fig. 8
- eine Flusszelle mit einer aus zwei dehnbaren Verbundfolien gebildeten Temperierkammer mit Temperierelementen auf einander gegenüberliegenden Seiten,
- Fig. 9
- eine Flusszelle gemäß
Fig. 1 mit einem ein Temperierfluid führenden Temperierelement, - Fig. 10
- eine Flusszelle mit sich an eine Temperierkammer anschließenden Ventilbereichen, und
- Fig. 11
- eine Flusszelle mit einer als Speicherkammer dienenden Temperierkammer.
- Fig. 1
- a section of a flow cell having a temperature control chamber,
- Fig. 2
- the flow cell of
Fig. 1 with an attached temperature control element, - Fig. 3
- the flow cell of
Fig. 1 with a temperature control element with suction channels, - Fig. 4
- a flow cell with a thermoformed film and a temperature control element,
- Fig. 5
- another flow cell with a thermoformed film,
- Fig. 6
- a flow cell with a film which can be stretched into a recess in a substrate by means of temperature control elements,
- Fig. 7
- a flow cell with a temperature chamber formed from two stretchable composite films by deflecting a temperature control element,
- Fig. 8
- a flow cell with a temperature chamber formed from two stretchable composite films with temperature elements on opposite sides,
- Fig. 9
- a flow cell according to
Fig. 1 with a temperature control element carrying a temperature control fluid, - Fig. 10
- a flow cell with valve regions adjoining a temperature control chamber, and
- Fig. 11
- a flow cell with a tempering chamber serving as a storage chamber.
Eine in
Durch eine Ausnehmung in dem Substrat 1 und der Folie 2, welche diese Ausnehmung abdeckt, ist eine ein Fluid aufnehmende Temperierkammer 3 gebildet. Die Temperierkammer 3 steht über Kanäle 4 und 5 mit je einem Ein-/ Auslass 6 bzw. 7 in Verbindung. Es versteht sich, dass die Temperierkammer hiervon abweichend mit anderen, in der Flusszelle zu anderen Zwecken vorgesehenen Kammern verbunden oder verbindbar sein könnte.A temperature-absorbing
Die Folie 2 besteht in dem gezeigten Ausführungsbeispiel aus einem Verbund mehrerer Schichten, einer Innenschicht 8 aus einem mit Amplifikationsreaktionen verträglichen Kunststoff, einer Metallschicht 9, in dem gezeigten Beispiel aus einer Schicht Aluminium, und einer Außenschicht 10, die wie die Innenschicht 8 aus Kunststoff besteht. Die Innenschicht 9 und das Substrat 1 können aus dem gleichen Material gebildet sein, was die fluiddichte Verschweißung der Folie 2 mit dem Substrat 1 erleichtert.In the exemplary embodiment shown, the
In den nachfolgenden
Um ein in der Temperierkammer 3 befindliches Fluid auf eine gewünschte, z.B. im Rahmen der Gesamtfunktion der Flusszelle erforderliche Reaktionstemperatur zu bringen, wird gemäß
Je nach gewünschter Fluidtemperatur kann es sich bei dem Temperierelement 11 um ein Heiz- oder Kühlelement handeln. In ersterem Fall geht Wärme vom Temperierelement 11 auf das Fluid in der Temperierkammer 3 über, im zweiten Fall fließt umgekehrt Wärme vom Fluid zum Temperierelement 11.Depending on the desired fluid temperature, the
Infolge hoher Flexibilität der dünnen Folie 2, deren Gesamtschichtdicke sich im Bereich zwischen 3 µm und 300 µm bewegt, kann das Temperierelement 11 an der Folie 2 nicht derart plan anliegen, dass sich ein über die gesamte Anlagefläche gleichmäßiger Wärmeübergang ergibt. Durch die hohe Wärmeleitfähigkeit der in der Folie 2 enthaltenen Metallschicht 9 jedoch, die vor allem zur Wärmeleitung in lateraler Richtung parallel zur Folienebene imstande ist, kommt es dennoch zu einem schnellen Wärmeaustausch zwischen dem Temperierelement 11 und dem Fluid in der Temperierkammer 3, wobei sich bei gleichmäßiger Erwärmung des Fluids dessen Temperatur der Temperatur des Temperierelements 11 angleicht.As a result of the high flexibility of the
Es versteht sich, dass das Fluid während der Temperierung in der Temperierkammer 3 stillstehen oder die Temperierkammer 3 mit einer den Temperaturausgleich zulassenden Geschwindigkeit durchströmen kann.It goes without saying that the fluid can stand still in the
Ein in
In den nachfolgenden Figuren sind gleiche oder gleichwirkende Teile mit derselben Bezugszahl wie in den vorangehenden Figuren bezeichnet, wobei der betreffenden Bezugszahl der Buchstabe a, b usw. beigefügt ist.In the following figures, parts that are the same or have the same function are designated with the same reference number as in the previous figures, the relevant reference number being accompanied by the letters a, b, etc.
Bei einem in
Auch ein in
Eine Anordnung aus dem Temperierelement 11d und weiteren Temperierelementen 11d' und 11d" lässt sich gemäß Pfeil 16 verschieben, sodass wahlweise eines der Temperierelemente 11d, 11d', 11d" gemäß Pfeil 17 unter Dehnung der Folie 2d bis an den Anschlag 15 ausfahrbar ist. Das Fluid lässt sich dann aufeinanderfolgend entsprechend Temperaturen T1, T2 und T3 der Temperierelemente 11d, 11d', 11d" unterschiedlich temperieren.An arrangement of the
Ein in
Außer in einem Bereich vor einer Durchgangsöffnung 25 in dem Substrat 24 und einer an diesen Bereich angrenzenden Umgebung sind die Verbundfolien 2e, 2e' auch miteinander durch Verschweißung oder Verklebung verbunden.In addition to an area in front of a through-opening 25 in the
Ein in der Durchgangsöffnung 25 gemäß Pfeil 17e bewegbares Temperierelement 11e, kann die Verbundfolien 2e, 2e' in der in
In die Temperierkammer 3e einmündende Zu- oder Abflüsse sind in
Aus
Einem gemäß Pfeil 17f bewegbaren Temperierelement 11f liegen zwei in entgegengesetzten Richtung bewegbare, an die Verbundfolie 2f' ansetzbare Temperierelemente 26 und 27 gegenüber. Während das Temperierelement 11f die gesamte, ihm zugewandte Seite der Temperierkammer 3f und angrenzende Bereiche abdeckt, liegen die Temperierelemente 26, 27 nur gegen an die Temperierkammer 3f angrenzende Bereiche an. Entsprechend wird Wärme lateral in die Temperierkammer geleitet. Der freie, durch die tiefgezogene Verformung 13f gebildete Bereich kann sich bei Druckaufbau in der Temperierkammer 3f unter teilweisem Ausgleich des Drucks ausdehnen.A temperature control element 11f which is movable according to
Ein Temperierelement 11g ist in dem gezeigten Ausführungsbeispiel jedoch nicht, wie bei den vorangehenden Ausführungsbeispielen, durch einen festen Temperierkörper gebildet, sondern umfasst eine symmetrisch zu der Temperierkammer 3g angeordnete Kammer 18 für die Aufnahme eines temperierenden Fluids. Die Kammer 18 befindet sich in einer Ausnehmung in einem Substrat 19, das mit der Verbundfolie 2g in gleicher Weise verbunden ist, wie das Substrat 1g. Die Kammer 18 nimmt ein auf einer bestimmten Temperatur gehaltenes Fluid auf, das in dem gezeigten Ausführungsbeispiel über einen Einlass 20 und einen Kanal 21 in die Kammer 18 hinein gelangt und über einen Kanal 22 und einen Auslass 23 abfließt. In dem gezeigten Ausführungsbeispiel bestehen das Substrat 1g und das Substrat 19 aus dem gleichen Material. Auch eine Innenschicht 8g der Folie 2g gleicht im Material der dem Substrat 19 zugewandten Außenschicht 10g.In the exemplary embodiment shown, however, a temperature control element 11g is not formed by a fixed temperature control body, as in the previous exemplary embodiments, but rather comprises a
Eine in
Ein Temperierelement 11 h weist in der Mitte seiner gegen die Folie 2h anlegbaren Temperierfläche eine Ausnehmung 32 auf, in die hinein sich während einer Temperierung die Verbundfolie 2h bei in der Temperierkammer 3h steigendem Innendruck ausdehnen kann.A
Die Aktuatoren 28, 29 können einstückig mit dem Temperierelement 11h verbunden und gemeinsam mit diesem bewegbar sein.The
Claims (12)
- Arrangement comprising a flow cell and a temperature-control element, with a temperature-control chamber (3), which receives a fluid to be controlled in its temperature and the boundary wall of which is formed at least partially by a thin film (2) transmitting heat between the temperature-control element (11) and the fluid, the film being formed as a composite film (2) comprising multiple interconnected layers (8, 10), the layer (8) facing the fluid being a layer of plastic, at least one further layer (9) consisting of a metal, the temperature-control chamber (3) being formed by a recess in a substrate (1) covered with the composite film (2) and the composite film (2) being connected to the substrate,
characterized
in that the composite film (2a) can be drawn against the temperature-control element (11a) by suction channels (12) formed in the temperature-control element (11a) or in that the temperature-control element (11, 11b, 11c) only lies against the composite film (2, 2b, 2c) in a peripheral region that is adjacent to the recess in the substrate (1, 1b, 1c) and in which the composite film (2, 2b, 2c) is connected to the surface of the substrate (1, 1b, 1c). - Arrangement according to Claim 1,
characterized
in that the layer of plastic (8) facing the fluid consists of a plastic compatible with an amplification reaction, preferably an olefin polymer, such as PP, PE, COC or PC. - Arrangement according to Claim 1 or 2,
characterized
in that the at least one metal layer consists of aluminium or a magnetizable metal, for example nickel. - Arrangement according to one of Claims 1 to 3,
characterized
in that the film layer (10) facing the temperature-control element (11) consists of a plastic, in particular the same plastic as the layer (8) facing the fluid. - Arrangement according to one of Claims 1 to 4,
characterized
in that the respective layer thickness lies between 1 µm and 100 µm. - Arrangement according to one of Claims 1 to 5,
characterized
in that the composite film (2) is welded or adhesively bonded to the substrate (1). - Arrangement according to one of claims 1 to 6,
characterized
in that the temperature-control chamber (3h) can be closed by at least one valve, and in particular a valve seat (30, 31), against which the composite film (2h) loosely lies, is formed in a channel (4h, 5h), which is connected to the temperature-control chamber (3h), and which is covered by the composite film (2h) . - Arrangement according to Claim 6 or 7,
characterized
in that the substrate (1) consists of the same plastic as the layer (8) of the composite film (2) facing the fluid. - Arrangement according to one of Claims 1 to 8,
characterized
in that the temperature-control chamber (3i) can be used as a storage chamber and is formed with at least one closure, closing the storage chamber, as a predetermined breaking point (34, 35) for forming an opening. - Arrangement according to one of Claims 1 to 9,
characterized
in that the composite film (2c) is thermoformed to enlarge its surface adjacent to the fluid. - Arrangement according to one of Claims 1 to 10,
characterized
in that, in addition to the heat transmission, as a further function the composite film (2) within the flow cell is given at least one covering function and/or valve function. - Arrangement according to one of Claims 1 to 11,
characterized
in that the flow cell has an inflow and an outflow (6, 7) for the fluid, for the through-flow through the temperature-control chamber during the temperature control.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12163321.8A EP2647435B1 (en) | 2012-04-05 | 2012-04-05 | System with a fluidic cell and a tempering element |
US13/856,194 US9149802B2 (en) | 2012-04-05 | 2013-04-03 | Flow cell with a temperature-control chamber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12163321.8A EP2647435B1 (en) | 2012-04-05 | 2012-04-05 | System with a fluidic cell and a tempering element |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2647435A1 EP2647435A1 (en) | 2013-10-09 |
EP2647435B1 true EP2647435B1 (en) | 2020-08-05 |
Family
ID=45937051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12163321.8A Active EP2647435B1 (en) | 2012-04-05 | 2012-04-05 | System with a fluidic cell and a tempering element |
Country Status (2)
Country | Link |
---|---|
US (1) | US9149802B2 (en) |
EP (1) | EP2647435B1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2012086168A1 (en) * | 2010-12-21 | 2014-05-22 | 日本電気株式会社 | Sample heating method and heating control apparatus |
GB2516667A (en) | 2013-07-29 | 2015-02-04 | Atlas Genetics Ltd | An improved cartridge, cartridge reader and method for preventing reuse |
GB2516672B (en) | 2013-07-29 | 2015-05-20 | Atlas Genetics Ltd | A system and method for expelling liquid from a fluidic cartridge |
GB2516666B (en) | 2013-07-29 | 2015-09-09 | Atlas Genetics Ltd | Fluidic cartridge for nucleic acid amplification and detection |
GB2516669B (en) | 2013-07-29 | 2015-09-09 | Atlas Genetics Ltd | A method for processing a liquid sample in a fluidic cartridge |
GB2516675A (en) | 2013-07-29 | 2015-02-04 | Atlas Genetics Ltd | A valve which depressurises, and a valve system |
CN105980058A (en) | 2014-01-07 | 2016-09-28 | 达克雷诊断器材有限公司 | Fluid delivery devices, systems, and methods |
EP2962758B1 (en) * | 2014-07-01 | 2017-07-19 | ThinXXS Microtechnology AG | Flow cell having a storage space and a transport channel that can be opened at a predetermined breaking point |
EP3124118B1 (en) * | 2015-07-28 | 2018-02-28 | Panasonic Intellectual Property Management Co., Ltd. | Microchannel apparatus and pcr method |
US10682644B2 (en) * | 2016-10-07 | 2020-06-16 | Boehringer Ingelheim Vetmedica Gmbh | Cartridge, analysis system and method for testing a sample |
US20210285976A1 (en) | 2018-07-04 | 2021-09-16 | Ador Diagnostics Ltd. | System, apparatus and method for computerized automatic diagnosis |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050153430A1 (en) * | 2003-11-28 | 2005-07-14 | Yoshimitsu Ohtaka | Nucleic acid detecting cassette, nucleic and detecting apparatus utilizing nucleic acid detecting cassette, and nucleic acid detecting system utilizing nucleic acid detecting cassette |
WO2008157801A2 (en) * | 2007-06-21 | 2008-12-24 | Gen-Probe Incorporated | Instrument and receptacles for performing processes |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5074196A (en) * | 1990-09-28 | 1991-12-24 | Calspan Corporation | Flexible gas impermeable sandwich diaphragm |
US6613560B1 (en) | 1994-10-19 | 2003-09-02 | Agilent Technologies, Inc. | PCR microreactor for amplifying DNA using microquantities of sample fluid |
US6627159B1 (en) * | 2000-06-28 | 2003-09-30 | 3M Innovative Properties Company | Centrifugal filling of sample processing devices |
US6692700B2 (en) * | 2001-02-14 | 2004-02-17 | Handylab, Inc. | Heat-reduction methods and systems related to microfluidic devices |
US6575188B2 (en) * | 2001-07-26 | 2003-06-10 | Handylab, Inc. | Methods and systems for fluid control in microfluidic devices |
EP2415524A2 (en) * | 2005-03-30 | 2012-02-08 | F. Hoffmann-La Roche AG | Sealed Device |
EP1886727A1 (en) * | 2006-07-14 | 2008-02-13 | Roche Diagnostics GmbH | Analytical device |
EP1878495A1 (en) * | 2006-07-14 | 2008-01-16 | Roche Diagnostics GmbH | Analytical device for thermally treating a fluid and/or monitoring a property thereof |
EP1878497A1 (en) * | 2006-07-14 | 2008-01-16 | Roche Diagnostics GmbH | Disposable for analyzing a liquid sample by nucleic acid amplification |
WO2009054493A1 (en) * | 2007-10-26 | 2009-04-30 | Toppan Printing Co., Ltd. | Reaction chip and method for manufacturing the same |
DE102009009728A1 (en) * | 2009-02-19 | 2010-09-02 | Thinxxs Microtechnology Ag | Flow cell with integrated fluid storage |
JP5797926B2 (en) * | 2011-04-21 | 2015-10-21 | 株式会社エンプラス | Fluid handling apparatus, manufacturing method thereof, and fluid handling system |
-
2012
- 2012-04-05 EP EP12163321.8A patent/EP2647435B1/en active Active
-
2013
- 2013-04-03 US US13/856,194 patent/US9149802B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050153430A1 (en) * | 2003-11-28 | 2005-07-14 | Yoshimitsu Ohtaka | Nucleic acid detecting cassette, nucleic and detecting apparatus utilizing nucleic acid detecting cassette, and nucleic acid detecting system utilizing nucleic acid detecting cassette |
WO2008157801A2 (en) * | 2007-06-21 | 2008-12-24 | Gen-Probe Incorporated | Instrument and receptacles for performing processes |
Also Published As
Publication number | Publication date |
---|---|
US20130263940A1 (en) | 2013-10-10 |
EP2647435A1 (en) | 2013-10-09 |
US9149802B2 (en) | 2015-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2647435B1 (en) | System with a fluidic cell and a tempering element | |
EP2138233B1 (en) | Microfluid film structure for metering liquids | |
DE602004002407T2 (en) | MICROFLUID VALVE WITH ELECTRIC OPENING CONTROL | |
EP2686595B1 (en) | Microfluidic valve and microfluidic platform | |
DE102013100865B4 (en) | Valve connector | |
DE102008002336A1 (en) | Pinch valve and method for its production | |
EP2796200B1 (en) | Microfluid analysis cartridge and method for its fabrication | |
DE102011083920B4 (en) | METHOD AND DEVICE FOR PRODUCING FLUIDICALLY SEPARATED PARTIAL VOLUMES OF A LIQUID | |
DE102012206042B4 (en) | Method and device for targeted process control in a microfluidic processor with integrated active elements | |
EP3049186B1 (en) | Analytical device for performing pcr, method for operating the device and method of making the device | |
WO2006042825A1 (en) | Method for controlling valves during the thermocyclisation of a substance for the purpose of polymer chain reaction (pcr) and associated arrangement | |
EP3406340B1 (en) | Flow cell with housing component | |
DE102010028524A1 (en) | Microfluidic component, in particular peristaltic micropump, and method for its production | |
WO2010031559A1 (en) | Microfluidic valve, microfluidic pump, microfluidic system, and a production method | |
EP3866973A1 (en) | Sample holder | |
EP2522427B1 (en) | Micro-fluid device and method for manufacturing the same | |
EP3094740B1 (en) | Analysis unit for performing a nested polymerase chain reaction, analysis device, method for operating an analysis unit of said type, and method for manufacturing an analysis unit of said type | |
EP2805771B1 (en) | Fluid provision unit with a valve device and method for operating a fluid provision unit with a valve device | |
DE102023100893A1 (en) | Valve device for switching a flow path of a fluid, temperature control arrangement and method for producing | |
EP3263218A1 (en) | Microfluidic chip comprising a functional area covered with a flexible or deformable lid, and microfluidic system | |
WO2024126241A1 (en) | Microfluidic device, in particular a cartridge, with a pad for heat transfer to an analysis substrate | |
DE102016014056A1 (en) | Microfluidic chip with a functional area that is with a flexible or deformable cover, and microfluidic system | |
DE102013207193A1 (en) | Microhydraulic system, especially for use in planar microfluidic laboratories | |
DE102017205286A1 (en) | Microfluidic device and method for controlling the temperature of a working fluid | |
WO2003055589A2 (en) | Microtiter plate for parallel micro synthesis, especially at high temperatures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20140409 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20161222 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200306 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: WEBER LUTZ |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: WEBER LUTZ |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1297946 Country of ref document: AT Kind code of ref document: T Effective date: 20200815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012016257 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ALDO ROEMPLER PATENTANWALT, CH |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201105 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201106 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201105 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012016257 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
26N | No opposition filed |
Effective date: 20210507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210405 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210405 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502012016257 Country of ref document: DE Owner name: THINXXS MICROTECHNOLOGY GMBH, DE Free format text: FORMER OWNER: THINXXS MICROTECHNOLOGY AG, 66482 ZWEIBRUECKEN, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210430 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: HC Ref document number: 1297946 Country of ref document: AT Kind code of ref document: T Owner name: THINXXS MICROTECHNOLOGY GMBH, DE Effective date: 20220628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120405 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240419 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240418 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240501 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240419 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240426 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |