[go: nahoru, domu]

JP2002246598A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method

Info

Publication number
JP2002246598A
JP2002246598A JP2001039110A JP2001039110A JP2002246598A JP 2002246598 A JP2002246598 A JP 2002246598A JP 2001039110 A JP2001039110 A JP 2001039110A JP 2001039110 A JP2001039110 A JP 2001039110A JP 2002246598 A JP2002246598 A JP 2002246598A
Authority
JP
Japan
Prior art keywords
section
resistance
semiconductor device
transistor element
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001039110A
Other languages
Japanese (ja)
Inventor
Toshiharu Kumazawa
俊春 熊沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Yamagata Ltd
Original Assignee
NEC Yamagata Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Yamagata Ltd filed Critical NEC Yamagata Ltd
Priority to JP2001039110A priority Critical patent/JP2002246598A/en
Publication of JP2002246598A publication Critical patent/JP2002246598A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7808Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a breakdown diode, e.g. Zener diode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device which is improved in electrostatic withstand voltage by increasing the resistance value of a resistance section installed to the gate of a small-signal vertical MOSFET. SOLUTION: This semiconductor device has a pattern in which a protective diode section 2 and a first resistance section 3 are arranged adjacently to a transistor element section 5, with the resistance section 3 being arranged around the diode section 2 as the small-signal vertical MOSFET so as to increase the resistance value of the section 3. One end of the diode section 2 is connected to the source electrode of the transistor element section 5 by prolonging the peripheral length of the section 2. In addition, one end of the first resistance section 3 is connected to the gate electrode of the transistor element section 5, and the other end of the section 3 is connected to the other end of the diode section 2. It is possible to constitute the protective diode section 2 in a bidirectional Zener diode section, and to make the sheet resistance value of the resistance section 3 larger than that of the gate electrode of the transistor element section 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置および
その製造方法に関し、特にその静電耐圧を向上させた半
導体装置およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly, to a semiconductor device with improved electrostatic withstand voltage and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来の半導体装置として、ペレットサイ
ズ:0.5mm□程度の小信号縦型MOSFETは、図
8の回路図に示されるように、双方向ツェナーダイオー
ド部2を保護ダイオードとして設けたものがある。この
MOSFETは、その素子部5のゲートに抵抗部3の一
端が接続され、この抵抗部3の他端と素子部5のソース
との間に双方向ツェナーダイオード部2が接続されたも
のである。
2. Description of the Related Art As a conventional semiconductor device, a small signal vertical MOSFET having a pellet size of about 0.5 mm square is provided with a bidirectional Zener diode section 2 as a protection diode as shown in a circuit diagram of FIG. There is something. In this MOSFET, one end of the resistor 3 is connected to the gate of the element 5, and the bidirectional Zener diode 2 is connected between the other end of the resistor 3 and the source of the element 5. .

【0003】この従来の小信号縦型MOSFETでは、
図9の平面図に示されるように、半導体チップ1が、素
子部5、双方向ツェナーダイオード部2、抵抗部3の三
つに分かれており、静電耐圧を向上する手段として、抵
抗部3の多結晶(ポリ)シリコン層(13)の長さLを
長くして静電耐圧を向上していた。
In this conventional small signal vertical MOSFET,
As shown in the plan view of FIG. 9, the semiconductor chip 1 is divided into three parts, an element part 5, a bidirectional Zener diode part 2, and a resistance part 3. The length L of the polycrystalline (poly) silicon layer (13) was increased to improve the electrostatic withstand voltage.

【0004】この抵抗部3の多結晶シリコン抵抗Rは、
多結晶シリコンの長さをL、幅をWとし、層抵抗をρs
とした時、次の式(1)で計算される。
The polycrystalline silicon resistance R of the resistance part 3 is
The length of the polycrystalline silicon is L, the width is W, and the layer resistance is ρs
Is calculated by the following equation (1).

【0005】R=ρs(L/W)……(1) また、この半導体チップの製造方法は、その製造工程順
を示す、図10(a)〜(d)の断面図に示される。ま
ず図10(a)に示すように、N+型半導体基板7上に
-層エピタキシャル層8を形成し、双方向ツェナーダ
イオード部2、抵抗部3の下にPウェル領域18を形成
後、素子部5のN-層エピタキシャル層8上にゲート酸
化膜12を20〜60nm(ナノメータ)成長させ、P
ウェル領域18上にフィールド酸化膜17を形成し、こ
れらの上に多結晶シリコン膜13を400〜600nm
成長させる。次に、チップ全面に多結晶シリコン・ボロ
ンのイオン注入を行い、さらに、図10(b)に示すよ
うに、フォトリソグラフィ技術を用いて多結晶シリコン
膜13を所定の形状にし、ベース・イオン注入を行い、
P型ベース領域9及び双方向ツェナーダイオード部2、
抵抗部3をP型領域19に形成する。
R = ρs (L / W) (1) The method of manufacturing the semiconductor chip is shown in the sectional views of FIGS. 10A to 10D showing the order of the manufacturing steps. First, as shown in FIG. 10A, an N layer epitaxial layer 8 is formed on an N + type semiconductor substrate 7, and a P well region 18 is formed below the bidirectional Zener diode portion 2 and the resistor portion 3. A gate oxide film 12 is grown on the N layer epitaxial layer 8 of the element portion 5 by 20 to 60 nm (nanometer).
A field oxide film 17 is formed on the well region 18, and a polycrystalline silicon film 13 is
Let it grow. Next, ion implantation of polycrystalline silicon boron is performed on the entire surface of the chip. Further, as shown in FIG. 10B, the polycrystalline silicon film 13 is formed into a predetermined shape using a photolithography technique, and base ion implantation is performed. Do
A P-type base region 9 and a bidirectional Zener diode unit 2;
The resistance section 3 is formed in the P-type region 19.

【0006】次に、図10(c)に示すように、フォト
リソグラフィ技術を用いて双方向ツェナーダイオード部
2をレジスト23でカバーして、素子部5のスイッチン
グ・スピードを上げるため、素子部5と抵抗部3にポリ
シリ・リン拡散を行い、多結晶シリコン膜13の層抵抗
ρsを5〜20Ω/□にする。
Next, as shown in FIG. 10C, the bidirectional Zener diode section 2 is covered with a resist 23 using a photolithography technique to increase the switching speed of the element section 5. And the resistance portion 3 are diffused with polysilicon and phosphorus to make the layer resistance ρs of the polycrystalline silicon film 13 5 to 20 Ω / □.

【0007】その後、図10(d)に示すように、所定
の部分をカバーし、素子部5にN+型ソース領域11
と、P+型のバックゲート10とを形成し、双方向ツェ
ナーダイオード部2、抵抗部3にN+領域20を形成さ
せ、抵抗部3をポリシリコン抵抗部21とする。次に、
層間絶縁膜14を成長させ、ソース電極用配線15とゲ
ート電極用配線16を形成する。
Thereafter, as shown in FIG. 10D, a predetermined portion is covered, and an N + type source region 11 is
And a P + -type back gate 10, an N + region 20 is formed in the bidirectional Zener diode section 2 and the resistor section 3, and the resistor section 3 is a polysilicon resistor section 21. next,
An interlayer insulating film 14 is grown, and a source electrode wiring 15 and a gate electrode wiring 16 are formed.

【0008】なお、縦型MOSFETの保護ダイオード
の静電耐圧を向上させた例として、ダイオードのアノー
ド領域とカソード領域の接合面積を増加するようにした
ものが、特開平4−234173号公報や特開平9−9
7901号公報に示されている。
As an example of improving the electrostatic withstand voltage of a protection diode of a vertical MOSFET, an example in which the junction area between an anode region and a cathode region of a diode is increased is disclosed in Japanese Patent Laid-Open No. 4-234173. Kaihei 9-9
No. 7901.

【0009】[0009]

【発明が解決しようとする課題】しかし、この従来技術
では、次のような問題点があった。まず、この小信号縦
型MOSFETは静電耐圧(特にMIL法)が弱く、破
壊箇所は全て、双方向ツェナーダイオード部2であっ
た。その理由は、マスクレイアウト上、双方向ツェナー
ダイオード部2はゲートパッド部6の直下に配置してい
るため、双方向ツェナーダイオード部2の領域はゲート
パッドサイズで必然的に決まってしまい、小信号縦型M
OSFETの場合は、ゲートパッドサイズが小さいため
に双方向ツェナーダイオード部2も小さくなり、双方向
ツェナーダイオード部2の周囲長が短くなり、ジュール
熱により双方向ツェナーダイオード部2で破壊してい
た。また、縦型MOSFETの場合は、素子部5のスイ
ッチングスピードを上げるため、多結晶ポリシリの層抵
抗値ρsを下げており、素子部5の多結晶シリコンの層
抵抗値ρsと抵抗部3の多結晶シリコンの層抵抗値ρs
を同時にポリシリコンリン拡散を行い、多結晶シリコン
の層抵抗値ρsを決定していたために抵抗部3の抵抗値
を大きくすることが困難であった。
However, this conventional technique has the following problems. First, this small-signal vertical MOSFET had a weak electrostatic withstand voltage (particularly the MIL method), and all the destruction points were the bidirectional Zener diode sections 2. The reason is that, on the mask layout, the bidirectional Zener diode section 2 is disposed directly below the gate pad section 6, so that the area of the bidirectional Zener diode section 2 is inevitably determined by the gate pad size, and the small signal Vertical M
In the case of the OSFET, since the gate pad size is small, the size of the bidirectional Zener diode unit 2 is also reduced, the circumference of the bidirectional Zener diode unit 2 is shortened, and the bidirectional Zener diode unit 2 is broken by Joule heat. In the case of a vertical MOSFET, the layer resistance value ρs of the polycrystalline polysilicon is reduced in order to increase the switching speed of the element portion 5. Layer resistance ρs of crystalline silicon
At the same time, polysilicon phosphorus diffusion was performed to determine the layer resistance value ρs of the polycrystalline silicon, so that it was difficult to increase the resistance value of the resistance portion 3.

【0010】また、前述の特開平4−234173号公
報や特開平9−97901号公報に記載されたものは、
保護ダイオードを対象とするため、その構造が複雑とな
っていた。
[0010] Further, those described in the above-mentioned JP-A-4-234173 and JP-A-9-97901,
Since the protection diode is used, its structure is complicated.

【0011】本発明の目的は、以上の問題点を解決し、
抵抗部の抵抗値を大きくして、トランジスタの静電耐圧
を向上させた半導体装置及びその製造方法を提供するこ
とにある。
An object of the present invention is to solve the above problems,
It is an object of the present invention to provide a semiconductor device in which a resistance value of a resistance portion is increased and an electrostatic withstand voltage of a transistor is improved, and a manufacturing method thereof.

【0012】[0012]

【課題を解決するための手段】本発明の半導体装置の構
成は、小信号縦型MOSFETとして、トランジスタ素
子部に隣接して、その周囲長を長くしこのトランジスタ
素子部のソース電極に一端を接続した保護ダイオード部
と、この保護ダイオード部の外周に配置され前記トラン
ジスタ素子部のゲート電極に一端が接続され他端が前記
保護ダイオード部の他端に接続される第1の抵抗部とが
配置されたパターンを有することにより、前記第1の抵
抗部の抵抗値を大きくなるようにしたことを特徴とす
る。
A semiconductor device according to the present invention is configured as a small-signal vertical MOSFET, which is adjacent to a transistor element portion, has a longer peripheral length, and has one end connected to a source electrode of the transistor element portion. And a first resistance portion disposed on the outer periphery of the protection diode portion and having one end connected to the gate electrode of the transistor element portion and the other end connected to the other end of the protection diode portion. The first resistor section has a large resistance value by having a pattern.

【0013】本発明において、保護ダイオード部が、双
方向ツェナーダイオード部からなることもでき、第1の
抵抗部が、双方向ツェナーダイオード部の最外周を囲む
ように配置されることができ、また、第2の抵抗部が、
双方向ツェナーダイオード部最内周に配置され、この第
2の抵抗部と第1の抵抗部とがそれぞれの一端で接続さ
れることができ、さらに第1または第2の抵抗部の層抵
抗値を前記トランジスタ素子部のゲート電極の層抵抗値
より大きくなるようにできる。
In the present invention, the protection diode section may comprise a bidirectional Zener diode section, and the first resistor section may be arranged so as to surround the outermost periphery of the bidirectional Zener diode section. , The second resistor section
The second resistance part and the first resistance part are arranged at the innermost circumference of the bidirectional Zener diode part, and can be connected at one end thereof. Further, the layer resistance value of the first or second resistance part Can be made larger than the layer resistance value of the gate electrode of the transistor element portion.

【0014】本発明の他の構成は、小信号縦型MOSF
ETとして、トランジスタ素子部に隣接して、周囲長を
長くした保護ダイオード部と、この保護ダイオード部の
外周に配置され前記トランジスタ素子部のゲートと接続
される抵抗部とが配置されたパターンを有する半導体装
置の製造方法において、前記トランジスタ素子部のゲー
ト電極となる多結晶シリコン膜の層抵抗と前記抵抗部の
多結晶シリコンの層抵抗とを別々の工程により製造し
て、前記抵抗部の層抵抗値を前記ゲート電極の層抵抗値
より大きくなるようにしたこと特徴とする。
Another configuration of the present invention is a small signal vertical type MOSF.
As ET, a pattern is provided in which a protection diode portion having a longer perimeter is arranged adjacent to the transistor element portion, and a resistance portion disposed on the outer periphery of the protection diode portion and connected to the gate of the transistor element portion is provided. In a method of manufacturing a semiconductor device, a layer resistance of a polycrystalline silicon film serving as a gate electrode of the transistor element portion and a layer resistance of polycrystalline silicon of the resistance portion are manufactured in separate steps, and the layer resistance of the resistance portion is formed. The value is set to be larger than the layer resistance value of the gate electrode.

【0015】本発明において、多結晶シリコンの層抵抗
の形成を多結晶シリコン・リン拡散により実施し、抵抗
部およびトランジスタ素子部のゲート電極の各層抵抗値
を調整することができ、また、トランジスタ素子部に多
結晶シリコン・リン拡散を実施する際に、抵抗部および
保護ダイオード部がレジストで覆われるようにすること
ができる。
In the present invention, the layer resistance of polycrystalline silicon is formed by polycrystalline silicon phosphorus diffusion, whereby the resistance of each layer of the resistance portion and the gate electrode of the transistor element portion can be adjusted. The resistive portion and the protective diode portion can be covered with a resist when polycrystalline silicon phosphorus diffusion is performed on the portion.

【0016】[0016]

【発明の実施の形態】次に本発明の実施形態を図面によ
り説明する。図1,図2は本発明の一実施形態の半導体
チップの平面図およびそのA―A線の断面図である。こ
の実施形態の回路図は従来例の図8と同じであり、その
製造工程も従来例と同様であり、図3(a)〜(d)に
示される。本実施形態の半導体装置は、ペレットサイズ
0.5mm□程度の小信号縦型MOSFETのレイアウ
ト設計を、図1に示すように、素子部5、周囲長の長い
双方向ツェナーダイオード部2、この双方向ツェナーダ
イオード部2の最外周に抵抗部3を配置したパターンを
有するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. 1 and 2 are a plan view of a semiconductor chip according to an embodiment of the present invention and a sectional view taken along line AA thereof. The circuit diagram of this embodiment is the same as that of FIG. 8 of the conventional example, and the manufacturing process is the same as that of the conventional example, and is shown in FIGS. In the semiconductor device of the present embodiment, the layout design of a small-signal vertical MOSFET having a pellet size of about 0.5 mm square is performed, as shown in FIG. It has a pattern in which a resistance portion 3 is arranged on the outermost periphery of the directional Zener diode portion 2.

【0017】この半導体チップの製造工程について、N
チャネル型小信号縦型MOSFETの場合を図3(a)
〜(d)により説明する。このチップの製造に当たって
は、まず図3(a)に示すように、N+型半導体基板7
上にN-層エピタキシャル層8を形成し、双方向ツェナ
ーダイオード部2、抵抗部3の下にPウェル領域18を
形成し、Pウェル領域18上にフィールド酸化膜17を
形成した後、これら素子部5のN-層エピタキシャル層
8上にゲート酸化膜12を20〜60nm成長させ、そ
の上に多結晶シリコン膜13を400〜600nm成長
させる。次に、図3(b)に示すように、フォトリソグ
ラフィ技術を用いて多結晶ポリシリ膜13を所定の形状
にし、ベース・イオン注入を行い、P型ベース領域9及
び、双方向ツェナーダイオード部2、抵抗部3をP型領
域19に形成する。
In the manufacturing process of this semiconductor chip, N
FIG. 3A shows a case of a channel type small signal vertical MOSFET.
This will be described with reference to (d). In the manufacture of the chip, first, as shown in FIG. 3 (a), N + -type semiconductor substrate 7
An N layer epitaxial layer 8 is formed thereon, a P well region 18 is formed below the bidirectional Zener diode portion 2 and the resistor portion 3, and a field oxide film 17 is formed on the P well region 18. A gate oxide film 12 is grown to a thickness of 20 to 60 nm on the N layer epitaxial layer 8 in the portion 5, and a polycrystalline silicon film 13 is grown to a thickness of 400 to 600 nm. Next, as shown in FIG. 3B, the polycrystalline polysilicon film 13 is formed into a predetermined shape using a photolithography technique, base ions are implanted, and the P-type base region 9 and the bidirectional Zener diode portion 2 are formed. , The resistance portion 3 is formed in the P-type region 19.

【0018】次に、チップ全面に多結晶シリコン・ボロ
ン・イオン注入を行い、図3(c)に示すように、フォ
トリソグラフィ技術を用いて双方向ツェナーダイオード
部2をレジスト23でカバーして、素子部5のスイッチ
ング・スピードを上げるため、素子部5と抵抗部3にポ
リシリリン拡散を行い、多結晶シリコン膜13の層抵抗
ρsを5〜20Ω/□にする。その後、所定の部分をカ
バーし、素子部5にN+型ソース領域11と、P+型のバ
ックゲート10とを形成し、双方向ツェナーダイオード
部2、抵抗部3にN+領域20を形成させ、抵抗部3を
ポリシリコン抵抗部21とする。次に、図3(d)に示
すように、層間絶縁膜14を成長させ、ソース電極用配
線15、ゲート電極用配線16を形成し、半導体チップ
を完成させる。
Next, polycrystalline silicon boron ions are implanted into the entire surface of the chip, and as shown in FIG. 3C, the bidirectional Zener diode 2 is covered with a resist 23 by using a photolithography technique. In order to increase the switching speed of the element section 5, polysilylin is diffused into the element section 5 and the resistor section 3 to set the layer resistance ρs of the polycrystalline silicon film 13 to 5 to 20Ω / □. Thereafter, a predetermined portion is covered, an N + type source region 11 and a P + type back gate 10 are formed in the element portion 5, and a bidirectional Zener diode portion 2 and an N + region 20 are formed in the resistance portion 3. Then, the resistance part 3 is made to be the polysilicon resistance part 21. Next, as shown in FIG. 3D, the interlayer insulating film 14 is grown, the source electrode wiring 15 and the gate electrode wiring 16 are formed, and the semiconductor chip is completed.

【0019】図4は本発明の第2の実施形態の回路図、
図5,図6はそのチップの平面図およびその断面図であ
る。本実施形態は、図3のように、抵抗部3にさらに抵
抗部4が付加されたもので、図5のように、素子部5、
周囲長の長い双方向ツェナーダイオード部2、双方向ツ
ェナーダイオード部2の最内周に抵抗部3、双方向ツェ
ナーダイオード部2の外側に抵抗部4を配置したパター
ンにしたものである。
FIG. 4 is a circuit diagram of a second embodiment of the present invention.
5 and 6 are a plan view and a sectional view of the chip, respectively. In the present embodiment, as shown in FIG. 3, a resistor 4 is further added to the resistor 3, and as shown in FIG.
The pattern has a bidirectional Zener diode portion 2 having a long perimeter, a resistor portion 3 disposed on the innermost periphery of the bidirectional Zener diode portion 2, and a resistor portion 4 disposed outside the bidirectional Zener diode portion 2.

【0020】従来の小信号縦型MOSFETは、図9に
示すように双方向ツェナーダイオード部2はゲートパッ
ド部6の直下にあり、ゲートパッドの大きさに制約さ
れ、ツェナーダイオード部2の周囲長が短かかったが、
本実施例では、図1、4に示すように双方向ツェナーダ
イオード部2の最外周に抵抗部3を配置すること、及
び、双方向ツェナーダイオード部2の最内周に抵抗部3
と双方向ツェナーダイオード部2の最外周に抵抗部4を
配置することにより、双方向ツェナーダイオード部2の
周囲長が約2倍になり、双方向ツェナーダイオード部2
の内部抵抗を低下することができる。
In the conventional small signal vertical MOSFET, as shown in FIG. 9, the bidirectional Zener diode section 2 is located immediately below the gate pad section 6 and is limited by the size of the gate pad. Was short,
In this embodiment, as shown in FIGS. 1 and 4, the resistor 3 is disposed on the outermost periphery of the bidirectional Zener diode unit 2, and the resistor 3 is disposed on the innermost periphery of the bidirectional Zener diode unit 2.
By arranging the resistor section 4 on the outermost periphery of the bidirectional Zener diode section 2, the peripheral length of the bidirectional Zener diode section 2 is approximately doubled,
Internal resistance can be reduced.

【0021】これら第1、第2の実施形態では、抵抗部
3,4の抵抗値が大きくなるように工夫したものである
が、次の第3実施形態のように、これら抵抗部3,4の
層抵抗値を大きくなるようにしてもよい。また、第1、
第2の実施形態と第3実施形態とを組み合わせることに
より、より小型化され、静電耐圧のある半導体装置が得
られることも明らかである。
In the first and second embodiments, the resistance values of the resistance portions 3 and 4 are devised so as to increase. However, as in the third embodiment described below, these resistance portions 3 and 4 are devised. May be increased. First,
It is also clear that a combination of the second embodiment and the third embodiment provides a more miniaturized semiconductor device having an electrostatic breakdown voltage.

【0022】さらに、図7(a)〜(d)は本発明の第
3の実施形態の製造工程を説明する半導体チップの断面
図である。本実施形態は、図7の断面図ように素子部5
のゲート電極の多結晶シリコン13の層抵抗ρsと抵抗
部3の多結晶シリコン抵抗部21の層抵抗ρsを別々に
製造すること特徴とする。
FIGS. 7A to 7D are cross-sectional views of a semiconductor chip illustrating a manufacturing process according to a third embodiment of the present invention. In the present embodiment, as shown in the sectional view of FIG.
Is characterized in that the layer resistance ρs of the polycrystalline silicon 13 of the gate electrode and the layer resistance ρs of the polycrystalline silicon resistance part 21 of the resistance part 3 are separately manufactured.

【0023】まず図7(a)に示すように、N+型半導
体基板7上にN-層エピタキシャル層8を形成し、双方
向ツェナーダイオード部2、抵抗部3の下にPウェル領
域18を形成後、素子部5のN-層エピタキシャル層8
上にゲート酸化膜12を20〜60nm成長させ、その
上に多結晶シリコン膜13を約400〜600nm成長
させる。
First, as shown in FIG. 7A, an N - layer epitaxial layer 8 is formed on an N + type semiconductor substrate 7, and a P well region 18 is formed below the bidirectional Zener diode portion 2 and the resistor portion 3. After formation, the N layer epitaxial layer 8 of the element portion 5 is formed.
A gate oxide film 12 is grown thereon by 20 to 60 nm, and a polycrystalline silicon film 13 is grown thereon by about 400 to 600 nm.

【0024】次に、チップ全面に多結晶シリコン・ボロ
ン・イオン注入を行い、次に、フォトリソグラフィ技術
を用いて双方向ツェナーダイオード部2と抵抗部3をレ
ジストでカバーして、素子部5のスイッチング・スピー
ドを上げるため、素子部5にポリシリコンリン拡散を行
い、多結晶シリコン膜の層抵抗ρsを5〜20Ω/□に
する。次に、図7(b)に示すように、フォトリソグラ
フィ技術を用いて多結晶シリコン膜13を所定の形状に
し、ベース・イオン注入を行い、P型ベース領域及び、
双方向ツェナーダイオード部2、3をP型領域に形成す
る。その後、図7(c)に示すように、所定の部分をカ
バーし、素子部5にN+型ソース領域と、P+型のバック
ゲートとを形成し、双方向ツェナーダイオード部2、抵
抗部3にN+領域10を形成する。次に、図7(d)に
示すように、層間絶縁膜14を成長させ、ソース電極用
配線15、ゲート電極用配線16を形成する。
Next, polycrystalline silicon boron ions are implanted into the entire surface of the chip, and then the bidirectional Zener diode section 2 and the resistor section 3 are covered with a resist using photolithography technology. In order to increase the switching speed, the element portion 5 is diffused with polysilicon phosphorus, and the layer resistance ρs of the polycrystalline silicon film is set to 5 to 20 Ω / □. Next, as shown in FIG. 7B, the polycrystalline silicon film 13 is formed into a predetermined shape using a photolithography technique, base ions are implanted, and a P-type base region and
The bidirectional Zener diode units 2 and 3 are formed in a P-type region. Thereafter, as shown in FIG. 7C, a predetermined portion is covered, an N + type source region and a P + type back gate are formed in the element portion 5, and the bidirectional Zener diode portion 2, the resistance portion An N + region 10 is formed in 3. Next, as shown in FIG. 7D, an interlayer insulating film 14 is grown, and a source electrode wiring 15 and a gate electrode wiring 16 are formed.

【0025】従来は、図10に示すように、小信号縦型
MOSFETにおいては、素子部5の多結晶ポリシリ膜
と抵抗部3の多結晶シリコン膜とを同時にポリシリリン
拡散を行い、層抵抗ρsを決定してきたため、抵抗部3
を大きくすることが困難であったが、この実施形態で
は、多結晶シリコンリン拡散を素子部5のみに行い、抵
抗部3をレジストでカバーすることにより、抵抗部3の
ポリシリコンの層抵抗ρsを高ρs化することにより、
少ない領域で大きな抵抗値を形成することができる。
Conventionally, as shown in FIG. 10, in a small-signal vertical MOSFET, the polycrystalline polysilicon film of the element portion 5 and the polycrystalline silicon film of the resistor portion 3 are simultaneously subjected to polysilicon diffusion, and the layer resistance ρs is reduced. Since it has been decided,
However, in this embodiment, polycrystalline silicon phosphorus diffusion is performed only in the element portion 5 and the resistor portion 3 is covered with a resist, so that the polysilicon layer resistance ρs of the resistor portion 3 is increased. By increasing ρs
A large resistance value can be formed in a small area.

【0026】[0026]

【発明の効果】以上説明したように、本発明は、ペレッ
トサイズ:0.5mm□程度の小信号縦型MOSFET
における双方向ツェナーダイオード部と抵抗部のレイア
ウトにより、双方向ツェナーダイオード部の周囲長を長
くし、双方向ツェナーダイオード部の内部抵抗を低下さ
せ、静電耐圧を向上できるという効果があり、また、こ
の小信号縦型MOSFETの抵抗部を形成する時に、抵
抗部の多結晶シリコン膜の層抵抗ρsと素子部のゲート
電極の多結晶シリコン膜の層抵抗ρsを別々の工程にす
ることにより、抵抗部の多結晶シリコン膜の層抵抗ρs
を高ρs化し、少ない領域で大きな抵抗値を形成するこ
とができ、小信号縦型MOSFETのペレットサイズを
大きくすることなく、静電耐圧を向上できるという効果
がある。
As described above, the present invention relates to a small-signal vertical MOSFET having a pellet size of about 0.5 mm square.
The layout of the bidirectional Zener diode part and the resistance part in the above has the effect of increasing the perimeter of the bidirectional Zener diode part, reducing the internal resistance of the bidirectional Zener diode part, and improving the electrostatic withstand voltage. When forming the resistance portion of the small signal vertical MOSFET, the resistance of the polycrystalline silicon film of the resistance portion and the resistance of the polycrystalline silicon film of the gate electrode of the element portion are formed in separate steps, so that the resistance is increased. Resistance ρs of the polycrystalline silicon film
Ρs can be increased, a large resistance value can be formed in a small area, and the electrostatic withstand voltage can be improved without increasing the pellet size of the small signal vertical MOSFET.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態を説明する半導体装置
の平面図。
FIG. 1 is a plan view of a semiconductor device illustrating a first embodiment of the present invention.

【図2】図1の半導体装置の断面図。FIG. 2 is a cross-sectional view of the semiconductor device of FIG.

【図3】図1の半導体装置の製造工程を説明する断面
図。
FIG. 3 is a sectional view illustrating a manufacturing process of the semiconductor device of FIG. 1;

【図4】本発明の第2の実施形態の半導体装置の回路
図。
FIG. 4 is a circuit diagram of a semiconductor device according to a second embodiment of the present invention.

【図5】図3の半導体装置の平面図。FIG. 5 is a plan view of the semiconductor device of FIG. 3;

【図6】図5の半導体装置の断面図。FIG. 6 is a sectional view of the semiconductor device of FIG. 5;

【図7】本発明の第3の実施形態の製造工程を説明する
の半導体装置の断面図。
FIG. 7 is a cross-sectional view of a semiconductor device illustrating a manufacturing process according to a third embodiment of the present invention.

【図8】従来例の半導体装置の回路図。FIG. 8 is a circuit diagram of a conventional semiconductor device.

【図9】図8の半導体装置の平面図。FIG. 9 is a plan view of the semiconductor device of FIG. 8;

【図10】図9の半導体装置の製造工程を説明する断面
図。
FIG. 10 is a sectional view illustrating a manufacturing process of the semiconductor device of FIG. 9;

【符号の説明】 1 半導体チップ 2 双方向ツェナーダイオード部 3,4 抵抗部 5 素子部 6 ゲートパッド部 7 N+型半導体基板 8 N-エピタキシャル層 9 P型ベース領域 10 P+型バックゲート 11 N+型ソース領域 12 ゲート酸化膜 13 多結晶シリコン膜 14 層間絶縁膜 15 ソース電極用配線 16 ゲート電極用配線 17 フィールド酸化膜 18 Pウェル領域 19 P型領域 20 N型領域 21 ポリシリコン抵抗部 23 レジスト[Description of Signs] 1 semiconductor chip 2 bidirectional Zener diode section 3, 4 resistance section 5 element section 6 gate pad section 7 N + type semiconductor substrate 8 N epitaxial layer 9 P type base region 10 P + type back gate 11 N + Type source region 12 gate oxide film 13 polycrystalline silicon film 14 interlayer insulating film 15 source electrode wiring 16 gate electrode wiring 17 field oxide film 18 p-well region 19 p-type region 20 n-type region 21 polysilicon resistance portion 23 resist

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/8234 H01L 27/08 102F 27/088 29/90 D 29/866 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) H01L 21/8234 H01L 27/08 102F 27/088 29/90 D 29/866

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 小信号縦型MOSFETとして、トラン
ジスタ素子部に隣接して、その周囲長を長くしこのトラ
ンジスタ素子部のソース電極に一端を接続した保護ダイ
オード部と、この保護ダイオード部の外周に配置され前
記トランジスタ素子部のゲート電極に一端が接続され他
端が前記保護ダイオード部の他端に接続される第1の抵
抗部とが配置されたパターンを有することにより、前記
第1の抵抗部の抵抗値を大きくなるようにしたことを特
徴とする半導体装置。
1. A small-signal vertical MOSFET, comprising: a protection diode portion adjacent to a transistor element portion and having a longer perimeter and one end connected to a source electrode of the transistor element portion; A first resistor connected to a gate electrode of the transistor element portion, and a first resistor connected to the other end of the protection diode portion. Wherein the resistance value of the semiconductor device is increased.
【請求項2】 保護ダイオード部が、双方向ツェナーダ
イオードからなる請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the protection diode section comprises a bidirectional Zener diode.
【請求項3】 第1の抵抗部が、双方向ツェナーダイオ
ード部の最外周を囲むように配置された請求項2記載の
半導体装置。
3. The semiconductor device according to claim 2, wherein the first resistance section is arranged so as to surround the outermost periphery of the bidirectional Zener diode section.
【請求項4】 第2の抵抗部が、双方向ツェナーダイオ
ード部の内周にその抵抗部が長くなるように配置され、
この第2の抵抗部と第1の抵抗部とがそれぞれの一端で
接続された請求項2記載の半導体装置。
4. A second resistor section is arranged on the inner periphery of the bidirectional Zener diode section so that the resistor section becomes longer,
3. The semiconductor device according to claim 2, wherein said second resistor and said first resistor are connected at one end.
【請求項5】 第1または第2の抵抗部の層抵抗値を前
記トランジスタ素子部のゲート電極の層抵抗値より大き
くなるように形成した請求項1,2,3または4記載の
半導体装置。
5. The semiconductor device according to claim 1, wherein the layer resistance of the first or second resistance section is formed to be larger than the layer resistance of the gate electrode of the transistor element section.
【請求項6】 小信号縦型MOSFETとして、トラン
ジスタ素子部に隣接して、周囲長を長くした保護ダイオ
ード部と、この保護ダイオード部の外周に配置され前記
トランジスタ素子部のゲート電極と接続される抵抗部と
が配置されたパターンを有する半導体装置の製造方法に
おいて、前記トランジスタ素子部のゲート電極となる多
結晶シリコン膜の層抵抗と前記抵抗部の多結晶シリコン
の層抵抗とを別々の工程により製造して、前記第1の抵
抗部の層抵抗値を前記ゲート電極の層抵抗値より大きく
なるようにしたこと特徴とする半導体装置の製造方法。
6. A small-signal vertical MOSFET, which is adjacent to the transistor element section and has a longer perimeter, and is disposed on the outer periphery of the protection diode section and connected to a gate electrode of the transistor element section. In a method of manufacturing a semiconductor device having a pattern in which a resistance portion is disposed, a layer resistance of a polycrystalline silicon film serving as a gate electrode of the transistor element portion and a layer resistance of the polycrystalline silicon of the resistance portion are formed by separate steps. The method of manufacturing a semiconductor device, wherein the manufacturing is performed so that a layer resistance value of the first resistance portion is larger than a layer resistance value of the gate electrode.
【請求項7】 多結晶シリコンの層抵抗の形成を多結晶
シリコン・リン拡散により実施して、抵抗部およびトラ
ンジスタ素子部のゲート電極の各層抵抗値を調整する請
求項6記載の半導体装置の製造方法。
7. The manufacturing of a semiconductor device according to claim 6, wherein the layer resistance of the polycrystalline silicon is formed by polycrystalline silicon / phosphorus diffusion to adjust the resistance of each layer of the resistance portion and the gate electrode of the transistor element portion. Method.
【請求項8】 トランジスタ素子部に多結晶シリコン・
リン拡散を実施する際に、抵抗部および保護ダイオード
部がレジストで覆われるようにした請求項6または7記
載の半導体装置の製造方法。
8. A polycrystalline silicon for a transistor element portion.
8. The method of manufacturing a semiconductor device according to claim 6, wherein the resistive portion and the protective diode portion are covered with a resist when performing the phosphorus diffusion.
JP2001039110A 2001-02-15 2001-02-15 Semiconductor device and its manufacturing method Pending JP2002246598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001039110A JP2002246598A (en) 2001-02-15 2001-02-15 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001039110A JP2002246598A (en) 2001-02-15 2001-02-15 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002246598A true JP2002246598A (en) 2002-08-30

Family

ID=18901970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001039110A Pending JP2002246598A (en) 2001-02-15 2001-02-15 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002246598A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1469523A1 (en) * 2003-04-18 2004-10-20 STMicroelectronics S.r.l. A junction electronic component and an integrated power device incorporating said component
JP2006093505A (en) * 2004-09-27 2006-04-06 Sanyo Electric Co Ltd Protecting device for mos type element, and semiconductor device
US9484444B2 (en) 2007-05-25 2016-11-01 Mitsubishi Electric Corporation Semiconductor device with a resistance element in a trench
JP2020098884A (en) * 2018-12-19 2020-06-25 富士電機株式会社 Resistance element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1469523A1 (en) * 2003-04-18 2004-10-20 STMicroelectronics S.r.l. A junction electronic component and an integrated power device incorporating said component
US7091559B2 (en) 2003-04-18 2006-08-15 Stmicroelectronics S.R.L. Junction electronic component and an integrated power device incorporating said component
JP2006093505A (en) * 2004-09-27 2006-04-06 Sanyo Electric Co Ltd Protecting device for mos type element, and semiconductor device
US9484444B2 (en) 2007-05-25 2016-11-01 Mitsubishi Electric Corporation Semiconductor device with a resistance element in a trench
JP2020098884A (en) * 2018-12-19 2020-06-25 富士電機株式会社 Resistance element
JP7180359B2 (en) 2018-12-19 2022-11-30 富士電機株式会社 resistive element

Similar Documents

Publication Publication Date Title
JPH0897310A (en) Manufacture of semiconductor integrated circuit device
JPS61210662A (en) Semiconductor structural body
JP4797445B2 (en) Insulated gate bipolar transistor
JP3189589B2 (en) Insulated gate type semiconductor device
JP3869580B2 (en) Semiconductor device
JP2002246598A (en) Semiconductor device and its manufacturing method
US6524922B1 (en) Semiconductor device having increased breakdown voltage and method of fabricating same
JP3311166B2 (en) Insulated gate semiconductor device
JPH05102475A (en) Semiconductor device and manufacture thereof
JP4479041B2 (en) Semiconductor device and manufacturing method thereof
JP2867934B2 (en) Semiconductor device and manufacturing method thereof
JP3339455B2 (en) Semiconductor device and manufacturing method thereof
JP3706446B2 (en) MOS field effect transistor with protection circuit
JPH08250734A (en) Latch preventing insulated gate semiconductor device and its manufacture
JPH07130898A (en) Semiconductor device and manufacture thereof
JP3001045B2 (en) Semiconductor device and manufacturing method thereof
JP2001358302A (en) Semiconductor device
JP3390336B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP2546179B2 (en) Semiconductor device
JP3497017B2 (en) Semiconductor device and method of protecting semiconductor device
JP2004296883A (en) Semiconductor device and its manufacturing method
JPH02192170A (en) Semiconductor element
JPH08222703A (en) Semiconductor device
JP3368003B2 (en) Semiconductor device and manufacturing method thereof
JP2532694B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050518

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070703