JP2001345314A - Device and method for heat treatment - Google Patents
Device and method for heat treatmentInfo
- Publication number
- JP2001345314A JP2001345314A JP2000162769A JP2000162769A JP2001345314A JP 2001345314 A JP2001345314 A JP 2001345314A JP 2000162769 A JP2000162769 A JP 2000162769A JP 2000162769 A JP2000162769 A JP 2000162769A JP 2001345314 A JP2001345314 A JP 2001345314A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- reaction vessel
- heating
- processing gas
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Muffle Furnaces And Rotary Kilns (AREA)
- Furnace Details (AREA)
- Chemical Vapour Deposition (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば半導体ウエ
ハなどの被処理体に対して成膜処理を行う熱処理装置及
びその方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment apparatus and a method for performing a film forming process on an object to be processed such as a semiconductor wafer.
【0002】[0002]
【従来の技術】半導体デバイスの製造プロセスである成
膜プロセスの一つにCVD(ChemicalVapor Depositio
n)と呼ばれる処理がある。この手法は反応管内に処理ガ
スを導入して化学的気相反応により半導体ウエハ(以下
「ウエハ」という)の表面に成膜するものである。この
ような成膜プロセスをバッチで行う装置の一つとして縦
型熱処理装置がある。この装置は、例えば図5に示すよ
うに、筒状のマニホ−ルド11の上に設けられた縦型の
反応管12と、この反応管12を囲むように設けられた
ヒ−タ13と、マニホ−ルド11を通じて突入されたガ
ス導入管14と、マニホ−ルドに接続された排気管15
とを備えて構成されている。2. Description of the Related Art A CVD (Chemical Vapor Depositio) is one of the film forming processes as a semiconductor device manufacturing process.
There is a process called n). In this method, a processing gas is introduced into a reaction tube, and a film is formed on a surface of a semiconductor wafer (hereinafter, referred to as a “wafer”) by a chemical vapor reaction. As one of apparatuses for performing such a film forming process in batch, there is a vertical heat treatment apparatus. This apparatus comprises, for example, as shown in FIG. 5, a vertical reaction tube 12 provided on a cylindrical manifold 11 and a heater 13 provided so as to surround the reaction tube 12. A gas introduction pipe 14 that has entered through the manifold 11 and an exhaust pipe 15 that is connected to the manifold.
It is comprised including.
【0003】このような装置ではウエハボ−トと呼ばれ
る保持具16に多数枚のウエハWを棚状に保持させてマ
ニホ−ルド11の下端の開口部から反応管12内に搬入
させ、ガス供給源17からガス導入管14を介して処理
ガスを反応管12内に導入し、成膜処理を行っていた。
この際処理ガスは反応管12内にてヒータ13により加
熱されることにより分解され、さらに反応温度以上に加
熱されることにより所定の反応が行われて、この反応物
がウエハW上に堆積して所定の膜が形成される。In such an apparatus, a large number of wafers W are held in a shelf on a holder 16 called a wafer boat, and are carried into the reaction tube 12 through the opening at the lower end of the manifold 11, and a gas supply source is provided. A processing gas was introduced into the reaction tube 12 from 17 via a gas introduction tube 14 to perform a film forming process.
At this time, the processing gas is decomposed by being heated by the heater 13 in the reaction tube 12, and is further heated to a reaction temperature or higher to perform a predetermined reaction. Thus, a predetermined film is formed.
【0004】[0004]
【発明が解決しようとする課題】ところで上述の装置に
てウエハWの成膜を行うと、図6に示すように、ウエハ
の中央部の膜厚が周縁部よりも大きくなる傾向がある。
この理由については次のように考えられる。つまり上述
のいわゆるバッチ炉と呼ばれる縦型熱処理装置では、処
理ガスはガス導入管14により反応管12内に導入さ
れ、ウエハボ−ト16に保持されているウエハWには処
理ガスがウエハWの周縁側から供給され、ウエハ上を周
縁部から中央部に向かって流れることになるので、処理
ガスの濃度はウエハの中央部の方が周縁部よりも高くな
ってしまう。By the way, when the film is formed on the wafer W by the above-described apparatus, as shown in FIG. 6, the film thickness at the central portion of the wafer tends to be larger than that at the peripheral portion.
The reason is considered as follows. That is, in the above-described vertical heat treatment apparatus called a batch furnace, the processing gas is introduced into the reaction tube 12 by the gas introduction pipe 14, and the processing gas is supplied to the wafer W held by the wafer boat 16 around the wafer W. Since the gas is supplied from the edge side and flows on the wafer from the peripheral portion toward the central portion, the concentration of the processing gas is higher in the central portion of the wafer than in the peripheral portion.
【0005】またウエハを処理温度まで昇温させる過程
では、ウエハWの周縁部における放熱量が中央部よりも
大きくなるので、ウエハ中央部の温度が周縁部よりも高
くなる。このようにウエハWの周縁部と中央部との間に
生じた温度差及び処理ガスの濃度差により、温度及び処
理ガスの濃度の高いウエハWの中央部の方が周縁部に対
して成膜反応が促進され、これによりウエハWの中央部
の膜厚が周縁部よりも大きくなってしまうと推察され
る。In the process of raising the temperature of the wafer to the processing temperature, the amount of heat radiation at the peripheral portion of the wafer W becomes larger than at the central portion, so that the temperature at the central portion of the wafer W becomes higher than that at the peripheral portion. As described above, due to the temperature difference and the concentration difference of the processing gas generated between the peripheral portion and the central portion of the wafer W, the central portion of the wafer W having a higher temperature and the concentration of the processing gas forms a film on the peripheral portion. It is presumed that the reaction is accelerated, whereby the film thickness at the central portion of the wafer W becomes larger than the peripheral portion.
【0006】一方半導体製造プロセスでは、デバイスの
前工程で生成された膜に悪影響を与えないようにするた
め、また省エネルギー化を図るために、低温プロセスが
望まれている。しかしながら上述のウエハ中央部での膜
厚が大きくなるという現象は、プロセス温度が低くなる
とより顕著になる傾向にあることから、現状の装置では
低温プロセスの実現は困難である。On the other hand, in a semiconductor manufacturing process, a low-temperature process is desired in order not to adversely affect a film formed in a previous step of a device and to save energy. However, the phenomenon that the film thickness at the central portion of the wafer becomes large tends to become more remarkable when the process temperature is lowered. Therefore, it is difficult to realize a low-temperature process with the current apparatus.
【0007】そこで本発明者は、処理ガスを反応管12
に導入する前に、反応管12の外部に設けられた加熱器
(図示せず)により所定温度まで予備加熱することによ
り活性化し、十分に加熱された処理ガスを反応管12に
導入することにより、反応管12内のプロセス温度を低
下させる技術を検討している。前記加熱器は、例えば処
理ガスを導入して加熱する加熱室と、加熱室の外部に設
けられ、加熱室を加熱するヒータと、を備えている。こ
の技術では、処理ガスは予め加熱器で例えば分解温度に
近い温度まで予備加熱されているので、十分に活性化さ
れた処理ガスが成膜領域に導入され、ウエハ周縁部に達
したときに十分反応が起こる状態になっている。このた
め中央部での反応状態と周縁部での反応状態とが揃うの
で、反応管12内のプロセス温度が低くても膜厚均一性
の高い処理を行うことができる。Therefore, the present inventor has proposed that the processing gas be supplied to the reaction tube 12.
Before the gas is introduced into the reaction tube 12, it is activated by preheating to a predetermined temperature by a heater (not shown) provided outside the reaction tube 12, and a sufficiently heated processing gas is introduced into the reaction tube 12. A technique for lowering the process temperature in the reaction tube 12 is being studied. The heater includes, for example, a heating chamber for heating by introducing a processing gas, and a heater provided outside the heating chamber and heating the heating chamber. In this technique, since the processing gas is preliminarily heated by a heater to a temperature close to, for example, a decomposition temperature, a sufficiently activated processing gas is introduced into the film formation region, and when the processing gas reaches the periphery of the wafer, the processing gas is sufficiently heated. A reaction is taking place. For this reason, the reaction state at the center and the reaction state at the peripheral part are the same, so that a process with high film thickness uniformity can be performed even if the process temperature in the reaction tube 12 is low.
【0008】しかしながら反応管12内を減圧してプロ
セスを行う減圧CVD処理では、加熱器の内部も減圧さ
れてしまうが、加熱器では内部の圧力が例えば200T
orr程度に減圧されると、対流が起こりにくくなる。
また加熱器内の圧力が低いと、処理ガスの分圧も小さく
なるので、加熱器内における処理ガスの対流による熱伝
導が起こりにくい。このため加熱器の内部まで熱が伝達
されずに、処理ガスへの伝熱効率が悪く、処理ガスを十
分活性化する温度まで加熱することは困難である。[0008] However, in the low pressure CVD process in which the process is performed by reducing the pressure in the reaction tube 12, the pressure inside the heater is also reduced.
When the pressure is reduced to about orr, convection hardly occurs.
In addition, when the pressure in the heater is low, the partial pressure of the processing gas also becomes small, so that heat conduction due to convection of the processing gas in the heater hardly occurs. For this reason, heat is not transferred to the inside of the heater, the heat transfer efficiency to the processing gas is low, and it is difficult to heat the processing gas to a temperature at which the processing gas is sufficiently activated.
【0009】本発明はこのような事情の下になされたも
のであり、その目的は、被処理体に対して例えば成膜処
理を行うにあたって、加熱部にて予備加熱された処理ガ
スを反応容器に供給することにより、形成された膜の膜
厚について高い均一性が得られ、プロセス温度の低温下
に寄与することができる熱処理装置及びその方法を提供
することにある。The present invention has been made under such circumstances, and an object of the present invention is to provide a method of, for example, forming a film on an object to be processed by supplying a processing gas preheated by a heating unit to a reaction vessel. The object of the present invention is to provide a heat treatment apparatus and a method thereof which can obtain high uniformity in the film thickness of a formed film by being supplied to the substrate and contribute to a low process temperature.
【0010】[0010]
【課題を解決するための手段】このため本発明は、真空
排気手段により所定の真空度に減圧された反応容器内に
被処理体を搬入すると共に、この反応容器内を所定の処
理温度に加熱し、ガス導入路により反応容器内に処理ガ
スを供給して、被処理体に対して処理を行う熱処理装置
において、前記ガス導入路に設けられ、処理ガスを反応
容器に供給する前に当該処理ガスを所定温度に加熱する
ための加熱部と、前記加熱部と反応容器との間の前記ガ
ス導入路に形成されたオリフィスと、を備え、オリフィ
スの圧力損失により、前記加熱部内の圧力を前記反応容
器の圧力よりも高くした状態で、ガス導入路より加熱部
内に処理ガスを供給し、これにより処理ガスを所定温度
に予備加熱し、この予備加熱された処理ガスを前記反応
容器に供給することを特徴とする。ここで前記加熱部と
しては、処理ガスを加熱するための加熱室と、この加熱
室を囲むように設けられた加熱室を加熱するためのヒー
タ部と、を備えたものが用いられる。According to the present invention, an object to be processed is loaded into a reaction vessel depressurized to a predetermined degree of vacuum by a vacuum exhaust means, and the inside of the reaction vessel is heated to a predetermined processing temperature. In a heat treatment apparatus for supplying a processing gas into a reaction vessel through a gas introduction path and performing a process on an object to be processed, the heat treatment apparatus is provided in the gas introduction path and performs the processing before supplying the processing gas to the reaction vessel. A heating unit for heating a gas to a predetermined temperature, and an orifice formed in the gas introduction passage between the heating unit and the reaction vessel, wherein the pressure in the heating unit is reduced by the pressure loss of the orifice. In a state where the pressure is higher than the pressure of the reaction vessel, the processing gas is supplied from the gas introduction path into the heating section, thereby preheating the processing gas to a predetermined temperature, and supplying the preheated processing gas to the reaction vessel. This The features. Here, as the heating unit, one provided with a heating chamber for heating the processing gas and a heater unit for heating a heating chamber provided so as to surround the heating chamber is used.
【0011】このような熱処理装置では、前記反応容器
の外部に設けられた加熱部に前記処理ガスを供給して、
この処理ガスを予備加熱する工程と、この予備加熱され
た処理ガスを前記反応容器に導入する工程と、を備え、
前記処理ガスを予備加熱する工程は、前記加熱部と反応
容器との間に設けられたガス導入路に、前記ガス導入路
よりも内径が小さいオリフィスを形成し、このオリフィ
スの圧力損失により、前記加熱部の圧力を前記反応容器
の圧力よりも高くした状態で行うことを特徴とする熱処
理方法が実施される。In such a heat treatment apparatus, the processing gas is supplied to a heating section provided outside the reaction vessel,
A step of preheating the processing gas; and a step of introducing the preheated processing gas into the reaction vessel.
The step of preheating the processing gas forms an orifice having a smaller inner diameter than the gas introduction path in a gas introduction path provided between the heating unit and the reaction vessel, and the pressure loss of the orifice causes A heat treatment method is performed in which the heating is performed in a state where the pressure of the heating unit is higher than the pressure of the reaction vessel.
【0012】このようにすると、反応容器において減圧
プロセスを実施した場合であっても、オリフィスの圧力
損失により前記加熱部の減圧の程度が前記反応容器より
も小さくなる。このためこの加熱部では十分に対流が起
こり、また処理ガスの分圧も大きくなるので当該加熱部
は十分に内部まで加熱され、処理ガスの加熱効率が向上
する。このように加熱部にて処理ガスを所定温度例えば
分解しない程度に活性化する温度に予備加熱できるの
で、反応容器におけるプロセス温度を低下させることが
でき、このような低温プロセスにおいても成膜された膜
の膜厚について高い均一性を確保できる。With this configuration, even when the depressurization process is performed in the reaction vessel, the degree of decompression in the heating section becomes smaller than that in the reaction vessel due to the pressure loss of the orifice. For this reason, convection occurs sufficiently in the heating section, and the partial pressure of the processing gas also increases, so that the heating section is sufficiently heated to the inside, and the heating efficiency of the processing gas is improved. As described above, since the processing gas can be preheated in the heating unit to a predetermined temperature, for example, a temperature at which the processing gas is activated to a degree that does not decompose, the process temperature in the reaction vessel can be reduced, and a film is formed even in such a low-temperature process. High uniformity of the film thickness can be ensured.
【0013】また他の発明は、反応容器内に被処理体を
搬入すると共に、この反応容器内を所定の処理温度に加
熱し、ガス導入路により反応容器内に処理ガスを供給し
て、被処理体に対して処理を行う熱処理装置において、
前記ガス導入路に設けられ、処理ガスを反応容器に供給
する前に当該処理ガスを所定温度に加熱するための加熱
部と、前記加熱部と反応容器との間の前記ガス導入路
は、内管とこの外側に間隔をおいて設けられた外管とか
らなる二重管よりなり、ガス導入路より加熱部内に処理
ガスを供給して処理ガスを所定温度に予備加熱し、この
予備加熱された処理ガスを前記ガス導入路の内管を介し
て前記反応容器に供給することを特徴とする。According to another aspect of the present invention, an object to be processed is carried into a reaction vessel, the interior of the reaction vessel is heated to a predetermined processing temperature, and a processing gas is supplied into the reaction vessel through a gas introduction path. In a heat treatment apparatus that performs processing on a processing body,
A heating unit provided in the gas introduction path, for heating the processing gas to a predetermined temperature before supplying the processing gas to the reaction vessel, and the gas introduction path between the heating unit and the reaction vessel, It consists of a double pipe consisting of a pipe and an outer pipe provided at an interval outside of the pipe. The processing gas is supplied into the heating section from the gas introduction path to preheat the processing gas to a predetermined temperature. The process gas is supplied to the reaction vessel through an inner pipe of the gas introduction path.
【0014】このような熱処理装置では、前記加熱部と
反応容器との間の前記ガス導入路は二重管よりなり、予
備加熱された処理ガスは内管を介して反応容器に供給さ
れるので、当該二重管の内部を通気中の処理ガスの放熱
が抑えられ、高い温度を維持した状態で処理ガスを反応
容器に導入することができる。In such a heat treatment apparatus, the gas introduction path between the heating section and the reaction vessel is formed of a double pipe, and the preheated processing gas is supplied to the reaction vessel via the inner pipe. The heat radiation of the processing gas flowing through the inside of the double pipe is suppressed, and the processing gas can be introduced into the reaction vessel while maintaining a high temperature.
【0015】またこの際、前記ガス導入路の二重管の外
管を屈曲してフランジとし、このフランジと前記反応容
器とをシール部材を介して接合するようにしてもよく、
この場合には外管の温度は内管よりも低いので、例えば
樹脂製のシール部材を熱により劣化させることなく、ガ
ス導入路と反応容器とを接合させることができる。At this time, the outer pipe of the double pipe of the gas introduction path may be bent to form a flange, and the flange and the reaction vessel may be joined via a sealing member.
In this case, since the temperature of the outer tube is lower than that of the inner tube, the gas introduction path and the reaction vessel can be joined without deteriorating the resin sealing member by heat, for example.
【0016】さらに他の発明は、真空排気手段により所
定の真空度に減圧された反応容器内に被処理体を搬入す
ると共に、この反応容器内を所定の処理温度に加熱し、
ガス導入路により反応容器内に処理ガスを供給して、被
処理体に対して処理を行う熱処理装置において、前記ガ
ス導入路に設けられ、前記処理ガスが通気するガス室
と、前記ガス室を処理ガスの通気方向に複数に分割する
ための隔壁と、前記隔壁に形成された、前記ガス導入路
よりも内径が小さい通気孔と、前記分割されたガス室の
うち上流側のガス室を加熱室とし、この加熱室を囲むよ
うに設けられた、加熱室を加熱するためのヒータ部と、
を備え、前記隔壁に形成された通気孔の圧力損失によ
り、前記加熱室の圧力を前記反応容器の圧力よりも高く
した状態で、ガス導入路より加熱室内に処理ガスを供給
し、これにより処理ガスを所定温度に予備加熱し、この
予備加熱された処理ガスを前記反応容器に供給すること
を特徴とする。このような構成においても、前記通気孔
の圧力損失により、前記加熱室の減圧の程度が前記反応
容器より小さくなるので、この加熱室における処理ガス
の加熱効率が向上する。According to still another aspect of the present invention, an object to be processed is carried into a reaction vessel depressurized to a predetermined degree of vacuum by a vacuum exhaust means, and the inside of the reaction vessel is heated to a predetermined processing temperature.
In a heat treatment apparatus for supplying a processing gas into a reaction vessel through a gas introduction path and performing processing on an object to be processed, a gas chamber provided in the gas introduction path and through which the processing gas flows, and a gas chamber, A partition for dividing the processing gas into a plurality of gas flow directions, a ventilation hole formed in the partition and having an inner diameter smaller than the gas introduction path, and heating an upstream gas chamber of the divided gas chambers. And a heater unit for heating the heating chamber, which is provided so as to surround the heating chamber,
A process gas is supplied into the heating chamber from the gas introduction path in a state where the pressure of the heating chamber is higher than the pressure of the reaction vessel due to the pressure loss of the ventilation hole formed in the partition wall. The gas is preheated to a predetermined temperature, and the preheated processing gas is supplied to the reaction vessel. Even in such a configuration, the degree of pressure reduction in the heating chamber becomes smaller than that in the reaction vessel due to the pressure loss of the ventilation hole, and thus the heating efficiency of the processing gas in the heating chamber is improved.
【0017】ここで加熱室の内部に通気抵抗体を設け、
この通気抵抗体と処理ガスとを接触させて、当該処理ガ
スを所定温度に予備加熱することが望ましく、この場合
にはさらに処理ガスの加熱効率が向上する。Here, a ventilation resistor is provided inside the heating chamber,
It is desirable to bring the ventilation resistor into contact with the processing gas and preheat the processing gas to a predetermined temperature. In this case, the heating efficiency of the processing gas is further improved.
【0018】[0018]
【発明の実施の形態】先ず図1により本発明方法を実施
する縦型熱処理装置の一例について説明する。図1中2
は、例えば石英で作られた内管2a及び外管2bよりな
る二重管構造の反応管であり、反応管2の下部側には金
属製の筒状のマニホ−ルド21が設けられている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, an example of a vertical heat treatment apparatus for carrying out the method of the present invention will be described with reference to FIG. 2 in FIG.
Is a reaction tube having a double tube structure including an inner tube 2a and an outer tube 2b made of, for example, quartz, and a metal cylindrical manifold 21 is provided below the reaction tube 2. .
【0019】前記内管2aは上端が開口されており、マ
ニホ−ルド21の内方側にて支持されている。外管2b
は上端が塞がれており、下端がマニホ−ルド21の上端
に気密に接合されている。この例では、内管2a,外管
2b及びマニホ−ルド21により反応容器が構成されて
いる。22はベ−スプレ−トである。The inner tube 2a has an open upper end, and is supported on the inner side of the manifold 21. Outer tube 2b
The upper end is closed, and the lower end is air-tightly joined to the upper end of the manifold 21. In this example, a reaction vessel is constituted by the inner tube 2a, the outer tube 2b, and the manifold 21. 22 is a base plate.
【0020】前記反応管2内には、例えば図2に示すよ
うに、多数枚例えば60枚程度の被処理体をなすウエハ
Wが各々水平な状態で上下に間隔をおいて保持具である
ウエハボ−ト23に棚状に載置されており、このウエハ
ボ−ト23は蓋体24の上に保温筒(断熱体)25を介
して保持されている。前記蓋体24は、ウエハボ−ト2
3を反応管2内に搬入、搬出するためのボ−トエレベ−
タ26の上に搭載されており、上限位置にあるときには
マニホ−ルド21の下端開口部、即ち反応管2とマニホ
−ルド21で構成される反応容器の下端開口部を閉塞す
る役割を持つものである。なお図2中27はウエハボ−
ト21に対してウエハWの移載を行うための移載ア−ム
である。As shown in FIG. 2, for example, as shown in FIG. 2, a large number of, for example, about 60 wafers W to be processed are placed in the reaction tube 2 in a horizontal state and are vertically spaced from each other. The wafer boat 23 is placed on a shelf 23 in the form of a shelf. The wafer boat 23 is held on a lid 24 via a heat insulating cylinder (heat insulating body) 25. The lid 24 is a wafer boat 2
Boat elevator for loading and unloading 3 into and from the reaction tube 2
Mounted on the upper end of the reaction vessel 26, and has a role of closing the lower end opening of the manifold 21, ie, the lower end opening of the reaction vessel constituted by the reaction tube 2 and the manifold 21. It is. In FIG. 2, reference numeral 27 denotes a wafer board.
This is a transfer arm for transferring the wafer W to the wafer 21.
【0021】前記反応管2の側周囲にはこれを取り囲む
ように加熱手段をなすヒ−タ28が設けられている。こ
のヒ−タ28は例えば発熱抵抗体により構成されてお
り、後述する制御部により、予め入力されている成膜処
理の温度プロファイルに基づいて温度制御が行われるよ
うになっている。A heater 28 as a heating means is provided around the reaction tube 2 so as to surround it. The heater 28 is composed of, for example, a heating resistor, and a control unit described later performs temperature control based on a temperature profile of a film forming process input in advance.
【0022】前記マニホ−ルド21には、第1の処理ガ
スであるN2O(一酸化二窒素)ガスを反応管2内に供
給するためのガス導入路をなす第1のガス導入管3と、
第2の処理ガスであるSiH2Cl2(ジクロロシラン)
ガスを反応管2内に供給するための第2のガス導入管4
が周方向に複数本配列して設けられており、これらガス
供給管3,4を介して夫々のガスが装置外部の第1及び
第2のガス供給源31,41から反応管2内に導入され
るようになっている。The manifold 21 has a first gas introduction pipe 3 serving as a gas introduction path for supplying an N 2 O (dinitrogen monoxide) gas as a first processing gas into the reaction tube 2,
SiH2Cl2 (dichlorosilane) as a second processing gas
Second gas introduction pipe 4 for supplying gas into reaction tube 2
Are arranged in the circumferential direction, and respective gases are introduced into the reaction tube 2 from the first and second gas supply sources 31 and 41 outside the apparatus through the gas supply tubes 3 and 4. It is supposed to be.
【0023】またこれら第1及び第2のガス導入管3
1,41には夫々ガス流量を制御するためのガス流量制
御部32,42が介装されている。このガス流量制御部
33,43はガス流量調整器やバルブを含む部分を示し
ており、前記制御部からの制御信号により、予め入力さ
れている成膜処理時における処理ガス導入のプログラム
に基づいて開閉のタイミングが制御され、これにより処
理ガスの導入のタイミングが制御されるようになってい
る。また前記マニホ−ルド21には、内管2a及び外管
2bの間に開口するように排気管43が接続されてお
り、図示しない真空排気手段により反応管2内が所定の
減圧雰囲気に維持できるようになっている。The first and second gas introduction pipes 3
Gas flow rate control units 32 and 42 for controlling the gas flow rate are interposed in 1 and 41, respectively. The gas flow controllers 33 and 43 indicate parts including a gas flow controller and a valve. Based on a control signal from the controller, the gas flow controllers 33 and 43 are based on a program for introducing a processing gas at the time of a film forming process, which is input in advance. The timing of opening and closing is controlled, whereby the timing of introduction of the processing gas is controlled. An exhaust pipe 43 is connected to the manifold 21 so as to open between the inner pipe 2a and the outer pipe 2b, and the inside of the reaction pipe 2 can be maintained at a predetermined reduced pressure atmosphere by a vacuum exhaust means (not shown). It has become.
【0024】続いて第1の処理ガスであるN2Oガスの
供給系について説明する。前記第1のガス導入管3のガ
ス流量制御部31の下流側には、N2Oガスを所定の温
度に予備加熱するための加熱部をなす加熱器5と、オリ
フィス6とが、加熱器5を上流側にしてこの順序で介装
されている。Next, the supply system of the N2O gas as the first processing gas will be described. Downstream of the gas flow control unit 31 of the first gas introduction pipe 3, a heater 5 serving as a heating unit for preheating the N 2 O gas to a predetermined temperature, and an orifice 6 are connected to the heater 5. It is installed in this order on the upstream side.
【0025】前記加熱器5は、例えば図3に示すよう
に、縦型熱処理装置の外部において第1のガス導入管3
の途中に設けられており、第1のガス導入管3を遮断す
るように設けられた例えば透明石英からなる加熱室51
を備えている。この加熱室51は、例えばガス導入管3
の内径よりも内径が大きい円筒形状の加熱管により構成
され、ガスの通気方向に長さ方向が揃うように配置され
ていて、内部には通気抵抗体52例えば多数の透明石英
カレットが多数充填されている。As shown in FIG. 3, for example, the heater 5 has a first gas introduction pipe 3 outside the vertical heat treatment apparatus.
And a heating chamber 51 made of, for example, transparent quartz provided so as to shut off the first gas introduction pipe 3.
It has. The heating chamber 51 includes, for example, the gas introduction pipe 3.
It is constituted by a cylindrical heating tube whose inside diameter is larger than the inside diameter of the tube, and is arranged so that the length direction thereof is aligned with the gas ventilation direction, and the inside thereof is filled with a ventilation resistor 52, for example, a large number of transparent quartz cullets. ing.
【0026】この加熱室51の一例について述べると、
第1のガス導入管3の内径が例えば20mmである場
合、加熱室51は、内径が例えば60mm〜80mm、
通気方向の長さが例えば100mm〜200mm程度で
あり、加熱室51に充填される石英カレットの大きさは
例えばφ1〜φ10程度である。加熱室51の例えば通
気方向の外周囲にはヒータ部をなすヒータエレメント5
3が螺旋状に巻回されている。このヒータエレメント5
3は、例えば金属不純物の少ない金属例えば10ミクロ
ン前後の細い高純度のカーボンからなるファイバの束を
複数束編み上げて紐状体を形成し、この紐状体をセラミ
ックス体よりなる封止部材例えば外径が十数ミリの石英
(例えば透明石英)管の中に封入して螺旋状に形成した
ものであり、通電されて発熱する。図中54は、ヒータ
エレメントへの電力供給部、55は封止端子である。An example of the heating chamber 51 is as follows.
When the inner diameter of the first gas introduction pipe 3 is, for example, 20 mm, the heating chamber 51 has an inner diameter of, for example, 60 mm to 80 mm,
The length in the ventilation direction is, for example, about 100 mm to 200 mm, and the size of the quartz cullet filled in the heating chamber 51 is, for example, about φ1 to φ10. For example, a heater element 5 serving as a heater portion is provided around the outer periphery of the heating chamber 51 in the ventilation direction.
3 is spirally wound. This heater element 5
Reference numeral 3 denotes a string-shaped body formed by knitting a plurality of bundles of fibers made of a metal having a small amount of metal impurities, for example, a thin high-purity carbon of about 10 microns, and forming the string-shaped body with a sealing member made of a ceramic body, such as an outer member. It is formed in a spiral shape by enclosing it in a quartz (eg, transparent quartz) tube having a diameter of more than ten millimeters, and generates heat when energized. In the figure, reference numeral 54 denotes a power supply unit to the heater element, and 55 denotes a sealing terminal.
【0027】このような加熱室51とヒータエレメント
53は筒状の断熱体よりなる加熱部本体50により覆さ
れており、加熱部本体50には例えばヒータエレメント
53に沿って通気方向には、冷媒例えば冷却水を通流さ
せるための冷却ジャケット56が形成されている。冷却
ジャケット56には冷却水供給部57により冷却水が供
給されるようになっており、例えば加熱部本体50の内
部の、冷却ジャケット56とヒータエレメント53との
間には温度検出部58例えば熱電対が設けられている。
こうして熱電対により検出された当該内部の温度に基づ
いて、制御部Cにより電力供給部54及び冷却水供給部
57に制御信号を出力し、ヒータエレメント53への電
力供給量及び冷却ジャケット56への冷却水供給量が制
御されて、ヒータエレメント53の加熱と冷却ジャケッ
ト56の冷却との相互作用により加熱室51が所定の温
度に調整されるようになっている。The heating chamber 51 and the heater element 53 are covered by a heating section main body 50 made of a tubular heat insulator. The heating section main body 50 has, for example, a cooling medium in a ventilation direction along the heater element 53. For example, a cooling jacket 56 for flowing cooling water is formed. Cooling water is supplied to the cooling jacket 56 by a cooling water supply unit 57. For example, a temperature detecting unit 58, such as a thermoelectric device, is provided between the cooling jacket 56 and the heater element 53 inside the heating unit main body 50. A pair is provided.
The control unit C outputs a control signal to the power supply unit 54 and the cooling water supply unit 57 based on the internal temperature detected by the thermocouple in this manner. The cooling water supply amount is controlled so that the heating chamber 51 is adjusted to a predetermined temperature by the interaction between the heating of the heater element 53 and the cooling of the cooling jacket 56.
【0028】このようにこの加熱器5では、加熱室51
は熱交換部をなすものであり、所定の温度に調整された
加熱室51内に処理ガスを導入して、当該処理ガスと通
気抵抗体52とを接触させることにより、処理ガスが所
定温度に予備加熱されるようになっている。As described above, in the heater 5, the heating chamber 51
Is a heat exchanging unit. The processing gas is introduced into the heating chamber 51 adjusted to a predetermined temperature, and brought into contact with the processing gas and the ventilation resistor 52, so that the processing gas reaches the predetermined temperature. It is preheated.
【0029】前記第1のガス導入管3は、加熱室51の
下流側の部分は、内管3aとこれの外側に間隔をおいて
設けられた外管3bとの二重管として構成されており、
外管3bの他端側は屈曲されてフランジ部33として形
成され、例えばマニホールド21の側壁に樹脂製のシー
ル部材34例えばOリングを介して接続されている。一
方内管3aは既述のように第1のガス導入管3としてマ
ニホールドの内部に突入して設けられている。こうして
加熱室51により予備加熱された処理ガスは内管3a内
を通気して、オリフィス6を介して反応管2に導入され
る。The first gas introduction pipe 3 is configured such that a downstream portion of the heating chamber 51 is a double pipe of an inner pipe 3a and an outer pipe 3b provided outside the inner pipe 3a with a space therebetween. Yes,
The other end of the outer tube 3b is bent and formed as a flange portion 33, and is connected to, for example, a side wall of the manifold 21 via a resin sealing member 34, for example, an O-ring. On the other hand, the inner pipe 3a is provided as the first gas introduction pipe 3 so as to protrude into the inside of the manifold as described above. The processing gas preheated by the heating chamber 51 flows through the inner tube 3 a and is introduced into the reaction tube 2 through the orifice 6.
【0030】前記オリフィス6は、図3に示すように、
管径が急激に狭くなっている部分をいい、この例では例
えば外管3bの内径は変わらず、内管3aの内径のみが
狭くなっていて、オリフィス6の内径は、内管3aの内
径の例えば1/50〜1/2程度に設定され、内管3a
のオリフィス6の上流側及び下流側には、内管3aとオ
リフィス6との間を接続する傾斜路61,62が設けら
れていて、上流側傾斜路61ではオリフィス6までに徐
々に内径が狭まり、下流側傾斜路62では徐々に内径が
広がるように構成されている。The orifice 6, as shown in FIG.
It refers to a portion where the pipe diameter is sharply reduced. In this example, for example, the inner diameter of the outer pipe 3b does not change, only the inner diameter of the inner pipe 3a is reduced, and the inner diameter of the orifice 6 is smaller than the inner diameter of the inner pipe 3a. For example, the inner pipe 3a is set to about 1/50 to 1/2.
On the upstream side and the downstream side of the orifice 6, there are provided ramps 61 and 62 for connecting the inner pipe 3a and the orifice 6, and the inner diameter of the upstream ramp 61 gradually narrows to the orifice 6. The inner diameter of the downstream slope 62 gradually widens.
【0031】このオリフィス6の一例について述べる
と、加熱室41の下流側の二重管の外管3bの内径が例
えばφ10〜φ18、内管3aの内径が例えばφ2〜φ
6である場合、オリフィス6は、内径が例えばφ0.1
〜φ2、長さが例えば0.1mm〜1mm程度であり、
上流側傾斜路61及び下流側傾斜路62の長さは夫々例
えば共に0.1mm〜1mm程度である。As an example of the orifice 6, the inner diameter of the outer pipe 3b of the double pipe downstream of the heating chamber 41 is, for example, φ10 to φ18, and the inner diameter of the inner pipe 3a is, for example, φ2 to φ2.
6, orifice 6 has an inner diameter of, for example, φ0.1
~ Φ2, the length is, for example, about 0.1 mm to 1 mm,
The length of each of the upstream slope 61 and the downstream slope 62 is, for example, about 0.1 mm to 1 mm, respectively.
【0032】次に上述の装置にて行われる本方法につい
て、HTO膜(High Temperature Oxide)と呼ばれる酸
化膜を形成する場合を例にして説明する。ここでHTO
膜は例えばフラッシュメモリのフローティングゲートと
コントロールゲートとの間に介在するO−N−O膜と呼
ばれる、シリコン酸化膜(SiO2膜)、シリコン窒化
膜(Si3N4)、シリコン酸化膜(SiO2膜)からな
る3層構造に用いられるシリコン酸化膜として適用され
ている。Next, the present method performed by the above-described apparatus will be described by taking as an example a case where an oxide film called an HTO film (High Temperature Oxide) is formed. Where HTO
The film is composed of, for example, a silicon oxide film (SiO2 film), a silicon nitride film (Si3 N4), and a silicon oxide film (SiO2 film) called an ONO film interposed between a floating gate and a control gate of a flash memory. It is applied as a silicon oxide film used in a three-layer structure.
【0033】具体的には先ず多数枚の被処理体であるウ
エハWをウエハボ−ト23に棚状に保持して、ボ−トエ
レベ−タ26を上昇させることにより反応管2内に下端
開口部より搬入し、ヒータ28により処理雰囲気を所定
の温度例えば720℃に加熱すると共に、蓋体24によ
りマニホ−ルド21の下端開口部つまり反応容器のウエ
ハ搬入出口を気密に封止する。次いで加熱雰囲気下で図
示しない真空排気手段により排気管43を通じて反応容
器内を所定の真空度例えば0.1Torr〜1Torr
程度まで減圧する。More specifically, first, a plurality of wafers W to be processed are held in a shelf shape on a wafer boat 23, and the boat elevator 26 is raised to open a lower end opening in the reaction tube 2. The processing atmosphere is heated to a predetermined temperature, for example, 720 ° C. by the heater 28, and the opening at the lower end of the manifold 21, that is, the wafer loading / unloading port of the reaction vessel is hermetically sealed by the lid 24. Then, under a heating atmosphere, the inside of the reaction vessel is evacuated to a predetermined degree of vacuum, for example, 0.1 Torr to 1 Torr by a vacuum exhaust means (not shown) through an exhaust pipe 43.
Reduce pressure to about
【0034】一方、加熱器5ではヒータエレメント53
による加熱と冷却水の通流による冷却との組み合わせに
より加熱室51を加熱し、通気抵抗体52を所定温度例
えば500℃〜900℃に加熱して、ここに第1の処理
ガスであるN2Oガスをガス供給源31からガス導入管
3を通じて所定の流量例えば100sccm〜1000
sccmで供給する。この際反応管2内の圧力は既述の
ように0.1Torr〜1Torr程度に減圧されてい
るが、加熱器5と反応管2の間にはオリフィス6が形成
されているので、このオリフィス6での圧力損失により
加熱室51内の圧力は例えば200Torr〜700T
orr程度になる。On the other hand, in the heater 5, the heater element 53
The heating chamber 51 is heated by a combination of the heating by the cooling water and the cooling by the flow of the cooling water, and the ventilation resistor 52 is heated to a predetermined temperature, for example, 500 ° C. to 900 ° C., where the N 2 O gas as the first processing gas is added. At a predetermined flow rate, for example, 100 sccm to 1000
Supply in sccm. At this time, the pressure in the reaction tube 2 is reduced to about 0.1 Torr to 1 Torr as described above. However, since the orifice 6 is formed between the heater 5 and the reaction tube 2, this orifice 6 The pressure in the heating chamber 51 is, for example, 200 Torr to 700 T due to the pressure loss at
orr.
【0035】こうして所定温度に加熱された加熱室51
内にN2Oガスを通気させ、N2Oガスを通気抵抗体52
と接触させることにより、このN2Oガスを分解させな
い程度に活性化させる温度、つまり分解温度に近い温度
例えば500℃〜850℃に予備加熱し、このように予
備加熱したN2Oガスをガス導入管3aを通じて反応管
2内に導入する。The heating chamber 51 thus heated to a predetermined temperature
The N2O gas is passed through the inside of the inside, and the N2O gas is passed through the ventilation resistor 52.
Is preheated to a temperature that activates the N2O gas to such an extent that the N2O gas is not decomposed, that is, a temperature close to the decomposition temperature, for example, 500 ° C. to 850 ° C. It is introduced into the reaction tube 2.
【0036】こうして反応管2内に、第1の処理ガスで
あるN2Oガス及び第2の処理ガスであるSiH2Cl2
ガスとを夫々ガス供給源31,41からガス導入管3,
4を通じて反応管2内(詳しくは反応管2及びマニホー
ルド21からなる反応容器内)に所定の流量で供給し、
これにより反応管2内の圧力を例えば0.1Torr〜
1Torrとした状態でウエハWの表面にシリコン酸化
膜を形成する。In this manner, N 2 O gas as the first processing gas and SiH 2 Cl 2 as the second processing gas are placed in the reaction tube 2.
The gas is supplied from the gas supply sources 31, 41 to the gas introduction pipe 3,
4 at a predetermined flow rate into the reaction tube 2 (specifically, into a reaction vessel comprising the reaction tube 2 and the manifold 21);
Thereby, the pressure in the reaction tube 2 is set to, for example, 0.1 Torr to
At 1 Torr, a silicon oxide film is formed on the surface of the wafer W.
【0037】この際これら処理ガスを供給することによ
って、次式の反応に従い、ウエハW上にシリコン酸化膜
が成膜される。At this time, by supplying these processing gases, a silicon oxide film is formed on the wafer W according to the following reaction.
【0038】3N2O+SiH2Cl2 → SiO2+H
2O+3N2+Cl2ここで処理ガスは反応管2の内管2
a内に拡散してウエハボ−ト23に搭載されているウエ
ハWの表面に供給されながら上昇し、内管2aの上端部
に達した後、内管2aと外管2bの間の隙間を流下し、
排気管43から排気されていき、こうしてウエハボ−ト
23に搭載されているウエハWに対して満遍なく処理ガ
スが供給されて、ウエハWにシリコン酸化膜が形成され
る。3N 2 O + SiH 2 Cl 2 → SiO 2 + H
2O + 3N2 + Cl2 Here, the processing gas is the inner tube 2 of the reaction tube 2.
a, while being supplied to the surface of the wafer W mounted on the wafer boat 23 and rising, reaching the upper end of the inner tube 2a, and flowing down the gap between the inner tube 2a and the outer tube 2b. And
The exhaust gas is exhausted from the exhaust pipe 43, and the processing gas is uniformly supplied to the wafer W mounted on the wafer boat 23, so that a silicon oxide film is formed on the wafer W.
【0039】こうして所定のシリコン酸化膜の成膜が終
了した後、前記処理ガスの導入を停止して、ウエハWの
表面温度を所定温度まで降温すると共に、成膜時に処理
ガスを導入していたガス導入管3,4の内の例えば2本
からパ−ジガス例えばN2 ガスを導入し、反応管2内を
常圧に戻す。そしてボ−トエレベ−タ26を降下させて
反応管2の下端の搬入出口を開き、ウエハボ−ト23を
反応管2から搬出する。After the formation of the predetermined silicon oxide film, the introduction of the processing gas is stopped, the surface temperature of the wafer W is lowered to a predetermined temperature, and the processing gas is introduced during the film formation. A purge gas, for example, N2 gas is introduced from, for example, two of the gas introduction tubes 3 and 4, and the pressure inside the reaction tube 2 is returned to normal pressure. Then, the boat elevator 26 is lowered to open the carry-in / out port at the lower end of the reaction tube 2, and the wafer boat 23 is carried out of the reaction tube 2.
【0040】このような実施の形態によれば、予め加熱
器5で予備加熱した処理ガスを反応管2に供給している
ので、反応管2のプロセス温度を低下させた、いわゆる
低温プロセスを行う場合であっても面内均一性の高い成
膜処理を行うことができる。つまり「発明が解決しよう
とする課題」の項で既述したように、ウエハWの温度は
ウエハWの中央部の方が周縁部よりも高く、しかも処理
ガスはウエハWの周縁部から中央部に向かって流れるの
で、プロセス温度を従来の750℃〜830℃程度から
720℃程度まで低下させると、ウエハ周縁部には、あ
まり分解反応が進行していない、分解の程度が小さい処
理ガスが供給されることになる。一方ウエハ中央部に対
しては、周縁部よりも温度やガスの濃度が高いため、周
縁部よりも分解反応が進行した分解の程度が大きい処理
ガスが供給される。このため成膜反応はウエハWの周縁
部よりも中央部で進行しやすく、これにより形成される
膜の膜厚は中央部の方が大きくなってしまう。According to such an embodiment, since the processing gas preheated by the heater 5 is supplied to the reaction tube 2, a so-called low-temperature process in which the process temperature of the reaction tube 2 is lowered is performed. Even in this case, a film formation process with high in-plane uniformity can be performed. That is, as described in the section of “Problems to be Solved by the Invention”, the temperature of the wafer W is higher in the central portion of the wafer W than in the peripheral portion, and the processing gas flows from the peripheral portion of the wafer W to the central portion. When the process temperature is lowered from about 750 ° C. to 830 ° C. to about 720 ° C., a processing gas with a low degree of decomposition and a low degree of decomposition is supplied to the peripheral portion of the wafer. Will be done. On the other hand, a processing gas having a higher degree of decomposition in which the decomposition reaction has progressed is supplied to the central portion of the wafer because the temperature and the gas concentration are higher than the peripheral portion. For this reason, the film forming reaction proceeds more easily in the central portion than in the peripheral portion of the wafer W, and the thickness of the film formed thereby becomes larger in the central portion.
【0041】これに対し、本発明のように、予め加熱器
5で分解反応が進行しない程度に活性化する温度例えば
分解温度に近い温度まで予備加熱された処理ガスを反応
管2に導入すると、反応管2内のプロセス温度が720
℃程度と低くても、反応管2に導入された処理ガスは既
に分解温度に近い温度まで予備加熱されているので、反
応管2内を通ってウエハ周縁部に到達するまでに分解温
度以上に加熱され、ウエハ周縁部には分解反応が十分に
進行した処理ガスが供給されることになる。On the other hand, as in the present invention, when the processing gas preheated to a temperature at which the decomposition reaction does not proceed in the heater 5 so that the decomposition reaction does not proceed, for example, a temperature close to the decomposition temperature, is introduced into the reaction tube 2, When the process temperature in the reaction tube 2 is 720
Even if the temperature is as low as about ° C., since the processing gas introduced into the reaction tube 2 has already been preheated to a temperature close to the decomposition temperature, the temperature of the processing gas exceeds the decomposition temperature before reaching the wafer periphery through the reaction tube 2. The heated processing gas is supplied to the peripheral portion of the wafer where the decomposition reaction has sufficiently proceeded.
【0042】このようにウエハWの周縁部と中央部に対
して、分解の程度がほぼ同じ状態の処理ガスが供給され
ることになるので、ウエハWの面内全体に亘ってほぼ同
じ状態で成膜反応が進行し、これにより形成される膜の
膜厚の高い面内均一性を確保することができる。As described above, the processing gas in the state where the degree of decomposition is substantially the same is supplied to the peripheral portion and the central portion of the wafer W, so that the processing gas is maintained substantially the same over the entire surface of the wafer W. The film formation reaction proceeds, and high in-plane uniformity of the film thickness formed by the film formation reaction can be secured.
【0043】この際予め処理ガスを予備加熱する加熱器
5では、加熱室51に通気抵抗体52を設け、処理ガス
を通気抵抗体52に接触させて加熱しているので、効率
良く処理ガスの温度を上昇させることができる。つまり
加熱室51内に通気抵抗体52を充填することにより、
処理ガスは通気抵抗体52と接触しながら加熱室51内
を通気していくので、処理ガスの滞留時間が長くなり、
またヒータエレメント53により加熱された処理ガス自
体の対流による加熱と、通気抵抗体52からの伝熱によ
る加熱との組み合わせにより加熱されるからである。At this time, in the heater 5 for preheating the processing gas, the ventilation resistor 52 is provided in the heating chamber 51 and the processing gas is heated by contacting the ventilation gas 52, so that the processing gas is efficiently supplied. The temperature can be raised. That is, by filling the heating chamber 51 with the ventilation resistor 52,
Since the processing gas flows through the heating chamber 51 while contacting the ventilation resistor 52, the residence time of the processing gas becomes longer,
Further, the heating is performed by a combination of convection heating of the processing gas itself heated by the heater element 53 and heating by heat transfer from the ventilation resistor 52.
【0044】また通気抵抗体52としてφ1〜φ10程
度の大きさの石英カレットを加熱室51内に充填した場
合には、石英カレット52全体の表面積が大きいので、
大きい伝熱表面積を確保でき、より効率よく処理ガスを
昇温させることができる。When a quartz cullet having a size of about φ1 to φ10 is filled in the heating chamber 51 as the ventilation resistor 52, the entire surface area of the quartz cullet 52 is large.
A large heat transfer surface area can be secured, and the temperature of the processing gas can be increased more efficiently.
【0045】またこの際加熱器5と反応管2との間の処
理ガス導入管3にオリフィス6を形成しているので、反
応容器内で減圧プロセスを行う場合であっても処理ガス
を十分所定温度まで加熱することができる。つまりオリ
フィス6では圧力損失が生じるので、上流側の圧力は下
流側の圧力より大きくなる。このため反応容器2を例え
ば0.1Torr〜1Torr程度に減圧しても、オリ
フィス6の上流側の加熱室51内の圧力は例えば200
Torr〜700Torr程度になる。これに対しオリ
フィス6を設けない場合には、反応容器2を例えば0.
1Torr〜1Torr程度に減圧すると、加熱室51
内の圧力は例えば0.2Torr〜1Torr程度の減
圧状態になる。At this time, since the orifice 6 is formed in the processing gas introducing pipe 3 between the heater 5 and the reaction pipe 2, even when the depressurizing process is performed in the reaction vessel, the processing gas is sufficiently supplied. Can be heated to temperature. That is, since a pressure loss occurs in the orifice 6, the pressure on the upstream side becomes larger than the pressure on the downstream side. For this reason, even if the pressure in the reaction vessel 2 is reduced to, for example, about 0.1 Torr to 1 Torr, the pressure in the heating chamber 51 on the upstream side of the orifice 6 becomes 200, for example.
Torr to about 700 Torr. On the other hand, when the orifice 6 is not provided, the reaction vessel 2 is set to, for example, 0.
When the pressure is reduced to about 1 Torr to 1 Torr, the heating chamber 51
The internal pressure is reduced to, for example, about 0.2 Torr to 1 Torr.
【0046】このようにオリフィス6を設けることによ
って加熱室51内の減圧の程度が小さくなるので、加熱
室51内の対流が起こりにくくなるとってもその程度は
小さく、また加熱室51内の処理ガスの分圧も大きくな
るので、オリフィス6を設けない場合に比べて、加熱器
5内における処理ガスの対流による熱伝導が起こりやす
い。このため加熱器5の内部まで十分に熱が伝達される
ので、処理ガスへの伝熱効率が向上し、処理ガスを短時
間で所定の温度に加熱することができ、低温プロセスの
実現を図ることができる。By providing the orifice 6 in this manner, the degree of decompression in the heating chamber 51 is reduced. Therefore, even if convection in the heating chamber 51 is less likely to occur, the degree is small. Since the partial pressure also increases, heat conduction due to convection of the processing gas in the heater 5 is more likely to occur than when the orifice 6 is not provided. For this reason, heat is sufficiently transmitted to the inside of the heater 5, so that the efficiency of heat transfer to the processing gas is improved, the processing gas can be heated to a predetermined temperature in a short time, and a low-temperature process can be realized. Can be.
【0047】実際に上述の実施の形態と同様の構成の熱
処理装置を用い、反応管2内の圧力を0.1〜1Tor
r、反応管2内のプロセス温度を720℃、加熱室51
を500℃〜900℃に設定し、N2OガスとSiH2C
l2を夫々100sccm〜1000sccm,100
sccm〜300sccm程度の流量で導入して成膜処
理を行ない、これらのウエハWに形成されたシリコン酸
化膜の膜厚の面内均一性を膜厚測定機(Ellipsometer)
により測定したところ、前記流量にてN2Oガスを加熱
室51内に通気させることによりN2Oガスを十分に予
備加熱することができ、低温プロセスであっても形成さ
れた膜の膜厚について均一性の高い処理を行うことがで
きることが確認された。Actually, the pressure inside the reaction tube 2 was set to 0.1 to 1 Torr by using a heat treatment apparatus having the same configuration as that of the above-described embodiment.
r, the process temperature in the reaction tube 2 is 720 ° C., and the heating chamber 51
Is set to 500 ° C to 900 ° C, N2O gas and SiH2C
l2 is 100 sccm to 1000 sccm, 100
The film is introduced at a flow rate of about sccm to 300 sccm to perform a film forming process, and the in-plane uniformity of the film thickness of the silicon oxide film formed on these wafers W is measured using a film thickness measuring device (Ellipsometer).
As a result, the N2O gas can be sufficiently preheated by passing the N2O gas into the heating chamber 51 at the flow rate, and the uniformity of the film thickness of the formed film can be obtained even in a low-temperature process. It was confirmed that high processing could be performed.
【0048】さらに加熱器5の下流側は二重管であるの
で、次の効果が得られる。つまり加熱室51と反応管2
とを単管のガス導入管により接続した場合、この単管の
端部をフランジとして構成し、このフランジと反応管2
との間に樹脂製のシール部材(Oリング)を介在させて
両者を接続することになるが、このような構成では加熱
室51から出される処理ガスは例えば450℃〜850
℃程度の高温であるので、このガスの通気によりガス導
入路が加熱される。このためフランジが樹脂製のシール
部材の耐熱温度例えば250℃より高温となってしま
い、このフランジの熱により樹脂製のシール部材34が
変形し、気密性の悪化を招く恐れがある。Further, since the downstream side of the heater 5 is a double pipe, the following effects can be obtained. That is, the heating chamber 51 and the reaction tube 2
Are connected by a single gas introduction pipe, the end of the single pipe is formed as a flange, and this flange is connected to the reaction pipe 2.
Are connected to each other with a resin sealing member (O-ring) interposed therebetween. In such a configuration, the processing gas discharged from the heating chamber 51 is, for example, 450 ° C. to 850 ° C.
Since the temperature is as high as about ° C., the gas introduction path is heated by the gas aeration. For this reason, the temperature of the flange becomes higher than the heat resistance temperature of the resin seal member, for example, 250 ° C., and the heat of the flange may deform the resin seal member 34, thereby deteriorating the airtightness.
【0049】一方本発明のように二重管とした場合に
は、処理ガスは内管3a内を通気していくので外管3b
とは接触せず、このため外管3bには処理ガスとの接触
による熱伝導が起こらないので、内管3aほど温度が上
がらない。従って外管3bによりフランジ33を形成
し、このフランジ33と反応管2との間に樹脂製のシー
ル部材34を介在させて両者を接続すれば、外管の温度
は樹脂製のシール部材34の耐熱温度を越えることはな
いので、フランジ33の熱により樹脂製のシール部材3
4が変形するおそれがなく、信頼性が高まる。On the other hand, when a double pipe is used as in the present invention, the processing gas flows through the inner pipe 3a, so that the outer pipe 3b
Does not come into contact with the outer tube 3b, so that heat does not occur in the outer tube 3b due to contact with the processing gas, so that the temperature does not rise as much as the inner tube 3a. Therefore, if a flange 33 is formed by the outer tube 3b and a resin sealing member 34 is interposed between the flange 33 and the reaction tube 2 to connect the two, the temperature of the outer tube will be lower than that of the resin sealing member 34. Since the temperature does not exceed the heat resistant temperature, the heat of the flange 33 causes the resin-made sealing member 3
There is no risk of deformation of 4 and reliability is improved.
【0050】またガス導入管3を二重管にすると、ガス
が通気していく内管3aと外気との間に外管3bが介在
し、内管3aが外気と接触しないので、内管3aの外気
による冷却の程度が小さくなる。このため加熱された処
理ガスが内管3a内を通気していく際の放熱量が小さく
なるので、処理ガスの温度の低下が抑えられ、予備加熱
により活性化された状態を保持したまま処理ガスを反応
管2に導入することができる。When the gas introducing pipe 3 is a double pipe, the outer pipe 3b is interposed between the inner pipe 3a through which the gas flows and the outside air, and the inner pipe 3a does not come into contact with the outside air. The degree of cooling by the outside air becomes smaller. For this reason, the amount of heat released when the heated processing gas passes through the inner pipe 3a is reduced, so that the temperature of the processing gas is prevented from lowering and the processing gas is kept activated by preheating. Can be introduced into the reaction tube 2.
【0051】続いて他の実施の形態について図4及び図
5を用いて説明する。この例は、ガス導入路(第1のガ
ス導入管3)に、当該導入路を塞ぐように、加熱室とオ
リフィスとを組み合わせて構成したガス室7を設けたも
のである。このガス室7は、通気方向に並ぶ3つの部屋
7a,7b,7cを有しており、これらの部屋7a〜7c
はオリフィスをなす、第1のガス導入管3の内径よりも
内径が小さい通気孔71a,71bが形成された隔壁7
2a,72bにより区画されている。ここで上流側の第
1の部屋7a、下流側の第3の部屋7cには、夫々第1
のガス導入管3が接続されており、第1の部屋7aと第
3の部屋7cとの間には第2の部屋7bが設けられてい
る。Next, another embodiment will be described with reference to FIGS. In this example, a gas chamber 7 configured by combining a heating chamber and an orifice is provided in a gas introduction path (first gas introduction pipe 3) so as to close the introduction path. The gas chamber 7 has three chambers 7a, 7b, 7c arranged in the ventilation direction, and these chambers 7a to 7c
Is a partition wall 7 having ventilation holes 71a and 71b, which form an orifice and have an inner diameter smaller than the inner diameter of the first gas introduction pipe 3.
2a and 72b. Here, the first room 7a on the upstream side and the third room 7c on the downstream side respectively have the first room 7a.
Is connected, and a second room 7b is provided between the first room 7a and the third room 7c.
【0052】前記第1の部屋7aは加熱室として構成さ
れ、例えば図4(b)に示すように例えば石英カレットよ
りなる通気抵抗体73が充填されると共に、周囲にはヒ
ータ部をなすヒータエレメント74が巻回されている。
通気抵抗体73やヒータエレメント74は上述の実施の
形態と同様に構成されている。The first chamber 7a is configured as a heating chamber, and is filled with a ventilation resistor 73 made of, for example, quartz cullet, as shown in FIG. 74 are wound.
The ventilation resistor 73 and the heater element 74 are configured in the same manner as in the above-described embodiment.
【0053】このような構成では、加熱室7aに隣接し
て、第2の部屋7bと第3の部屋7cとが設けられ、こ
れらの接続部にはオリフィス71a,71bが設けられ
ているので、反応管2を減圧した場合、オリフィスでの
圧力損失により各部屋7a〜7cの圧力は、第1の部屋
7a>第2の部屋7b>第3の部屋7cの順で大きくな
る。このため第1の部屋7aの減圧の程度は最も小さく
なるので、この部屋7aでは十分に対流が起こり、加熱
室の内部まで十分に熱が伝達されるので、処理ガスの加
熱効率が向上し、当該ガスを所定温度まで十分に加熱す
ることができる。In such a configuration, the second room 7b and the third room 7c are provided adjacent to the heating room 7a, and the orifices 71a and 71b are provided at the connecting portions thereof. When the pressure in the reaction tube 2 is reduced, the pressure in each of the rooms 7a to 7c increases in the order of the first room 7a> the second room 7b> the third room 7c due to the pressure loss at the orifice. For this reason, the degree of decompression in the first chamber 7a is minimized, so that convection occurs sufficiently in this room 7a and heat is sufficiently transmitted to the inside of the heating chamber, so that the processing gas heating efficiency is improved, The gas can be sufficiently heated to a predetermined temperature.
【0054】以上において加熱室51,7aでは、内部
に通気抵抗体52,73を充填せず、処理ガスの対流に
より処理ガスを加熱するようにしてもよい。また通気抵
抗体52,73としては、石英カレットの他に発泡石
英、多孔質SiC等を用いることができる。In the above, in the heating chambers 51 and 7a, the processing gas may be heated by convection of the processing gas without filling the inside with the ventilation resistors 52 and 73. As the ventilation resistors 52 and 73, foamed quartz, porous SiC, or the like can be used in addition to quartz cullet.
【0055】さらに上述の例では、第2のガスであるS
iH2Cl2ガスはN2Oガスに比べて分解温度が低く、
予備加熱を行わなくても反応管2内での加熱により十分
分解反応が起こるので第1の処理ガスであるN2Oガス
のみが予備加熱されているが、SiH2Cl2ガスを予備
加熱するようにしてもよい。Further, in the above-described example, the second gas S
The decomposition temperature of iH2Cl2 gas is lower than that of N2O gas,
Even if the preheating is not performed, only the N2O gas as the first processing gas is preheated because the decomposition reaction occurs sufficiently by heating in the reaction tube 2, but the SiH2Cl2 gas may be preheated. .
【0056】さらに本発明は、減圧CVD処理のみなら
ず、例えば処理ガスとしてHCl(塩化水素)ガスとO
2(酸素)ガスを用いて、次式の反応を起こさせる常圧
プロセスにも適用できる。Further, according to the present invention, not only a low pressure CVD process but also a process gas such as HCl (hydrogen chloride) gas and O
It can also be applied to a normal pressure process in which the reaction of the following formula is caused using 2 (oxygen) gas.
【0057】2HCl+O2 → H2O+Cl2 また本発明は上述のバッチ式の縦型熱処理装置に限ら
ず、枚葉式の熱処理装置で成膜を行う場合にも有効であ
り、この場合においても均一性の高い処理を行うことが
できる。さらに本発明では、シリコン酸化膜の成膜に限
らず、ポリシリコン膜、TEOSによるシリコン酸化
膜、シリコン窒化膜等の成膜に適用することができる。
また、CVD成膜プロセス以外のドライ酸化、ウェット
酸化、HCl酸化等の酸化膜の成膜にも適用できる。2HCl + O2 → H2O + Cl2 The present invention is not limited to the batch type vertical heat treatment apparatus described above, but is also effective when a film is formed by a single-wafer heat treatment apparatus. It can be performed. Furthermore, the present invention is not limited to the formation of a silicon oxide film, but can be applied to the formation of a polysilicon film, a silicon oxide film by TEOS, a silicon nitride film, and the like.
Further, the present invention can be applied to formation of an oxide film such as dry oxidation, wet oxidation, and HCl oxidation other than the CVD film formation process.
【0058】[0058]
【発明の効果】以上のように本発明によれば、反応容器
の外部に設けた加熱部にて処理ガスを所定温度に予備加
熱してから反応容器に供給するようにしたので、処理の
均一性を確保しながらプロセス温度の低温化を図ること
ができる。この場合減圧プロセスであっても、加熱部と
反応容器との間にオリフィスを設けることにより、加熱
部の減圧の程度を小さくし、加熱部において処理ガスを
高い加熱効率で加熱することができる。As described above, according to the present invention, the processing gas is preheated to a predetermined temperature by the heating unit provided outside the reaction vessel and then supplied to the reaction vessel, so that the processing gas can be uniformly processed. The process temperature can be reduced while ensuring the performance. In this case, even in the depressurization process, by providing an orifice between the heating unit and the reaction vessel, the degree of decompression in the heating unit can be reduced, and the processing gas can be heated with high heating efficiency in the heating unit.
【図1】本発明の縦型熱処理装置の実施の形態の一例を
示す縦断側面図である。FIG. 1 is a vertical sectional side view showing an example of an embodiment of a vertical heat treatment apparatus of the present invention.
【図2】前記縦型熱処理装置の一部を示す斜視図であ
る。FIG. 2 is a perspective view showing a part of the vertical heat treatment apparatus.
【図3】前記縦型熱処理装置に用いられる加熱器とオリ
フィスを示す断面図である。FIG. 3 is a sectional view showing a heater and an orifice used in the vertical heat treatment apparatus.
【図4】縦型熱処理装置の他の実施の形態に用いられる
ガス室を示す斜視図と断面図である。FIG. 4 is a perspective view and a sectional view showing a gas chamber used in another embodiment of the vertical heat treatment apparatus.
【図5】従来の縦型熱処理装置を示す断面図である。FIG. 5 is a cross-sectional view showing a conventional vertical heat treatment apparatus.
【図6】膜厚とウエハ上の位置との関係を示す特性図で
ある。FIG. 6 is a characteristic diagram showing a relationship between a film thickness and a position on a wafer.
W 半導体ウエハ 2 反応管 2a 内管 2b 外管 3 第1のガス導入管 5 加熱器 51 加熱室 52 通気抵抗体 53 第2の加熱手段 6 オリフィス 7 ガス室 71a、71b 通気孔 W semiconductor wafer 2 reaction tube 2a inner tube 2b outer tube 3 first gas introduction tube 5 heater 51 heating chamber 52 ventilation resistor 53 second heating means 6 orifice 7 gas chamber 71a, 71b ventilation hole
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F27D 7/06 F27D 7/06 A 21/00 21/00 A H01L 21/22 511 H01L 21/22 511S Fターム(参考) 4K030 AA03 AA06 AA24 BA40 BA44 BB12 CA12 EA01 KA04 KA25 KA45 KA46 LA15 4K056 AA09 BA04 4K061 BA11 CA21 FA07 FA14 GA04 4K063 AA05 AA15 BA12 CA01 DA09 DA13 DA33 5F045 AA06 AB32 AC05 AD11 AE19 AE21 AE25 AF03 BB01 DP19 EC02 EC08 EE07 EE20 EJ09 EK09 GB05 GB15 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F27D 7/06 F27D 7/06 A 21/00 21/00 A H01L 21/22 511 H01L 21/22 511S F Term (reference) 4K030 AA03 AA06 AA24 BA40 BA44 BB12 CA12 EA01 KA04 KA25 KA45 KA46 LA15 4K056 AA09 BA04 4K061 BA11 CA21 FA07 FA14 GA04 4K063 AA05 AA15 BA12 CA01 DA09 DA13 DA33 5F045 AA11 AE02 EC05 EJ09 EK09 GB05 GB15
Claims (13)
された反応容器内に被処理体を搬入すると共に、この反
応容器内を所定の処理温度に加熱し、ガス導入路により
反応容器内に処理ガスを供給して、被処理体に対して処
理を行う熱処理装置において、 前記ガス導入路に設けられ、処理ガスを反応容器に供給
する前に当該処理ガスを所定温度に加熱するための加熱
部と、 前記加熱部と反応容器との間の前記ガス導入路に形成さ
れたオリフィスと、を備え、 オリフィスの圧力損失により、前記加熱部内の圧力を前
記反応容器の圧力よりも高くした状態で、ガス導入路よ
り加熱部内に処理ガスを供給し、これにより処理ガスを
所定温度に予備加熱し、この予備加熱された処理ガスを
前記反応容器に供給することを特徴とする熱処理装置。An object to be processed is loaded into a reaction vessel depressurized to a predetermined degree of vacuum by a vacuum evacuation means, the inside of the reaction vessel is heated to a predetermined processing temperature, and the inside of the reaction vessel is introduced into the reaction vessel through a gas introduction path. In a heat treatment apparatus that supplies a processing gas and performs processing on an object to be processed, the heating apparatus is provided in the gas introduction path and heats the processing gas to a predetermined temperature before supplying the processing gas to the reaction vessel. And an orifice formed in the gas introduction passage between the heating unit and the reaction vessel, with the pressure in the heating unit being higher than the pressure of the reaction vessel due to the pressure loss of the orifice. A heat treatment apparatus for supplying a processing gas into a heating unit from a gas introduction path, thereby preheating the processing gas to a predetermined temperature, and supplying the preheated processing gas to the reaction vessel.
に、この反応容器内を所定の処理温度に加熱し、ガス導
入路により反応容器内に処理ガスを供給して、被処理体
に対して処理を行う熱処理装置において、 前記ガス導入路に設けられ、処理ガスを反応容器に供給
する前に当該処理ガスを所定温度に加熱するための加熱
部と、 前記加熱部と反応容器との間の前記ガス導入路は、内管
とこの外側に間隔をおいて設けられた外管とからなる二
重管よりなり、 ガス導入路より加熱部内に処理ガスを供給して処理ガス
を所定温度に予備加熱し、この予備加熱された処理ガス
を前記ガス導入路の内管を介して前記反応容器に供給す
ることを特徴とする熱処理装置。2. An object to be processed is carried into the reaction vessel, the inside of the reaction vessel is heated to a predetermined processing temperature, and a processing gas is supplied into the reaction vessel through a gas introduction path. A heating unit provided in the gas introduction path for heating the processing gas to a predetermined temperature before supplying the processing gas to the reaction vessel; and a heating unit between the heating unit and the reaction vessel. The gas introduction path comprises a double pipe consisting of an inner pipe and an outer pipe provided at an interval outside the inner pipe, and supplies the processing gas into the heating unit from the gas introduction path to bring the processing gas to a predetermined temperature. A heat treatment apparatus, comprising: preheating and supplying the preheated processing gas to the reaction vessel via an inner pipe of the gas introduction path.
てフランジとし、このフランジと前記反応容器とがシー
ル部材を介して接合されていることを特徴とする請求項
2記載の熱処理装置。3. The reaction vessel according to claim 2, wherein the outer pipe of the double pipe of the gas introduction path is bent to form a flange, and the flange and the reaction vessel are joined via a seal member. Heat treatment equipment.
の真空排気手段と、 前記加熱部と反応容器との間の前記ガス導入路の内管に
形成されたオリフィスと、を備え、 オリフィスの圧力損失により、前記加熱部の圧力を前記
反応容器の圧力よりも高くした状態で、ガス導入路より
加熱部内に処理ガスを供給し、これにより処理ガスを所
定温度に予備加熱し、この予備加熱された処理ガスを前
記反応容器に供給することを特徴とする請求項2又は3
記載の熱処理装置。4. An orifice comprising: a vacuum exhaust means for reducing the pressure of the reaction vessel to a predetermined degree of vacuum; and an orifice formed in an inner pipe of the gas introduction passage between the heating section and the reaction vessel. Due to the pressure loss, the processing gas is supplied from the gas introduction path into the heating unit in a state where the pressure of the heating unit is higher than the pressure of the reaction vessel, thereby preheating the processing gas to a predetermined temperature, 4. A heated processing gas is supplied to the reaction vessel.
The heat treatment apparatus according to the above.
熱室と、この加熱室を囲むように設けられた加熱室を加
熱するためのヒータ部と、を備えたことを特徴とする請
求項1から4のいずれかに記載の熱処理装置。5. A heating unit comprising: a heating chamber for heating a processing gas; and a heater unit for heating a heating chamber provided to surround the heating chamber. Item 5. The heat treatment apparatus according to any one of Items 1 to 4.
された反応容器内に被処理体を搬入すると共に、この反
応容器内を所定の処理温度に加熱し、ガス導入路により
反応容器内に処理ガスを供給して、被処理体に対して処
理を行う熱処理装置において、 前記ガス導入路に設けられ、前記処理ガスが通気するガ
ス室と、 前記ガス室を処理ガスの通気方向に複数に分割するため
の隔壁と、 前記隔壁に形成された、前記ガス導入路よりも内径が小
さい通気孔と、 前記分割されたガス室のうち上流側のガス室を加熱室と
し、この加熱室を囲むように設けられた、加熱室を加熱
するためのヒータ部と、を備え、 前記隔壁に形成された通気孔の圧力損失により、前記加
熱室の圧力を前記反応容器の圧力よりも高くした状態
で、ガス導入路より加熱室内に処理ガスを供給し、これ
により処理ガスを所定温度に予備加熱し、この予備加熱
された処理ガスを前記反応容器に供給することを特徴と
する熱処理装置。6. An object to be processed is carried into a reaction vessel depressurized to a predetermined degree of vacuum by a vacuum evacuation means, and the inside of the reaction vessel is heated to a predetermined processing temperature, and is then introduced into the reaction vessel through a gas introduction path. In a heat treatment apparatus for supplying a processing gas and performing processing on an object to be processed, a gas chamber provided in the gas introduction path and through which the processing gas flows, and a plurality of the gas chambers in a direction in which the processing gas flows. A partition for dividing, a ventilation hole formed in the partition, having an inner diameter smaller than the gas introduction path, and an upstream gas chamber among the divided gas chambers is a heating chamber, and surrounds the heating chamber. And a heater unit for heating the heating chamber, provided in such a manner that the pressure of the heating chamber is higher than the pressure of the reaction vessel due to the pressure loss of the ventilation hole formed in the partition wall. , Heating room from gas introduction path Process gas supply, thereby the processing gas is preheated to a predetermined temperature, the heat treatment apparatus characterized by supplying the pre-heated process gas into the reaction vessel.
保持具に保持して縦型の反応容器内に搬入し、反応容器
を取り囲む加熱手段により反応容器内を所定の処理温度
に加熱する縦型熱処理装置であることを特徴とする請求
項1から6のいずれかに記載の熱処理装置。7. A heat treatment apparatus holds a large number of objects to be processed in a holding device in a shelf shape, loads the objects into a vertical reaction container, and heats the inside of the reaction container to a predetermined processing temperature by heating means surrounding the reaction container. The heat treatment apparatus according to any one of claims 1 to 6, wherein the heat treatment apparatus is a vertical heat treatment apparatus for heating.
通気抵抗体と処理ガスとを接触させて、当該処理ガスを
所定温度に予備加熱することを特徴とする請求項5又は
6記載の熱処理装置。8. A process according to claim 5, wherein a ventilation resistor is provided inside the heating chamber, and the ventilation gas is brought into contact with the processing gas to preheat the processing gas to a predetermined temperature. Heat treatment equipment.
活性化する温度に予備加熱することを特徴とする請求項
5又は6記載の熱処理装置。9. The heat treatment apparatus according to claim 5, wherein the heating chamber is preheated to a temperature at which the processing gas is activated so as not to decompose the processing gas.
発熱体をセラミックスの中に封入して構成されることを
特徴とする請求項5又は6記載の熱処理装置。10. The heat treatment apparatus according to claim 5, wherein the heater section is configured by enclosing a resistance heating element having a small amount of metal impurities in ceramics.
ることを特徴とする請求項10記載の熱処理装置。11. The heat treatment apparatus according to claim 10, wherein the resistance heating element is made of a high-purity carbon material.
とする請求項10又は11記載の熱処理装置。12. The heat treatment apparatus according to claim 10, wherein the ceramic is quartz.
において、被処理体を加熱しながら、反応容器内に処理
ガスを供給して、被処理体に処理を行う熱処理方法にお
いて、 前記反応容器の外部に設けられた加熱部に前記処理ガス
を供給して、この処理ガスを予備加熱する工程と、 この予備加熱された処理ガスを前記反応容器に導入する
工程と、を備え、 前記処理ガスを予備加熱する工程は、前記加熱部と反応
容器との間に設けられたガス導入路に、前記ガス導入路
よりも内径が小さいオリフィスを形成し、このオリフィ
スの圧力損失により、前記加熱部の圧力を前記反応容器
の圧力よりも高くした状態で行うことを特徴とする熱処
理方法。13. A heat treatment method in which a processing gas is supplied into a reaction vessel while heating the processing target in a reaction vessel reduced in pressure to a predetermined degree of vacuum, and the processing is performed on the processing target. A step of supplying the processing gas to a heating unit provided outside the vessel to preheat the processing gas; and a step of introducing the preheated processing gas into the reaction vessel. In the step of preheating the gas, an orifice having an inner diameter smaller than that of the gas introduction path is formed in a gas introduction path provided between the heating section and the reaction vessel. A heat treatment method, wherein the pressure is set higher than the pressure of the reaction vessel.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000162769A JP3625741B2 (en) | 2000-05-31 | 2000-05-31 | Heat treatment apparatus and method |
DE60131698T DE60131698T2 (en) | 2000-05-31 | 2001-05-30 | Thermal treatment device and method |
KR1020010030138A KR100783841B1 (en) | 2000-05-31 | 2001-05-30 | Heat treatment system |
EP01113207A EP1160838B1 (en) | 2000-05-31 | 2001-05-30 | Heat treatment system and method |
TW090113263A TW550629B (en) | 2000-05-31 | 2001-05-31 | Heat treatment system and method |
US09/867,564 US6540509B2 (en) | 2000-05-31 | 2001-05-31 | Heat treatment system and method |
US10/342,261 US6863732B2 (en) | 2000-05-31 | 2003-01-15 | Heat treatment system and method |
KR1020070065376A KR100785133B1 (en) | 2000-05-31 | 2007-06-29 | Heat treatment system |
KR1020070065375A KR100785132B1 (en) | 2000-05-31 | 2007-06-29 | Heat treatment system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000162769A JP3625741B2 (en) | 2000-05-31 | 2000-05-31 | Heat treatment apparatus and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001345314A true JP2001345314A (en) | 2001-12-14 |
JP3625741B2 JP3625741B2 (en) | 2005-03-02 |
Family
ID=18666627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000162769A Expired - Fee Related JP3625741B2 (en) | 2000-05-31 | 2000-05-31 | Heat treatment apparatus and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3625741B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003282566A (en) * | 2002-01-15 | 2003-10-03 | Tokyo Electron Ltd | Film deposition method and film deposition apparatus |
US8105533B2 (en) | 2004-09-02 | 2012-01-31 | Central Research Institute Of Electric Power Industry | Apparatus for measuring corrosion loss |
KR20130142074A (en) * | 2012-06-18 | 2013-12-27 | 도쿄엘렉트론가부시키가이샤 | Heat treatment apparatus |
KR20130142963A (en) * | 2012-06-20 | 2013-12-30 | 도쿄엘렉트론가부시키가이샤 | Thermal treatment apparatus |
KR20200112696A (en) | 2019-03-20 | 2020-10-05 | 도쿄엘렉트론가부시키가이샤 | Heat treatment apparatus and film deposition method |
-
2000
- 2000-05-31 JP JP2000162769A patent/JP3625741B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003282566A (en) * | 2002-01-15 | 2003-10-03 | Tokyo Electron Ltd | Film deposition method and film deposition apparatus |
US8105533B2 (en) | 2004-09-02 | 2012-01-31 | Central Research Institute Of Electric Power Industry | Apparatus for measuring corrosion loss |
KR20130142074A (en) * | 2012-06-18 | 2013-12-27 | 도쿄엘렉트론가부시키가이샤 | Heat treatment apparatus |
JP2014003119A (en) * | 2012-06-18 | 2014-01-09 | Tokyo Electron Ltd | Heat treatment device |
KR101726021B1 (en) * | 2012-06-18 | 2017-04-11 | 도쿄엘렉트론가부시키가이샤 | Heat treatment apparatus |
KR20130142963A (en) * | 2012-06-20 | 2013-12-30 | 도쿄엘렉트론가부시키가이샤 | Thermal treatment apparatus |
JP2014003203A (en) * | 2012-06-20 | 2014-01-09 | Tokyo Electron Ltd | Heat treatment device |
US9425074B2 (en) | 2012-06-20 | 2016-08-23 | Tokyo Electron Limited | Heat treatment apparatus |
KR101663349B1 (en) * | 2012-06-20 | 2016-10-06 | 도쿄엘렉트론가부시키가이샤 | Thermal treatment apparatus |
KR20200112696A (en) | 2019-03-20 | 2020-10-05 | 도쿄엘렉트론가부시키가이샤 | Heat treatment apparatus and film deposition method |
US11581201B2 (en) | 2019-03-20 | 2023-02-14 | Tokyo Electron Limited | Heat treatment apparatus and film deposition method |
Also Published As
Publication number | Publication date |
---|---|
JP3625741B2 (en) | 2005-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100785133B1 (en) | Heat treatment system | |
EP1388891B1 (en) | System for heat treating semiconductor | |
JP2009044023A (en) | Manufacturing method of semiconductor device and substrate processing device | |
JP4971954B2 (en) | Substrate processing apparatus, semiconductor device manufacturing method, and heating apparatus | |
JP2002009072A (en) | Method and apparatus for forming silicon nitride film | |
JP3625741B2 (en) | Heat treatment apparatus and method | |
JP2011100820A (en) | Substrate treatment apparatus | |
KR20010110291A (en) | Substrate processing method | |
CN112740374A (en) | Substrate processing apparatus and method for manufacturing semiconductor device | |
JP2001345321A (en) | Oxidation treatment method and device | |
JP4553227B2 (en) | Heat treatment method | |
US20050263073A1 (en) | Furnace for heating a wafer and chemical vapor deposition apparatus having the same | |
JP2008106366A (en) | Film-forming apparatus | |
JP4703230B2 (en) | Semiconductor device manufacturing method and substrate processing apparatus | |
WO2020235596A1 (en) | Film formation method, film formation apparatus, and method for cleaning treatment vessel | |
JP3552037B2 (en) | Method and apparatus for forming silicon oxide film | |
JP3173698B2 (en) | Heat treatment method and apparatus | |
JP2007324478A (en) | Substrate processing apparatus | |
JP3891765B2 (en) | Method and apparatus for cleaning object to be processed | |
JP2002319579A (en) | Method for heat treating article and batch heat treating system | |
JP2002329717A (en) | Heat treatment method of object and batch heat processing apparatus | |
JP2002151499A (en) | Semiconductor manufacturing device | |
JP2004363499A (en) | Substrate holding means | |
JP2008071939A (en) | Substrate treatment device | |
JP2002280375A (en) | Substrate treatment apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20031224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040315 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041130 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3625741 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101210 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |