FI127677B - Industrial textile and use of the same - Google Patents
Industrial textile and use of the same Download PDFInfo
- Publication number
- FI127677B FI127677B FI20165149A FI20165149A FI127677B FI 127677 B FI127677 B FI 127677B FI 20165149 A FI20165149 A FI 20165149A FI 20165149 A FI20165149 A FI 20165149A FI 127677 B FI127677 B FI 127677B
- Authority
- FI
- Finland
- Prior art keywords
- textile
- machine direction
- machine
- yarns
- twisted
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D1/00—Woven fabrics designed to make specified articles
- D03D1/0094—Belts
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21F—PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
- D21F7/00—Other details of machines for making continuous webs of paper
- D21F7/08—Felts
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21F—PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
- D21F1/00—Wet end of machines for making continuous webs of paper
- D21F1/0027—Screen-cloths
- D21F1/0072—Link belts
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D13/00—Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D13/00—Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
- D03D13/004—Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft with weave pattern being non-standard or providing special effects
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D13/00—Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
- D03D13/008—Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft characterised by weave density or surface weight
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/40—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
- D03D15/44—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific cross-section or surface shape
- D03D15/46—Flat yarns, e.g. tapes or films
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D3/00—Woven fabrics characterised by their shape
- D03D3/04—Endless fabrics
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21F—PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
- D21F1/00—Wet end of machines for making continuous webs of paper
- D21F1/0027—Screen-cloths
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21F—PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
- D21F1/00—Wet end of machines for making continuous webs of paper
- D21F1/10—Wire-cloths
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2505/00—Industrial
- D10B2505/04—Filters
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Woven Fabrics (AREA)
- Paper (AREA)
Abstract
The invention relates to an industrial fabric and its use. The industrial fabric (1) comprises several machine direction (MD) yarns (2, 2a, 2b) and several cross machine direction (CMD) yarns (3). The MD-yarns are twisted relative their longitudinal axis so that the twisted yarns have sloped surfaces (4) at least on a web side surface (P) of the textile. The textile is usable in paper machine, pulp machine of filtering machine.
Description
Industrial textile and use of the same
Background of the invention
The invention relates to an industrial textile, which is intended for supporting a fibre web in a processing machine. The industrial textile comprises several machine direction yams and several cross machine direction yams.
The invention relates also to a use of an industrial textile.
The field of the invention is defined more specifically in preambles 10 of the independent claims.
Industrial textiles are used on web processing machines. During use dirt and fibres may adhere on surfaces of the industrial textile whereby properties of the industrial textile diminish. Thus, the industrial textiles need to be washed at intervals or continuously. However, cleaning of the surfaces and 15 structures of the known industrial textiles has shown to contain some problems.
Publication US 3351205 discloses non-woven filtering media comprising twisted strands and a method of making such media. The invention is adapted for use as a filter either for general use or for making belts and the 20 like for use with paper-making machines.
Brief description of the invention
An object of the invention is to provide a novel and improved industrial textile and use of the same.
The industrial textile of the invention is characterized by features of 25 characterized portion of a first independent apparatus claim.
The use of the invention is characterized by features of characterized portion of a second independent apparatus claim.
An idea of the disclosed solution is that the industrial textile comprises several machine direction yams, which are twisted relative to their Ion30 gitudinal axis. The twisted flat machine direction yams expose as slanted surfaces at least on the web side surface.
An advantage of the disclosed solution is that washing of the textile is improved since fluid sprays hitting the twisted machine direction yams are directed further from the sloping surfaces into the structure of the textile. The 35 web side surface of the textile does not include surfaces perpendicular to di
20165149 prh 21 -03- 2017 rection of the fluid sprays, but instead it contains slanted surfaces which direct the fluid sprays effectively through the textile. The structure may also allow the slanted machine direction yarns to move relative to the cross machine direction yams thereby causing mechanical loosening of dirt. The disclosed solu5 tion may also have benefits when being applied in fluid spray cutting embodiments, as will be disclosed later in this patent application.
The slanting may be achieved by providing the textile with an excess number of MD-yarns, whereby the MD-yarns do not have enough space in the CMD-direction, wherefore the MD-yarns are forced to be slanted. This 10 effect is achieved intentionally by including extra yams to the structure. Alternatively, or in addition to, the textile may be shrunk in the CMD-direction whereby the flat MD-yarns have lack of transversal space causing then the MD-yarns to be slanted.
According to an embodiment, all of the machine direction yams of 15 the textile are twisted.
According to an embodiment, the textile comprises at least one section in cross machine direction provided with twisted flat machine direction yams. Thus, it is possible to provide one or both cross direction edge portions with the twisted MD-yarns, or alternatively, to provide a central cross direction 20 portion with the twisted yams.
According to an embodiment, each of the slanted surfaces formed of the twisted flat machine direction yams appear as portions having shape of an outer surface of a segment of a truncated circular cone at least on the web side surface of the textile, when seen from the web side surface.
According to an embodiment, the textile comprises several adjacent first machine direction yams and second machine direction yams which are twisted towards opposite cross machine directions. Then, first surfaces of the flat first machine direction yarns on the web side surface are slanted towards a first longitudinal edge of the textile and second surfaces of the flat second 30 machine direction yams are slanted towards an opposite second longitudinal edge of the textile.
According to an embodiment, when comparing adjacent cross machine directions yams, the adjacent twisted flat machine direction yams are twisted into opposite directions. Then, the adjacent MD-yarns expose slanted 35 surfaces on the web side surface of the textile, which surfaces are slanted towards opposite directions in the cross machine direction.
20165149 prh 21 -03- 2017
According to an embodiment, when comparing adjacent cross machine directions yarns, the adjacent twisted flat machine direction yarns are twisted into same direction. Then, the adjacent MD-yarns expose slanted surfaces on the web side surface of the textile, which surfaces are slanted to5 wards the same direction in the cross machine direction.
According to an embodiment, at least the web side surface of the textile comprises several grooves in the cross machine direction. The grooves are between adjacent slanted surfaces formed of the twisted flat machine direction yarns exposing at the cross machine direction yarns. The transversal 10 grooves provide the web side surface with directed open space and allow washing liquid to be flow in the grooves. Thereby, penetration of the washing liquid through the textile may be increased. The grooves also improve effect of air drying devices whereby more efficient drying of the textile may be achieved after the washing measures. The grooves may extend in the transverse direc15 tion from edge to edge of the textile, or the grooves may have shorter length.
However, length of the grooves should preferably correspond at least with width of a spraying unit of a washing device or width of a blower unit of an air drying device.
According to an embodiment, the textile is a woven fabric. 20 According to an embodiment, the textile is a wound structure.
According to an embodiment, the textile is a woven fabric and has a single-layer structure so that the textile has cross machine direction yarns only in one single layer. Further, the machine direction yarns have 2-shed weaving structure.
According to an embodiment, the industrial textile is a dryer fabric for a dryer section of a paper machine.
According to an embodiment, the industrial textile is a forming fabric for a forming section of a paper machine.
According to an embodiment, the industrial textile is a filter fabric or 30 element for a filtering machine. The filtering machine may be a belt filter wherein a belt filter element comprises several twisted machine direction yarns as disclosed in this patent application.
According to an embodiment, the industrial textile is a pulp supporting fabric or textile for a pulp machine.
According to an embodiment, the industrial textile is a pulp supporting fabric or textile for a pulp machine and the supporting fabric is configured
20165149 prh 21 -03- 2017 to intentionally generate marking to a surface of a fibre web supported on the supporting fabric. Thus, the supporting fabric may generate topography to a bottom surface of the fibre web for increasing friction. The increased friction may improve running properties and controllability of the supporting fabric.
According to an embodiment, the textile has a symmetrical structure.
According to an embodiment, the web side surface and the roll side surface of the textile are identical and have the same surface properties.
According to an embodiment, the textile has high number of contact 10 points and also extremely low surface contact area. Combination of these two features in the same textile makes it unique. The textile has at least 60 contact points per square centimeter, preferably at least 64 contact points per square centimeter. The high number of contact points improves heat transfer and avoids marking since the web is well supported. It has been noted, that tex15 tiles having low surface contact area are easier to wash. Therefore, the surface contact area of the textile may be between 10-20 %. Further, the web side surface_of the textile may be treated or finished so that the surface contact area increases from an initial value. The web side surface may be polished or pressed, for example. The treatment does not influence to the num20 ber of contact points.
According to an embodiment, the textile has high number of contact points and relatively large surface contact area. This kind of textile may be used in special applications in a conventional manner. In this embodiment the number of the contact points may be as disclosed in the previous embodiment 25 and the surface contact area of the textile may be 50 % or more.
According to an embodiment, thickness of the textile is less than 1,4 mm, preferably 1,3 mm. When an effective caliper of the industrial textile is small washing and drying of the textile are facilitated.
According to an embodiment, the machine direction yams are mon30 ofilament yams. Further, cross section of the machine direction yams may be rectangular or substantially rectangular. Width of the machine direction yam may be 0.6 mm or more and height 0.4 mm or less.
According to an embodiment, cross section of the cross machine direction yams is round. The round CMD-yarns are advantageous since wash35 ing fluid flows inside the textile structure be effectively directed by curved surfaces of the round yams. Thereby, the round yarns may have positive impact
20165149 prh 21 -03- 2017 on washing of the textile. Furthermore, the round CMD-yarns may allow flat MD-yarns to slightly move relative to the CMD-yarns, whereby also mechanical dirt removal may occur.
According to an embodiment, dimensions of adjacent cross direc5 tion machine yams are substantially similar.
According to an embodiment, dimensions of adjacent cross direction machine yams differ from each other. This way, web side surface of the textile may have a relatively coarse structure. The coarse surface may comprise free voids, which facilitates washing of the textile.
According to an embodiment, the cross machine direction yams are strongly shrinking yams, whereby heat treatment of the textile is configured to cause cross direction shrinkage of the textile so that adjacent machine direction yams are being moved closer to one another. The shrinking may cause the twisting of the MD-yarns.
According to an embodiment, machine direction yarn density is 220
- 230 1/10 cm. Further, warp cover may be even 180 %, which is an extremely high value for at least in one single layer of the textile. The textile may comprise only one single layer, or alternatively, the textile may comprise a support base on which is wound the twisted MD-yarns.
According to an embodiment, cross direction machine yarn density is 60 1/10 cm.
According to an embodiment, the industrial textile disclosed above may be utilized in processing machines containing at least one water or fluid cutting device for cutting one or more edge portions of a web supported on the 25 textile. The textile comprises twisted MD-yarns in accordance with the above disclosed principles. At least at the edge portion subjected to the high cutting fluid spray is provided with the twisted MD-yarns, or alternatively, all the MDyarns may be twisted. Since the twisted MD-yarns comprise slanted surfaces facing towards the cutting spray, the twisted yams are not split or otherwise 30 damaged because of the high fluid spray. Furthermore, the cutting water, after being penetrated through the web, is directed fluently through the supporting textile having slanted yams and sufficient open voids. Therefore, the cutting water is not splashed. Thanks to this embodiment, spray cutting may be executed effectively and the cut edge has good quality.
The above disclosed embodiments may be combined in order to form suitable solutions provided with necessary features.
20165149 prh 21 -03- 2017
Brief description of the figures
Some embodiments are described in more detail in the accompanying drawings, in which
Figure 1 is a schematic perspective view of an industrial textile provided with a seam and thereby having a shape of an endless loop,
Figure 2 shows schematically a diagram presenting some features 10 of an industrial textile,
Figure 3 is a schematic view of a web side surface of an industrial textile,
Figure 4 is a schematic cross sectional view of an industrial textile seen in a machine direction,
Figure 5 is a schematic top view showing two adjacent machine direction yarns of an industrial textile,
Figure 6 is a schematic side view of a machine direction yam of an industrial textile, and
Figures 7 and 8 are schematic top views of surface topographies of 20 web side surfaces of two industrial textiles.
For the sake of clarity, the figures show some embodiments of the disclosed solution in a simplified manner. In the figures, like reference numerals identify like elements.
Detailed description of some embodiments
Figure 1 shows some basic features of a feasible industrial textile 1.
The industrial textile 1 may be a woven structure comprising machine direction yams 2 and cross machine direction yams 3, which are crossing each other. The industrial textile may be a fabric, which is flat woven and its seam ends SE1 and SE2 may be connected to each other for forming a seam S when in30 stalled on a web processing machine. The industrial textile 1 is configured to run in the machine direction MD. The industrial textile 1 comprises a web side surface P against which a web to be processed is arranged on the processing machine. An opposite side is a roll side surface which is against rolls and other machine elements of the processing machine.
20165149 prh 21 -03- 2017
Figure 2 is a diagram showing that an industrial textile may be formed by weaving, or alternatively, it may be formed by utilizing non-woven technology, such as winding. Figure 2 also indicates that industrial textiles are used in different web processing machines, such as paper machines, filtering machines and pulp machines.
Figure 3 shows a web side surface P of an industrial textile 1. The textile 1 comprises several flat machine direction yarns 2 and several cross machine direction yarns 3. Cross section of the machine direction yarns 2 may be substantially rectangular and cross section of the cross machine direction yams 3 may be round. The machine direction yams 2 are twisted relative to their longitudinal axis whereby they expose as slanted surfaces 4 on the web side surface P. As can be noted adjacent first MD-yarns 2a and second MDyarns 2b are twisted towards opposite cross machine directions. Thereby, the web side surface comprises slanted first surfaces of the flat first machine direction yams 2a and slanted second surfaces of the flat second machine direction yams 2b. Between the slanted surfaces 4 directed to opposite directions are cross machine direction grooves 5, which are indicated in Figure 3 by means of broken lines.
All the CMD-yarns may be similar yarns and may have the same cross sectional areas. Alternatively, it is possible to use two types of CMDyarns having different cross sectional areas and/or cross sectional shapes in order to provide the surfaces of the textile 1 even more open structure. In Figure 3 it is shown by means of broken lines 3a larger CMD-yarns, which alternate with smaller CMD-yarns 3. Alternatively, CMD-yarns having round cross section and CMD-yarns having flat cross sections may alternate in the textile structure for increasing free voids on the surface.
Further, the above disclosed issues may be applied also for the MD-yarns, whereby cross sectional areas and/or cross sectional shapes of the flat MD-yarns may vary in order to increase open surface of the textile. Thus, dimensions of the adjacent flat and twisted MD-yarns may be different in special cases, as well as cross sectional shapes may vary.
Figure 3 further discloses that the industrial textile may have a weaving pattern, wherein the MD-yarns 2 pass above one CMD-yarn yam 3, pass below one adjacent CMD-yarn and repeat this two-shed pattern further. This way, the disclosed industrial textile 1 may have a symmetrical one layer structure wherein the twisted MD-yarns 2 expose as slanted surfaces 4 on
20165149 prh 21 -03- 2017 both surfaces of the textile. Thereby, the roll side surface R may also comprise transversal grooves 5. When both surfaces are provided with the grooves, flow of washing liquid through the textile structure may be increased and washing result improved.
Figure 4 shows that an industrial fabric comprises slanted surfaces on a web side surface P as well as on a roll side surface R. Machine direction yarns 2 are twisted relative to their longitudinal axis as can be clearly seen from Figure 4. The structure comprises twisted first MD-yarns 2a and twisted second MD-yarns 2b twisting direction of which yarns are opposite to 10 each other. Thus, the differently slanted surfaces 4 of the MD-yarns 2a, 2b alternate on the surfaces P, R of the textile 1. When a washing liquid flow or flushing flow FF with high pressure is directed against the web side surface of the textile 1 the flow is directed from the slanted surfaces 4 of the MD-yarns 2a, 2b towards an inner structure of the textile, and is not splashed randomly 15 away from the surface P. After the liquid washing step, the textile may be dried by directing a dryer air flow against the web side surface P. The slanted surfaces 4 direct also the air flow through the textile structure. Thanks to the slanted surfaces 4, washing energy contained in the liquid and air flows is more effectively utilized for removing accumulated dirt and fibers from the tex20 tile structure. Thus, properties of the industrial textile may be recovered and operational life of the textile may be longer than in known solutions. Further, since the washing energy is directed effectively through the textile, lower pressures may be used in washing liquid sprays. Washing units with lower pressures (300 bar) are more reliable and less inexpensive compared to 25 washing units generating extremely high pressures (500 - 600 bar). An additional advantage is that washing water jets having lower pressures do not damage structures of the yams 2, 3 of the textile 1.
Figure 5 shows two adjacent machine direction yams 2a, 2b of an industrial textile 1. The MD-yarns 2a, 2b are twisted into opposite directions 30 whereby their slanted surfaces 4 on the web side surface P are also directed to different directions. Further, the slanted surfaces 4 formed of the twisted flat machine direction yams appear as portions having shape of an outer surface of a segment of a truncated circular cone 6, which shape is indicated by broken lines.
Figure 6 is a side view of a machine direction yam 2. The MD-yarn has been permanently deformed by weaving forces or other manufacturing forces of the textile, and possibly, also by means of transverse forces caused by strong shrinkage of CMD-yarns.
Figures 7 and 8 are schematic top views of surface topographies of web side surfaces P of two industrial textiles 1. Potential surface contact 5 points and surface areas are shown in the Figures 7 and 8 by using lighter colour whereas darker colour indicates non contacting areas i.e. void volume 8 on the surface. It can be noted from Figure 7, that the contact areas represent about 50 % of the total surface of the industrial textile 1. In Figure 8 the industrial fabric 1 has about 10 % surface contact area. In both embodiments 10 number of contact points is very high and still the surface contact area is low.
The drawings and the specification associated thereto is merely intended to illustrate the idea of the invention. The details of the invention may vary within the scope of the claims.
20165149 prh 21 -03- 2017
Claims
1. An industrial textile for supporting a fibre web in a processing machine, the textile (1) comprising:
a web side surface (P), which is facing towards the fibre web to be processed during use of the industrial textile;
a roll side surface (R), which is facing towards the processing machine during the use;
several machine direction (MD) yams (2) and at least some of them have flat cross sections; and several cross machine direction (CMD) yams (3);
characterized in that the textile (1) is a woven fabric and comprises several machine direction yarns (2, 2a, 2b), which are twisted relative to their longitudinal axis;
and wherein the textile comprises the twisted flat machine direction yarns (2, 2a, 2b) on at least one section in the cross machine direction of the textile, the at least one section extending in the machine direction of the textile and the twisted flat machine direction yams (2, 2a, 2b) expose as slanted surfaces (4) at least on the web side surface (P), the slanted surfaces (4) slanting towards either longitudinal edge ofthe industrial textile.
2. The textile as claimed in claim ^characterized in that all of the machine direction yams (2) are twisted.
3. The textile as claimed in claim 1 or 2, characterized in that each of the slanted surfaces (4) formed of the twisted flat machine direction yams (2) appear as portions having shape of an outer surface of a segment of a truncated circular cone (6) at least on the web side surface (P) of the textile (1) when seen from the web side surface (P).
4. The textile as claimed in any of the preceding claims 1 to 3, characterized in that the textile (1) comprises several adjacent first machine direction yams (2a) and second machine direction yams (2b) which are twisted towards opposite cross machine directions (CMD), whereby first surfaces (4) of the flat first machine direction yams (2a) on the web side surface (P) are slanted to11 wards a first longitudinal edge of the textile (1) and second surfaces (4) of the flat second machine direction yams (2b) are slanted towards an opposite second longitudinal edge of the textile (1).
5. The textile as claimed in any of the preceding claims 1 to 4, characterized in that at least the web side surface (P) of the textile (1) comprises grooves (5) in the cross machine direction (CMD), the grooves (5) being between adjacent slanted surfaces (4) formed of the twisted flat machine direction yams (2a, 2b) exposing at the cross machine direction yams (3).
6. The textile as claimed in any of the preceding claims 1 to 5, characterized in that the textile (1) is a woven fabric and has a single-layer structure so that the textile (1) has cross machine direction yarns (3) only in one single layer;
and the machine direction yams (2, 2a, 2b) have 2-shed weaving structure.
7. The textile as claimed in any one of the preceding claims 1 to 6, characterized in that the textile (1) is a dryer fabric for a dryer section of a paper machine.
8. The textile as claimed in any one of the preceding claims 1 to 6, characterized in that the textile (1) is a pulp supporting fabric for a pulp machine.
9. A use of an industrial textile, wherein the textile (1), which is in accordance with any one of the preceding claims 1 to 9, is used in a paper machine, pulp machine or filtering machine; and wherein high pressure fluid sprays are directed to the web side surface (P) of the textile (1) for washing the textile structure, whereby fluid sprays hitting the twisted machine direction yams (2, 2a, 2b) are directed further from the sloping surfaces (4) into the structure of the textile (1).
Claims (9)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20165149A FI127677B (en) | 2016-02-26 | 2016-02-26 | Industrial textile and use of the same |
KR1020187022575A KR102164818B1 (en) | 2016-02-26 | 2017-02-17 | Industrial textiles and their uses |
EP17755879.8A EP3420132A4 (en) | 2016-02-26 | 2017-02-17 | Industrial textile and use of the same |
US16/075,866 US10633793B2 (en) | 2016-02-26 | 2017-02-17 | Industrial textile and use of the same |
CN201780010036.XA CN108603338B (en) | 2016-02-26 | 2017-02-17 | Industrial textile and use thereof |
PCT/FI2017/050103 WO2017144773A1 (en) | 2016-02-26 | 2017-02-17 | Industrial textile and use of the same |
JP2018542184A JP7023850B2 (en) | 2016-02-26 | 2017-02-17 | Industrial textiles and their use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20165149A FI127677B (en) | 2016-02-26 | 2016-02-26 | Industrial textile and use of the same |
Publications (2)
Publication Number | Publication Date |
---|---|
FI20165149A FI20165149A (en) | 2017-08-27 |
FI127677B true FI127677B (en) | 2018-11-30 |
Family
ID=59685899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FI20165149A FI127677B (en) | 2016-02-26 | 2016-02-26 | Industrial textile and use of the same |
Country Status (7)
Country | Link |
---|---|
US (1) | US10633793B2 (en) |
EP (1) | EP3420132A4 (en) |
JP (1) | JP7023850B2 (en) |
KR (1) | KR102164818B1 (en) |
CN (1) | CN108603338B (en) |
FI (1) | FI127677B (en) |
WO (1) | WO2017144773A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI127677B (en) * | 2016-02-26 | 2018-11-30 | Valmet Technologies Oy | Industrial textile and use of the same |
FI128025B (en) * | 2017-03-24 | 2019-08-15 | Valmet Technologies Oy | An industrial textile |
FI130870B1 (en) * | 2020-06-04 | 2024-04-30 | Valmet Technologies Oy | An industrial textile for manufacturing a fibrous web |
FI131039B1 (en) | 2021-06-04 | 2024-08-12 | Valmet Technologies Inc | Monofilament yarn |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3351205A (en) | 1962-05-18 | 1967-11-07 | Lindsay Wire Weaving Co | Twisted strands and non-woven filtering media made of such strands |
US4290209A (en) * | 1978-05-17 | 1981-09-22 | Jwi Ltd. | Dryer fabric |
US4438788A (en) * | 1980-09-30 | 1984-03-27 | Scapa Inc. | Papermakers belt formed from warp yarns of non-circular cross section |
US4755420A (en) * | 1984-05-01 | 1988-07-05 | Jwi Ltd. | Dryer fabric having warp strands made of melt-extrudable polyphenylene sulphide |
ZA907421B (en) * | 1989-09-19 | 1991-08-28 | Jwi Ltd | Press section dewatering fabric |
US5092373A (en) * | 1990-06-06 | 1992-03-03 | Asten Group, Inc. | Papermakers fabric with orthogonal machine direction yarn seaming loops |
US5230371A (en) * | 1990-06-06 | 1993-07-27 | Asten Group, Inc. | Papermakers fabric having diverse flat machine direction yarn surfaces |
US5148838A (en) * | 1990-06-06 | 1992-09-22 | Asten Group, Inc. | Papermakers fabric with orthogonal machine direction yarn seaming loops |
US5089324A (en) * | 1990-09-18 | 1992-02-18 | Jwi Ltd. | Press section dewatering fabric |
SE468052B (en) | 1991-03-05 | 1992-10-26 | Scandiafelt Ab | SHARP FOR WOVEN |
KR960016351B1 (en) | 1993-11-29 | 1996-12-09 | 우성산업 주식회사 | Operation control circuit and control method in boiler |
US5998310A (en) * | 1996-11-19 | 1999-12-07 | Bowen, Jr.; David | Industrial fabrics containing finned fibers designed to resist distortion |
FI107550B (en) * | 2000-05-18 | 2001-08-31 | Tamfelt Oyj Abp | Drier wire |
JP4010866B2 (en) * | 2002-05-13 | 2007-11-21 | シキボウ株式会社 | Dryer canvas for paper machines |
US7476293B2 (en) * | 2004-10-26 | 2009-01-13 | Voith Patent Gmbh | Advanced dewatering system |
JP4504740B2 (en) | 2004-06-10 | 2010-07-14 | 東芝Itコントロールシステム株式会社 | Computed tomography equipment |
US20060068665A1 (en) * | 2004-09-29 | 2006-03-30 | Heinz Pernegger | Seamed felt for forming fiber cement articles and related methods |
FI118694B (en) * | 2006-04-27 | 2008-02-15 | Tamfelt Oyj Abp | dryer screen |
US7604026B2 (en) | 2006-12-15 | 2009-10-20 | Albany International Corp. | Triangular weft for TAD fabrics |
FI7901U1 (en) * | 2007-03-20 | 2008-06-25 | Tamfelt Pmc Oy | Drying wire and drying wire seam area |
JP5400707B2 (en) * | 2010-05-25 | 2014-01-29 | ダイワボウホールディングス株式会社 | Dryer canvas fittings |
JP5711553B2 (en) | 2011-01-31 | 2015-05-07 | ダイワボウホールディングス株式会社 | Industrial fabric |
US8850075B2 (en) | 2011-07-06 | 2014-09-30 | Microsoft Corporation | Predictive, multi-layer caching architectures |
US9890501B2 (en) * | 2012-07-27 | 2018-02-13 | Voith Patent Gmbh | Dryer fabric |
US10689807B2 (en) | 2013-03-14 | 2020-06-23 | Albany International Corp. | Industrial fabrics comprising infinity shape coils |
FI20155205A (en) * | 2015-03-24 | 2016-09-25 | Valmet Technologies Oy | The drying wire |
US9879376B2 (en) * | 2015-08-10 | 2018-01-30 | Voith Patent Gmbh | Structured forming fabric for a papermaking machine, and papermaking machine |
DE102016200230A1 (en) * | 2016-01-12 | 2017-08-17 | Voith Patent Gmbh | dryer |
WO2017126009A1 (en) * | 2016-01-18 | 2017-07-27 | 旭化成株式会社 | Medical fabric |
FI127677B (en) * | 2016-02-26 | 2018-11-30 | Valmet Technologies Oy | Industrial textile and use of the same |
FI20175315A1 (en) * | 2017-04-05 | 2018-10-06 | Valmet Technologies Oy | An industrial textile, a method for measuring a condition on the surface of the industrial textile and a use of the industrial textile |
-
2016
- 2016-02-26 FI FI20165149A patent/FI127677B/en active IP Right Grant
-
2017
- 2017-02-17 CN CN201780010036.XA patent/CN108603338B/en active Active
- 2017-02-17 WO PCT/FI2017/050103 patent/WO2017144773A1/en active Application Filing
- 2017-02-17 EP EP17755879.8A patent/EP3420132A4/en active Pending
- 2017-02-17 US US16/075,866 patent/US10633793B2/en active Active
- 2017-02-17 KR KR1020187022575A patent/KR102164818B1/en active IP Right Grant
- 2017-02-17 JP JP2018542184A patent/JP7023850B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2017144773A1 (en) | 2017-08-31 |
CN108603338B (en) | 2019-12-10 |
US20190040579A1 (en) | 2019-02-07 |
JP2019504937A (en) | 2019-02-21 |
JP7023850B2 (en) | 2022-02-22 |
US10633793B2 (en) | 2020-04-28 |
FI20165149A (en) | 2017-08-27 |
EP3420132A1 (en) | 2019-01-02 |
KR20180100635A (en) | 2018-09-11 |
CN108603338A (en) | 2018-09-28 |
KR102164818B1 (en) | 2020-10-14 |
EP3420132A4 (en) | 2019-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7203177B2 (en) | Multilayer belt for creping and structuring in the tissue paper manufacturing process | |
RU2429322C1 (en) | Paper-making machine | |
FI127677B (en) | Industrial textile and use of the same | |
JP3869858B2 (en) | Paper machine cloth made of bicomponent fibers bonded together | |
JP5596688B2 (en) | Fluid-permeable belt for tissue, towel and non-woven manufacturing | |
RU2361976C2 (en) | Perfected system for drying | |
US6585006B1 (en) | Papermaker's forming fabric with companion yarns | |
FI88058B (en) | Double fabric with sixteen heddles | |
RU2330910C2 (en) | Drying fabric with airways on backside | |
EP1290275B1 (en) | Method and device for producing a nonwoven material | |
US8540849B2 (en) | Press felt for papermaking | |
US3159530A (en) | Papermaking machine | |
JP2006507425A (en) | Multi-layered forming fabric with twisted weft upper layer and weft special intermediate layer | |
JP2006505713A (en) | Dryer cloth with air flow path | |
JP6192945B2 (en) | Press felt for papermaking | |
US20220389654A1 (en) | System and method for cleaning of belts and/or fabrics used on through air drying papermaking machines | |
JPH09296385A (en) | Cleaning of industrial belt and cleaning belt used therefor | |
KR20060101798A (en) | Papermaker's press felt with long machine direction floats in base fabric | |
JPWO2009069403A1 (en) | Industrial fabrics for papermaking and pressing | |
JP4283403B2 (en) | Double-layer fabric for papermaking | |
FI92741B (en) | A press felt | |
KR20240077438A (en) | Press felt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FG | Patent granted |
Ref document number: 127677 Country of ref document: FI Kind code of ref document: B |