[go: nahoru, domu]

JP2005254055A - Method for drying and deodorizing organic sludge and system therefor - Google Patents

Method for drying and deodorizing organic sludge and system therefor Download PDF

Info

Publication number
JP2005254055A
JP2005254055A JP2004065750A JP2004065750A JP2005254055A JP 2005254055 A JP2005254055 A JP 2005254055A JP 2004065750 A JP2004065750 A JP 2004065750A JP 2004065750 A JP2004065750 A JP 2004065750A JP 2005254055 A JP2005254055 A JP 2005254055A
Authority
JP
Japan
Prior art keywords
exhaust gas
dry exhaust
drying
gas
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004065750A
Other languages
Japanese (ja)
Other versions
JP3782425B2 (en
Inventor
Shuichiro Hatakeyama
修一郎 畠山
Minoru Maeda
稔 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2004065750A priority Critical patent/JP3782425B2/en
Publication of JP2005254055A publication Critical patent/JP2005254055A/en
Application granted granted Critical
Publication of JP3782425B2 publication Critical patent/JP3782425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform a safe and stable drying operation and realize energy saving in exhaust gas deodorizing treatment by using high-temperature air generated in a cement plant as a heat source. <P>SOLUTION: Dehydrated cakes are mixed in the surface of a large amount of dried sludge produced beforehand, and dry exhaust gas after drying the mixed sludge is induced by a drying fan 10. A part of the induced dry exhaust gas (a primary dry exhaust gas) is mixed with the high-temperature air through a first duct 11A to be used to dry the mixed sludge. The remainder of the dry exhaust gas (a secondary dry exhaust gas) is introduced into a combustion furnace 24 through a second duct 11B, thereby the dry exhaust gas is deodorized to generate exhaust gas. The secondary dry exhaust gas is passed through a heat exchanger 12 before being introduced into the combustion furnace 24, thereby heat is exchanged between the dry exhaust gas and the combustion exhaust gas from the combustion furnace 2 to reduce the temperature of the combustion exhaust gas. A part of the secondary dry exhaust gas heat-exchanged in the heat exchanger 12 is recovered, and mixed with the primary dry exhaust gas mixed with the high-temperature air. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機性汚泥の乾燥および脱臭処理方法並びにそのシステムに関するものである。   The present invention relates to a method and system for drying and deodorizing organic sludge.

従来の有機性汚泥の乾燥および脱臭処理システム1’は、例えば図2に示すように構成される。つまり、ケーキホッパ2を通じて投入された脱水ケーキを、ケーキ供給ポンプ3により、乾燥汚泥供給装置4(それの汚泥ケーキ投入口4a)に供給するように構成されている。このケーキホッパ2を通じて投入される脱水ケーキ(下水汚泥、産廃汚泥等の有機性汚泥の脱水ケーキ)は車両などにより運搬されて、ケーキホッパ2内に投入される。   A conventional organic sludge drying and deodorizing treatment system 1 ′ is configured as shown in FIG. 2, for example. That is, the dewatered cake thrown in through the cake hopper 2 is supplied by the cake supply pump 3 to the dried sludge supply device 4 (the sludge cake inlet 4a). A dehydrated cake (dehydrated cake of organic sludge such as sewage sludge and industrial waste sludge) fed through the cake hopper 2 is transported by a vehicle or the like and is put into the cake hopper 2.

乾燥汚泥供給装置4においては、予め製造しておいた顆粒状の乾燥汚泥の表面に、供給された脱水ケーキを混合する。この乾燥汚泥供給装置4からの混合汚泥はシュート5を通じて解砕機6に供給され、高温ガスと乾燥排ガス(一次乾燥排ガス)とが混合された400℃以下の熱風流である乾燥用ガスと共に解砕される。   In the dry sludge supply apparatus 4, the supplied dewatered cake is mixed with the surface of the granular dry sludge manufactured beforehand. The mixed sludge from the dry sludge supply device 4 is supplied to the crusher 6 through the chute 5 and pulverized together with a drying gas which is a hot air flow of 400 ° C. or less in which high-temperature gas and dry exhaust gas (primary dry exhaust gas) are mixed. Is done.

この解砕機6において解砕された粉体は、気流乾燥させるほぼ鉛直方向に延びる乾燥ダクト7を通じて、集塵器8に送られる。集塵器8は、第1及び第2のサイクロン8A,8Bにて構成される。   The powder crushed in the crusher 6 is sent to a dust collector 8 through a drying duct 7 extending in a substantially vertical direction for airflow drying. The dust collector 8 is composed of first and second cyclones 8A and 8B.

この集塵器8(第2のサイクロン8B)の上部は、排ガスダクト9を通じて乾燥ファン10に接続されている。乾燥ファン10の下流側のダクトは2つに分岐され、第1のダクト11Aは解砕機6の入口に、第2のダクト11Bは熱交換器12の入口にそれぞれ接続されている。これにより、混合汚泥を乾燥した後の乾燥排ガスは、第1のダクト11Aを流れる一次乾燥排ガスと、第2のダクト11Bを流れる二次乾燥排ガスとに分けられる。第1のダクト11Aは、第2のダクト11Bとの分岐点の下流でその分岐点付近に、第1のダクト11Aを流れる一次乾燥排ガスの流量を調節する調節弁13を有する。この調節弁13は、乾燥ファン10を流れる電流値を検出する電流センサ14よりの信号を受け、この電流センサ14によって検出される電流値が一定になるように、調節弁13の開度が調節される。このように、調節弁13によって解砕機6に向かって流れる一次乾燥排ガスの流量が調節される。   The upper part of the dust collector 8 (second cyclone 8B) is connected to a drying fan 10 through an exhaust gas duct 9. The duct on the downstream side of the drying fan 10 is branched into two. The first duct 11A is connected to the inlet of the crusher 6, and the second duct 11B is connected to the inlet of the heat exchanger 12. Thereby, the dry exhaust gas after drying mixed sludge is divided into the primary dry exhaust gas which flows through the 1st duct 11A, and the secondary dry exhaust gas which flows through the 2nd duct 11B. 11 A of 1st ducts have the adjustment valve 13 which adjusts the flow volume of the primary dry exhaust gas which flows through 11 A of 1st ducts in the downstream of the branch point with the 2nd duct 11B, and the branch point vicinity. The control valve 13 receives a signal from a current sensor 14 that detects a current value flowing through the drying fan 10 and adjusts the opening of the control valve 13 so that the current value detected by the current sensor 14 is constant. Is done. Thus, the flow rate of the primary dry exhaust gas flowing toward the crusher 6 is adjusted by the control valve 13.

第2のダクト11Bには、第2のダクト11Bを流れる二次乾燥排ガスの流量を調節する調節弁15が設けられている。この調節弁15は、調節弁13下流の第1のダクト11Aを流れる一次乾燥排ガスの圧力を検出する圧力センサ16よりの信号を受けて開度が調節され、解砕機6に向かって流れる一次乾燥排ガスの圧力が一定になるように熱交換器12への二次乾燥排ガスの流量が調節される。   The second duct 11B is provided with a regulating valve 15 that regulates the flow rate of the secondary dry exhaust gas flowing through the second duct 11B. The control valve 15 receives a signal from the pressure sensor 16 that detects the pressure of the primary dry exhaust gas flowing through the first duct 11 </ b> A downstream of the control valve 13, the opening degree is adjusted, and the primary drying that flows toward the crusher 6. The flow rate of the secondary dry exhaust gas to the heat exchanger 12 is adjusted so that the pressure of the exhaust gas becomes constant.

また、第2のダクト11Aであって調節弁13及び圧力センサ16の検出位置よりも下流側において、高温ガス(例えば温度が650℃程度で酸素濃度が低い燃焼排ガス)を導入する導入路17が接続されている。この導入された高温ガスに前記一次乾燥排ガスが混合されて乾燥用ガスとされる。また、この導入路17には、導入路17における高温ガスの流量を調節する調節弁18が設けられ、この調節弁18が、乾燥ファン10の下流側(分岐点より上流側)の温度を検出する温度センサ19よりの信号を受け、導入路17を通じて導入される高温ガス(燃焼排ガス)の量が調節され、解砕機6に向かって供給される乾燥用ガスの温度が高くなりすぎない構成とされている。   In addition, an introduction path 17 for introducing high-temperature gas (for example, combustion exhaust gas having a temperature of about 650 ° C. and a low oxygen concentration) is downstream of the detection position of the control valve 13 and the pressure sensor 16 in the second duct 11A. It is connected. The primary dry exhaust gas is mixed with the introduced high-temperature gas to obtain a drying gas. The introduction path 17 is provided with a control valve 18 that adjusts the flow rate of the hot gas in the introduction path 17, and the control valve 18 detects the temperature downstream of the drying fan 10 (upstream from the branch point). Receiving the signal from the temperature sensor 19 and adjusting the amount of the high-temperature gas (combustion exhaust gas) introduced through the introduction path 17 so that the temperature of the drying gas supplied toward the crusher 6 does not become too high. Has been.

つまり、予め製造しておいた大量の乾燥汚泥の表面に脱水ケーキを混合し、この混合汚泥を乾燥した後の乾燥排ガスの一部である一次乾燥排ガスを高温ガスと混合して、ガス温度を400℃以下に低下させて、解砕機6に導いている。これは、650℃程度の高温ガスをそのまま乾燥用熱源として利用すると、有機性汚泥が発火燃焼するおそれがあるためである。   That is, the dehydrated cake is mixed with the surface of a large amount of dry sludge produced in advance, and the primary dry exhaust gas that is part of the dry exhaust gas after drying this mixed sludge is mixed with the high-temperature gas, and the gas temperature is adjusted. The temperature is lowered to 400 ° C. or lower and led to the crusher 6. This is because if a high-temperature gas of about 650 ° C. is used as it is as a heat source for drying, the organic sludge may ignite and burn.

一方、集塵器8を構成する第1及び第2のサイクロン8A,8Bの下部に、排出機21A,21Bを介して乾燥汚泥ホッパ22が接続され、この乾燥汚泥ホッパ22内に乾燥汚泥排出装置23が配設されている。   On the other hand, a dry sludge hopper 22 is connected to lower portions of the first and second cyclones 8A and 8B constituting the dust collector 8 via dischargers 21A and 21B, and a dry sludge discharge device is provided in the dry sludge hopper 22. 23 is arranged.

この乾燥汚泥排出装置23の下側に、乾粉の一部を循環させる乾燥汚泥供給装置4が設けられ、この乾燥汚泥供給装置4が、汚泥ケーキと気流乾燥された乾粉の一部とを混合する混合部として機能する。   A dry sludge supply device 4 that circulates a portion of the dry powder is provided below the dry sludge discharge device 23, and the dry sludge supply device 4 mixes the sludge cake and a portion of the dry powder that has been air-flow dried. Functions as a mixing unit.

また、熱交換器12は、第1及び第2の熱交換器部12A,12Bを有する。第2のダクト11Bを通じて送られる二次乾燥排ガスは、第1及び第2の熱交換器部12A,12Bを順に通過して、燃焼炉24からの燃焼排ガスと熱交換される。   The heat exchanger 12 includes first and second heat exchanger units 12A and 12B. The secondary dry exhaust gas sent through the second duct 11B sequentially passes through the first and second heat exchanger sections 12A and 12B, and is heat-exchanged with the combustion exhaust gas from the combustion furnace 24.

第2の熱交換器部12Bを出たガスは、燃焼炉24に送られ、燃焼により脱臭処理される。このとき、燃焼炉24には、LPGガス25が供給されると共に、並列に設けられた第1及び第2の燃料ポンプ26A,26Bによって、燃料タンク27から調節弁28にて燃料が調節されつつ、エアーと共に送られる。29は燃焼を補助するエアーを供給する燃焼ブロアである。   The gas exiting the second heat exchanger section 12B is sent to the combustion furnace 24, where it is deodorized by combustion. At this time, the LPG gas 25 is supplied to the combustion furnace 24 and the fuel is adjusted from the fuel tank 27 by the control valve 28 by the first and second fuel pumps 26A and 26B provided in parallel. , Sent with air. A combustion blower 29 supplies air for assisting combustion.

燃焼炉24の燃焼排ガスは、前述したように熱交換のために、熱交換器12にダクト30を通じて送られる。そして、誘引ファン31にてダクト32を通じて誘引され、排出される。ダクト32には、ダクト32を流れる燃焼排ガスの流量を調節する調節弁33が設けられている。   As described above, the combustion exhaust gas from the combustion furnace 24 is sent to the heat exchanger 12 through the duct 30 for heat exchange. Then, the induction fan 31 is attracted through the duct 32 and discharged. The duct 32 is provided with a regulating valve 33 that regulates the flow rate of the combustion exhaust gas flowing through the duct 32.

燃焼炉24には、内部の圧力を検出する圧力センサ34と、内部の温度を検出する温度センサ35とが設けられている。この圧力センサ34よりの信号に応じて調節弁33の開度が調節され、誘引ファン31を通じての流出排ガスの量が制御され、燃焼炉24の内部圧力が一定となる。また、温度センサ35よりの信号を受けて、調節弁28の開度が調節され、燃焼炉24への燃料の供給量が制御され、燃焼炉24の内部の温度が一定となるようにされる。   The combustion furnace 24 is provided with a pressure sensor 34 that detects internal pressure and a temperature sensor 35 that detects internal temperature. In accordance with the signal from the pressure sensor 34, the opening degree of the control valve 33 is adjusted, the amount of exhaust gas flowing through the induction fan 31 is controlled, and the internal pressure of the combustion furnace 24 becomes constant. Further, in response to a signal from the temperature sensor 35, the opening degree of the control valve 28 is adjusted, the amount of fuel supplied to the combustion furnace 24 is controlled, and the temperature inside the combustion furnace 24 is made constant. .

ところで、下水汚泥、産廃汚泥等の有機性汚泥の大半は、脱水乾燥された後、流動層炉又はロータリキルン等で汚泥中の有機物を焼却して埋め立て処分されていたが、近年、汚泥をセメント焼成装置に投入し、ロータリキルンで焼却することにより、汚泥の燃焼熱を有効に利用するとともに、焼却灰をセメント原料の一部として回収することが行われている。   By the way, most of the organic sludge such as sewage sludge and industrial waste sludge has been dehydrated and dried and then disposed of by incineration of organic matter in sludge in a fluidized bed furnace or rotary kiln. By putting it into a firing device and incinerating with a rotary kiln, the combustion heat of sludge is effectively utilized and the incinerated ash is recovered as part of the cement raw material.

なお、セメント工場で発生する高温空気(高温クリンカの冷却工程から発生する高温空気、温度800℃程度)を効率よく、有機性汚泥の乾燥用熱源として利用する技術が求められている。   In addition, there is a need for a technique that efficiently uses high-temperature air generated in a cement factory (high-temperature air generated from a high-temperature clinker cooling process, temperature of about 800 ° C.) as a heat source for drying organic sludge.

ところで、セメント焼成装置に気流乾燥機を組み合わせ、セメント焼成装置の高温部に排ガス加熱部を設け、かつ、気流乾燥機排ガスを予熱する熱交換器部を設けることにより、セメント焼成装置の熱消費を極力悪化させることなく、多量の汚泥を投入でき、かつ気流乾燥機排ガスを無臭化して大気放出できる汚泥の処理方法及び装置が知られている(例えば、特許文献1,2参照)。
特開2002−273480号公報(段落0009及び図1) 特開2002−273492号公報(段落0010及び図1)
By the way, by combining an air dryer with a cement firing device, providing an exhaust gas heating unit at the high temperature part of the cement firing device, and providing a heat exchanger part for preheating the exhaust gas dryer exhaust gas, the heat consumption of the cement firing device can be reduced. 2. Description of the Related Art A sludge treatment method and apparatus are known in which a large amount of sludge can be introduced without deteriorating as much as possible, and airflow dryer exhaust gas can be released without being brominated, and released into the atmosphere (see, for example, Patent Documents 1 and 2).
JP 2002-273480 A (paragraph 0009 and FIG. 1) JP 2002-273492 A (paragraph 0010 and FIG. 1)

有機性汚泥の乾燥において、前述した800℃程度の高温空気を乾燥熱源として利用する場合、従来より高温であるため、前記従来のシステムでは、第1のダクト11Aを通じて循環される一次乾燥排ガスを混合するのみで、解砕機6に供給する乾燥用ガスの温度を十分に低下させることができず、有機性汚泥の乾燥物が着火し易く、また、安定した乾燥操作そのものが困難である。一方、乾燥用熱源としては、温度が高いほど、熱利用効率が高い。   In the drying of organic sludge, when the above-described high-temperature air of about 800 ° C. is used as a heat source for drying, the temperature is higher than that of the conventional system. Therefore, in the conventional system, the primary dry exhaust gas circulated through the first duct 11A is mixed. Thus, the temperature of the drying gas supplied to the crusher 6 cannot be sufficiently lowered, the dried organic sludge is easily ignited, and the stable drying operation itself is difficult. On the other hand, as the heat source for drying, the higher the temperature, the higher the heat utilization efficiency.

また、有機性汚泥の乾燥排ガスは臭気が強く、前述したように燃焼炉において二次乾燥排ガスについて燃焼により脱臭処理が行われるが、この脱臭処理には、燃料が多量に必要で、また、その燃料に対応する燃焼用空気も供給する必要があるので、ランニングコストが高くなる。それに加えて、燃焼炉で供給される燃焼用空気は大量であるため、燃焼排ガスが増大して、熱交換器での熱回収率が低下するとともに、燃焼炉が大きくなる。   In addition, the dry exhaust gas of organic sludge has a strong odor, and as described above, the deodorization treatment is performed by burning the secondary dry exhaust gas in the combustion furnace, and this deodorization treatment requires a large amount of fuel. Since it is also necessary to supply combustion air corresponding to the fuel, the running cost is increased. In addition, since a large amount of combustion air is supplied in the combustion furnace, the combustion exhaust gas increases, the heat recovery rate in the heat exchanger decreases, and the combustion furnace becomes larger.

本発明は、例えばセメント工場で発生する800℃程度の高温空気を乾燥用熱源として、安全で安定した乾燥操作を行うことができ、併せて、乾燥排ガスの脱臭処理について省エネルギー化を図ることができる有機性汚泥の乾燥および脱臭処理方法並びにそのシステムを提供することを目的とする。   The present invention can perform a safe and stable drying operation using, for example, high-temperature air of about 800 ° C. generated in a cement factory as a heat source for drying, and at the same time can save energy in the deodorization treatment of the dried exhaust gas. An object is to provide a method and system for drying and deodorizing organic sludge.

請求項1の発明は、予め製造しておいた大量の乾燥汚泥の表面に脱水ケーキを混合し、この混合汚泥を乾燥した後の乾燥排ガスの一部である一次乾燥排ガスを高温ガスと混合して、前記混合汚泥の乾燥に用いる一方、前記乾燥排ガスの残部である二次乾燥排ガスを燃焼炉に導入し燃焼することにより脱臭処理して燃焼排ガスとする構成とされ、前記二次乾燥排ガスを燃焼炉に導入する前に、前記二次乾燥排ガスを前記燃焼炉からの燃焼排ガスと熱交換し、前記燃焼排ガスの温度を下げる有機性汚泥の乾燥および脱臭処理方法において、前記高温ガスとして高温空気を用い、前記熱交換された二次乾燥排ガスの一部を回収し、前記高温ガス又は一次乾燥排ガスに対して混合することを特徴とする。   In the invention of claim 1, a dehydrated cake is mixed with the surface of a large amount of dry sludge produced in advance, and a primary dry exhaust gas that is a part of the dry exhaust gas after drying this mixed sludge is mixed with a high-temperature gas. In addition, while being used for drying the mixed sludge, the secondary dry exhaust gas that is the remainder of the dry exhaust gas is introduced into a combustion furnace and burned to form a deodorized combustion exhaust gas. In the organic sludge drying and deodorizing treatment method, the secondary dry exhaust gas is heat-exchanged with the combustion exhaust gas from the combustion furnace and the temperature of the combustion exhaust gas is lowered before being introduced into the combustion furnace. The heat-exchanged secondary dry exhaust gas is partially recovered and mixed with the high-temperature gas or primary dry exhaust gas.

このようにすれば、高温空気に混合される一次乾燥排ガスに対し、前記熱交換された二次乾燥排ガスからの一部を混合することで、混合汚泥の乾燥に用いる乾燥用ガスの温度を適当な温度まで効率よく低下させることができる。この場合、前記熱交換された二次乾燥排ガスの温度は、混合汚泥を乾燥した後の乾燥排ガス(一次乾燥排ガス)よりもガス温度が高いので、混合汚泥を乾燥した後の乾燥排ガス(一次乾燥排ガス)の混合量を増量するよりも効率がよい。   In this way, the temperature of the drying gas used for drying the mixed sludge is appropriately adjusted by mixing a part of the heat-exchanged secondary dry exhaust gas with the primary dry exhaust gas mixed with high-temperature air. Can be efficiently reduced to a low temperature. In this case, the temperature of the heat-exchanged secondary dry exhaust gas is higher than that of the dried exhaust gas after drying the mixed sludge (primary dry exhaust gas). Therefore, the dried exhaust gas after drying the mixed sludge (primary drying) It is more efficient than increasing the amount of exhaust gas).

熱交換された二次乾燥排ガスの一部を回収して、燃焼炉で燃焼する乾燥排ガスの量を少なくすることができるので、燃焼用燃料の使用量を抑制でき、燃焼炉の小型化が図れる。また、高温ガス(燃焼排ガス)に代えて高温空気を用いるので、燃焼炉における燃焼に乾燥排ガスに含まれる酸素を利用することができるので、従来必要とされた燃焼用空気を用いることなく、燃焼することができる。   Part of the heat-exchanged secondary dry exhaust gas can be recovered and the amount of dry exhaust gas combusted in the combustion furnace can be reduced, so the amount of fuel used for combustion can be reduced and the combustion furnace can be downsized. . In addition, since high-temperature air is used instead of high-temperature gas (combustion exhaust gas), oxygen contained in the dry exhaust gas can be used for combustion in the combustion furnace, so that combustion can be performed without using conventionally required combustion air. can do.

請求項2に記載のように、前記高温ガス又は一次乾燥排ガスに対して混合するのは、熱交換が完了する前の二次乾燥排ガスの一部であることが望ましい。   As described in claim 2, it is desirable that the high-temperature gas or the primary dry exhaust gas is mixed with a part of the secondary dry exhaust gas before the heat exchange is completed.

このようにすれば、熱交換が完了する前の二次乾燥排ガスを回収して、前記高温空気に混合される一次乾燥排ガスに対し混合するので、混合する乾燥排ガス(二次乾燥排ガス)の温度を選択でき、熱回収効率を高める点で有利である。   In this way, the secondary dry exhaust gas before heat exchange is completed is collected and mixed with the primary dry exhaust gas mixed with the high-temperature air, so the temperature of the dry exhaust gas (secondary dry exhaust gas) to be mixed This is advantageous in that it improves the heat recovery efficiency.

上記請求項1,2の発明を実施するシステムを、請求項3〜7に記載のように構成することができる。   A system for carrying out the inventions of the first and second aspects can be configured as described in the third to seventh aspects.

請求項3の発明は、予め製造しておいた大量の乾燥汚泥の表面に脱水ケーキを混合し、この混合汚泥を乾燥した後の乾燥排ガスを乾燥ファンにて誘引し、この誘引した乾燥排ガスの一部である一次乾燥排ガスを第1のダクトを通じて高温ガスに混合して、前記混合汚泥の乾燥に用いる一方、前記乾燥排ガスの残部である二次乾燥排ガスを第2のダクトを通じて燃焼炉に導入し燃焼することにより脱臭処理して燃焼排ガスとする構成とされ、前記二次乾燥排ガスを燃焼炉に導入する前に、前記二次乾燥排ガスを熱交換器を通過させることで前記燃焼炉からの燃焼排ガスと熱交換し、前記燃焼排ガスの温度を下げる有機性汚泥の乾燥および脱臭処理システムにおいて、前記高温ガスとして高温空気を用い、前記第1のダクトと熱交換器との間に、前記熱交換器で熱交換された二次乾燥排ガスの一部を回収し前記高温ガス又は一次乾燥排ガスに対して混合するガス回収混合手段を設けたことを特徴とする。   In the invention of claim 3, a dehydrated cake is mixed on the surface of a large amount of dry sludge produced in advance, and the dried exhaust gas after drying this mixed sludge is attracted by a drying fan, and A part of the primary dry exhaust gas is mixed with high-temperature gas through the first duct and used for drying the mixed sludge, while the secondary dry exhaust gas as the remainder of the dry exhaust gas is introduced into the combustion furnace through the second duct. It is configured to deodorize by burning and become a combustion exhaust gas, and before introducing the secondary dry exhaust gas into the combustion furnace, the secondary dry exhaust gas is passed through a heat exchanger to pass from the combustion furnace. In the organic sludge drying and deodorizing treatment system that exchanges heat with combustion exhaust gas and lowers the temperature of the combustion exhaust gas, using high-temperature air as the high-temperature gas, between the first duct and the heat exchanger, Characterized in that a gas recovery mixing means to recover a part of the secondary drying gas which is heat-exchanged in serial heat exchanger are mixed to the hot gas or the primary drying gas.

このようにすれば、高温空気(高温ガス)に混合される一次乾燥排ガスに、前記熱交換器で熱交換された二次乾燥排ガスの一部を混合することで、混合汚泥の乾燥に用いる乾燥用ガスの温度(例えば400℃以下)を効率よく低下させることができる。そして、請求項1の発明と同様に、熱交換された二次乾燥排ガスの一部を回収するので、燃焼炉で燃焼する乾燥排ガスの量を少なくでき、燃焼用燃料の使用量を抑制でき、燃焼炉の小型化が図れる。よって、燃焼用空気を必要としないで燃焼できる。   In this way, a part of the secondary dry exhaust gas heat-exchanged by the heat exchanger is mixed with the primary dry exhaust gas mixed with high-temperature air (high-temperature gas), thereby drying the mixed sludge. The temperature (for example, 400 degrees C or less) of service gas can be reduced efficiently. And like invention of Claim 1, since a part of secondary dry exhaust gas heat-exchanged is collect | recovered, the quantity of the dry exhaust gas combusted in a combustion furnace can be decreased, the usage-amount of the fuel for combustion can be suppressed, The combustion furnace can be downsized. Therefore, it can combust without requiring combustion air.

また、熱交換した二次乾燥排ガスを有効利用することで、乾燥用ガスにおいて高温空気量に対し乾燥排ガスの割合が多くなり、乾燥操作で発生する水蒸気で乾燥用ガス中の水蒸気濃度が高くなり、酸素濃度が低下して(解砕機の)混合汚泥に対して供給されるため、着火しにくくなる。   Also, by effectively using the heat-exchanged secondary dry exhaust gas, the ratio of the dry exhaust gas to the amount of high-temperature air in the drying gas increases, and the water vapor concentration in the drying gas increases due to the water vapor generated in the drying operation. Since the oxygen concentration is reduced and supplied to the mixed sludge (of the crusher), it becomes difficult to ignite.

請求項4に記載のように、前記熱交換器は、一次及び二次熱交換器部を有し、前記ガス回収混合手段は、前記一次熱交換器部と二次熱交換器部とを接続する接続ダクトと、この接続ダクトに設けられ前記接続ダクトを流れるガス流量を調節する第1の調節弁と、前記接続ダクトの第1の調節弁の上流側と前記第1のダクトであって高温ガスが導入される部位より上流側部分とを連通する連通ダクトとを有し、前記一次熱交換器部から二次熱交換器部に供給される乾燥排ガスの一部を前記連通ダクトを通じて回収して、前記高温ガスに混合される乾燥排ガスの一部との混合に用いることができる。   The heat exchanger includes primary and secondary heat exchanger parts, and the gas recovery and mixing unit connects the primary heat exchanger part and the secondary heat exchanger part. A connecting duct, a first control valve that is provided in the connecting duct and adjusts a flow rate of gas flowing through the connecting duct, an upstream side of the first adjusting valve of the connecting duct, and the first duct, A communication duct that communicates with a portion upstream from the portion where the gas is introduced, and a part of the dry exhaust gas supplied from the primary heat exchanger section to the secondary heat exchanger section is recovered through the communication duct. Thus, it can be used for mixing with a part of the dry exhaust gas mixed with the high-temperature gas.

このようにすれば、一次熱交換器部と二次熱交換器部とに分けることにより、伝熱面積を大きくして、燃焼排ガスと二次乾燥排ガスとを熱交換する際に、効率よく燃焼排ガスの温度を低下させる一方、二次乾燥排ガスの温度を高めて、燃焼炉で燃焼しやすくすることができる。よって、熱回収効率を高めて燃料の使用量を抑制できる。   In this way, by separating the primary heat exchanger part and the secondary heat exchanger part, the heat transfer area is increased, and when exchanging heat between the combustion exhaust gas and the secondary dry exhaust gas, efficient combustion is achieved. While reducing the temperature of the exhaust gas, the temperature of the secondary dry exhaust gas can be increased to facilitate combustion in the combustion furnace. Therefore, the heat recovery efficiency can be increased and the amount of fuel used can be suppressed.

請求項5に記載のように、前記乾燥ファンの下流側を流れる乾燥排ガスの温度を検出する温度センサと、前記第1のダクトの、前記連通ダクトとの接続部位より下流側を流れる一次乾燥排ガスの圧力を検出する圧力センサと、前記温度センサ及び圧力センサよりの信号に基づいて前記第1の調節弁を制御して、前記熱交換された二次乾燥排ガスの回収ガス量を調節することで前記第1のダクトへの高温ガスの導入量を制御する制御回路とを有することが望ましい。   The primary dry exhaust gas that flows downstream from a connection portion between the temperature sensor that detects the temperature of the dry exhaust gas that flows downstream of the drying fan and the communication duct of the first duct, according to claim 5. A pressure sensor for detecting the pressure of the gas, and controlling the first control valve based on a signal from the temperature sensor and the pressure sensor to adjust the amount of recovered gas of the heat-exchanged secondary dry exhaust gas. It is desirable to have a control circuit for controlling the amount of hot gas introduced into the first duct.

このようにすれば、第1の調節弁を制御することで、第1のダクトを流れる一次乾燥排ガスの流量が調節され、そのガス量に応じて第1のダクトにおける高温空気の導入量を制御することができる。   In this way, by controlling the first control valve, the flow rate of the primary dry exhaust gas flowing through the first duct is adjusted, and the introduction amount of high-temperature air in the first duct is controlled according to the gas amount. can do.

請求項6に記載のように、前記第2のダクトに、前記第2のダクトを流れるガス流量を調節する第2の調節弁を設け、この第2の調節弁で、熱交換器に導入する二次乾燥排ガスの量を調節しながら、前記乾燥ファンの下流側の乾燥排ガスの温度を制御する構成とすることができる。   According to a sixth aspect of the present invention, the second duct is provided with a second regulating valve that regulates the flow rate of gas flowing through the second duct, and the second regulating valve introduces the second regulating valve into the heat exchanger. The temperature of the dry exhaust gas on the downstream side of the drying fan can be controlled while adjusting the amount of the secondary dry exhaust gas.

このようにすれば、第2の調節弁で、熱交換器に導入する二次乾燥排ガスの量を調節することで、乾燥ファンの下流側の乾燥排ガスの温度が制御される。   In this way, the temperature of the dry exhaust gas on the downstream side of the drying fan is controlled by adjusting the amount of the secondary dry exhaust gas introduced into the heat exchanger with the second control valve.

請求項7に記載のように、予め製造しておいた顆粒状乾燥汚泥は、脱水ケーキの10倍以上であることが望ましい。   As described in claim 7, it is desirable that the granular dried sludge produced in advance is 10 times or more the dehydrated cake.

このようにすれば、大量の乾燥汚泥と脱水ケーキとを混合して、解砕機に供給することで乾燥汚泥表面を湿潤状態にして材料の着火を防止する上で有利である。   In this way, a large amount of dried sludge and dehydrated cake are mixed and supplied to the crusher, which is advantageous in preventing the ignition of the material by making the dried sludge surface wet.

以上のように構成したから、本発明は、例えばセメント工場で発生する高温空気を乾燥用熱源に利用して、有機性汚泥を乾燥する場合に、安全で安定した乾燥操作を行うことができ、併せて、排ガスの脱臭処理について省エネルギー化を図ることができる。   Since constituted as described above, the present invention can perform a safe and stable drying operation when drying organic sludge, for example, using high-temperature air generated in a cement factory as a heat source for drying, In addition, energy saving can be achieved in the deodorization treatment of the exhaust gas.

以下、本発明の実施の形態を図面に沿って説明する。なお、図2に示す従来のシステムと同一の構成要素については同一の符号を用い、その詳細な説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same components as those in the conventional system shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

図1は本発明に係る有機性汚泥の乾燥および脱臭処理システムの概略説明図である。   FIG. 1 is a schematic explanatory view of an organic sludge drying and deodorizing treatment system according to the present invention.

図1において、本発明に係る有機性汚泥の乾燥および脱臭処理システム1は、ケーキホッパ2を通じて投入された脱水ケーキを、ケーキ供給ポンプ3により、乾燥汚泥供給装置4(それの汚泥ケーキ投入口4a)に供給されるように構成されている点は従来と同様である。   In FIG. 1, an organic sludge drying and deodorizing treatment system 1 according to the present invention uses a cake supply pump 3 to feed a dehydrated cake fed through a cake hopper 2 to a dried sludge supply device 4 (its sludge cake inlet 4a). ) Is the same as the conventional one.

乾燥汚泥供給装置4においては、予め製造しておいた大量の顆粒状の乾燥汚泥の表面に、供給された脱水ケーキを混合する。これにより、乾燥汚泥の表面を湿潤状態に維持する。なお、前記顆粒状の乾燥汚泥は、供給される脱水ケーキの10倍以上とされる。   In the dried sludge supply device 4, the supplied dehydrated cake is mixed with the surface of a large amount of granular dried sludge prepared in advance. Thereby, the surface of dry sludge is maintained in a moist state. In addition, the granular dried sludge is 10 times or more the supplied dehydrated cake.

この乾燥汚泥供給装置4からの湿潤混合汚泥は解砕機6に供給され、熱風流(乾燥用ガス)と共に解砕される。ここで、乾燥ファン10の電流値が一定になるように調節された乾燥排ガス(一次乾燥排ガス)や、熱交換器12にて熱交換された乾燥排ガス(二次乾燥排ガス)が高温空気に混合され、乾燥用ガスとしての熱風流が構成される。この熱風流は、400℃以下に温度調整されたガスである。   The wet mixed sludge from the dry sludge supply device 4 is supplied to the crusher 6 and crushed together with the hot air flow (drying gas). Here, dry exhaust gas (primary dry exhaust gas) adjusted so that the current value of the drying fan 10 is constant, and dry exhaust gas (secondary dry exhaust gas) heat-exchanged by the heat exchanger 12 are mixed with high-temperature air. Thus, a hot air flow as a drying gas is formed. This hot air flow is a gas whose temperature is adjusted to 400 ° C. or lower.

そして第2のダクト11Bは、やはり第1のダクト11Aとの分岐点付近に、第2のダクト11Bを流れるガス流量(乾燥排ガスの流量)を調節する調節弁15(第2の調節弁)を有する。この調節弁15は、乾燥ファン10下流の乾燥排ガスの温度を検出する温度センサ19よりの信号を受けてその開度が調節される。これにより、第2のダクト11Bを通じて熱交換器12に向かって流れる二次乾燥排ガスの量が調節され、その結果として、第1のダクト11Aを流れる一次乾燥排ガスの流量が調節される。このようにして、第1及び第2のダクト11A,11Bの間で、一次乾燥排ガスと二次乾燥排ガスとの分配が行われる。   The second duct 11B also has a control valve 15 (second control valve) that adjusts the flow rate of gas flowing through the second duct 11B (flow rate of dry exhaust gas) near the branch point with the first duct 11A. Have. The adjusting valve 15 receives a signal from a temperature sensor 19 that detects the temperature of the dry exhaust gas downstream of the drying fan 10 and its opening degree is adjusted. As a result, the amount of the secondary dry exhaust gas flowing toward the heat exchanger 12 through the second duct 11B is adjusted, and as a result, the flow rate of the primary dry exhaust gas flowing through the first duct 11A is adjusted. In this way, the primary dry exhaust gas and the secondary dry exhaust gas are distributed between the first and second ducts 11A and 11B.

第1のダクト11Aには、調節弁13及び圧力センサ16の検出位置よりも下流側において、例えばセメント工場で発生する高温空気(高温クリンカの冷却工程から発生する800℃程度の高温空気)が導入される導入路17が接続されるが、この導入路17には、従来システム(図2参照)とは異なり、調節弁18が設けられていない。よって、この導入路17を通じて導入される高温空気の量は、解砕機6に向かって流される一次乾燥排ガスの流量に応じて決定される。   In the first duct 11A, for example, high-temperature air generated in a cement factory (high-temperature air of about 800 ° C. generated from a cooling process of a high-temperature clinker) is introduced downstream of the detection position of the control valve 13 and the pressure sensor 16. Unlike the conventional system (see FIG. 2), the introduction path 17 is not provided with a regulating valve 18. Therefore, the amount of high-temperature air introduced through the introduction path 17 is determined according to the flow rate of the primary dry exhaust gas flowing toward the crusher 6.

熱交換器12において、一次熱交換器部12Aから二次熱交換器部12Bに二次乾燥排ガスを供給する接続ダクト42に、接続ダクト42を流れるガス流量を調節する調節弁41(第1の調節弁)が設けられている。それと共に、一次熱交換器部12Aから二次熱交換器部12Bに流れる二次乾燥排ガスの一部を回収し、第1のダクト11A(調節弁13の下流側であって圧力センサ16の上流側)に戻すために、熱交換器12の接続ダクト42と第1のダクト11Aとを連通する連通ダクト43が設けられている。このようにして、第1のダクト11Aと熱交換器12との間に、熱交換器12で熱交換された二次乾燥排ガスの一部を回収し前記高温空気に混合される一次乾燥排ガスに対して混合するガス回収混合手段が構成される。なお、この第1のダクト11Aに戻される二次乾燥排ガスの温度は、燃焼排ガスとの熱交換のために、混合汚泥を乾燥した後よりも温度が高くなっている。   In the heat exchanger 12, a regulating valve 41 that adjusts the flow rate of gas flowing through the connection duct 42 (first valve) is connected to the connection duct 42 that supplies the secondary dry exhaust gas from the primary heat exchanger section 12 </ b> A to the secondary heat exchanger section 12 </ b> B. A control valve). At the same time, a part of the secondary dry exhaust gas flowing from the primary heat exchanger section 12A to the secondary heat exchanger section 12B is recovered, and the first duct 11A (on the downstream side of the control valve 13 and upstream of the pressure sensor 16). In order to return to the side), a communication duct 43 that connects the connection duct 42 of the heat exchanger 12 and the first duct 11A is provided. In this way, a portion of the secondary dry exhaust gas heat-exchanged by the heat exchanger 12 is recovered between the first duct 11A and the heat exchanger 12, and converted into the primary dry exhaust gas mixed with the high-temperature air. A gas recovery and mixing means for mixing is configured. Note that the temperature of the secondary dry exhaust gas returned to the first duct 11A is higher than that after drying the mixed sludge for heat exchange with the combustion exhaust gas.

そして、調節弁41の開度が、温度センサ19及び圧力センサ16よりの信号に基づいて制御回路44によって制御され、一次熱交換器部12Aから二次熱交換器部12Bに導入されるガス量が調節される。これにより、連通ダクト43を通じて回収され一次乾燥排ガスに混合される二次乾燥排ガスの流量が調節され、その結果、第1のダクト11Aにおける高温空気の導入量が制御される。   And the opening degree of the control valve 41 is controlled by the control circuit 44 based on the signals from the temperature sensor 19 and the pressure sensor 16, and the amount of gas introduced from the primary heat exchanger section 12A to the secondary heat exchanger section 12B. Is adjusted. As a result, the flow rate of the secondary dry exhaust gas collected through the communication duct 43 and mixed with the primary dry exhaust gas is adjusted, and as a result, the amount of high-temperature air introduced into the first duct 11A is controlled.

つまり、制御回路44は、温度センサ19からの信号により測定温度が設定値からどれだけずれているかを判定する第1の判定部と、圧力センサ16からの信号により測定圧が設定値からどれだけずれているかを判定する第2の判定部と、その判定結果(両判定部からの信号)に基づき、よりずれの大きい信号に基づいて設定値に近くなるように制御する制御部とを有する。これにより、設定値よりのずれ量が大きい方の信号に基づき、一次熱交換器部12Aから二次熱交換器部12Bへ導入する二次乾燥排ガスの量を制御することで回収ガス量が調節され、最終的に導入路17を通じての高温空気の導入量が制御される。また、前記判定結果に基づき、例えば温度センサ19による測定値と圧力センサ16による測定値とにより調節弁41の開度を決定できるマップに基づき制御することも可能である。   That is, the control circuit 44 determines how much the measured pressure is deviated from the set value by the first determining unit that determines how much the measured temperature deviates from the set value by the signal from the temperature sensor 19 and the signal from the pressure sensor 16. Based on the determination result (signals from both determination units), a second determination unit that determines whether or not there is a deviation, and a control unit that controls to be close to the set value based on a signal with a larger deviation. As a result, the amount of recovered gas is adjusted by controlling the amount of secondary dry exhaust gas introduced from the primary heat exchanger section 12A to the secondary heat exchanger section 12B based on the signal having the larger deviation from the set value. Finally, the amount of high-temperature air introduced through the introduction path 17 is controlled. Further, based on the determination result, for example, it is possible to control based on a map in which the opening degree of the control valve 41 can be determined by the measured value by the temperature sensor 19 and the measured value by the pressure sensor 16.

このようにすれば、第1のダクト11Aにおいて高温空気(例えばセメント工場で発生する800℃程度の高温空気)に混合される一次乾燥排ガス(120℃程度)に対し、熱交換器12で熱交換された温度が比較的高い二次乾燥排ガスの一部を混合することで、解砕機6に供給される乾燥用排ガスの温度を適当な乾燥温度、つまり有機性汚泥の乾燥物が着火しにくくなる400℃以下の温度に無理なく低下させることができる。   If it does in this way, with the heat exchanger 12, it heat-exchanges with respect to the primary dry waste gas (about 120 degreeC) mixed with high temperature air (for example, about 800 degreeC high temperature air generated in a cement factory) in the 1st duct 11A. By mixing a part of the secondary dry exhaust gas having a relatively high temperature, the temperature of the drying exhaust gas supplied to the crusher 6 becomes an appropriate drying temperature, that is, the dried organic sludge is difficult to ignite. It can be lowered without difficulty to a temperature of 400 ° C. or lower.

しかも、乾燥用ガスにおいて、従来よりも高温空気の量に対し乾燥排ガス(一次乾燥排ガス、二次乾燥排ガス)の占める割合が多くなるので、乾燥操作で発生する水蒸気で乾燥用ガス中の水蒸気濃度が高くなる。その結果、酸素濃度が低下する。よって、水蒸気濃度が高く酸素濃度が低い乾燥用ガスが解砕機6へ供給されることになるため、有機性汚泥の乾燥物が着火しにくくなる。なお、水蒸気濃度が高くなり、乾燥汚泥の表面を湿潤状態が維持されるので、着火しにくくなる。   In addition, in the drying gas, the proportion of dry exhaust gas (primary dry exhaust gas, secondary dry exhaust gas) with respect to the amount of high-temperature air is higher than before, so the water vapor concentration in the drying gas with water vapor generated in the drying operation Becomes higher. As a result, the oxygen concentration decreases. Therefore, since the drying gas having a high water vapor concentration and a low oxygen concentration is supplied to the crusher 6, the dried organic sludge is difficult to ignite. In addition, since a water vapor | steam density | concentration becomes high and the wet state is maintained on the surface of dry sludge, it becomes difficult to ignite.

燃焼炉排ガスと乾燥排ガスとを熱交換器12で熱交換して熱回収する際に、その熱交換器12を一次熱交換器部12Aと二次交換器12Bとに分け、一次熱交換器部12Aを通過した後に二次熱交換器部12Bに入る前に二次乾燥排ガスの一部を回収しているので、二次熱交換器部12Bを通過する二次乾燥排ガスの量が少なくなり、その熱交換器部12Bの容量を小さくできる。また、燃焼炉24に送られる乾燥排ガスが少なくなるので、それを燃焼するための燃料の使用量を抑制できる。従来の高温ガス(温度が650℃程度で酸素濃度が低い燃焼排ガス)と異なり、800℃程度の高温空気を用いているので、二次乾燥排ガス(乾燥用ガスの一部)中の酸素濃度が高く、その酸素を、燃焼炉での燃焼用酸素として利用することができるので、バーナ用の燃焼用空気を必要としないで燃焼することができる。また、燃焼炉24での燃焼排ガス量を少なくできるので、熱回収後の排ガス温度の上昇を抑制して、効率よく熱回収後の排ガス温度を低下させることができ、熱回収効率を高められる。   When heat recovery is performed by exchanging heat between the combustion furnace exhaust gas and the dried exhaust gas by the heat exchanger 12, the heat exchanger 12 is divided into a primary heat exchanger portion 12A and a secondary exchanger 12B, and the primary heat exchanger portion. Since a part of the secondary dry exhaust gas is collected before passing into the secondary heat exchanger section 12B after passing through 12A, the amount of the secondary dry exhaust gas passing through the secondary heat exchanger section 12B is reduced, The capacity of the heat exchanger section 12B can be reduced. Moreover, since the dry exhaust gas sent to the combustion furnace 24 decreases, the usage-amount of the fuel for burning it can be suppressed. Unlike conventional high-temperature gas (combustion exhaust gas having a temperature of about 650 ° C. and low oxygen concentration), since high-temperature air of about 800 ° C. is used, the oxygen concentration in the secondary dry exhaust gas (part of the drying gas) Since the oxygen can be used as combustion oxygen in a combustion furnace, it can be burned without the need for burner combustion air. Moreover, since the amount of combustion exhaust gas in the combustion furnace 24 can be reduced, an increase in exhaust gas temperature after heat recovery can be suppressed, the exhaust gas temperature after heat recovery can be efficiently reduced, and heat recovery efficiency can be increased.

本発明に係る有機性汚泥の乾燥および脱臭処理システムの概略説明図である。It is a schematic explanatory drawing of the drying and deodorizing treatment system of organic sludge concerning the present invention. 従来の有機性汚泥の乾燥および脱臭処理システムの概略説明図である。It is a schematic explanatory drawing of the drying and deodorizing treatment system of the conventional organic sludge.

符号の説明Explanation of symbols

1 有機性汚泥の乾燥および脱臭処理システム
4 乾燥汚泥供給装置
6 解砕機
10 乾燥ファン
11A 第1のダクト
11B 第2のダクト
12 熱交換器
12A 一次熱交換器部
12B 二次熱交換器部
15 調節弁(第2の調節弁)
16 圧力センサ
19 温度センサ
24 燃焼炉
41 調節弁(第1の調節弁)
42 接続ダクト
43 連通ダクト
44 制御回路
DESCRIPTION OF SYMBOLS 1 Drying and deodorizing treatment system of organic sludge 4 Dry sludge supply apparatus 6 Crusher 10 Drying fan 11A 1st duct 11B 2nd duct 12 Heat exchanger 12A Primary heat exchanger part 12B Secondary heat exchanger part 15 Adjustment Valve (second control valve)
16 Pressure sensor 19 Temperature sensor 24 Combustion furnace 41 Control valve (first control valve)
42 Connection Duct 43 Communication Duct 44 Control Circuit

Claims (7)

予め製造しておいた大量の乾燥汚泥の表面に脱水ケーキを混合し、この混合汚泥を乾燥した後の乾燥排ガスの一部である一次乾燥排ガスを高温ガスと混合して、前記混合汚泥の乾燥に用いる一方、前記乾燥排ガスの残部である二次乾燥排ガスを燃焼炉に導入し燃焼することにより脱臭処理して燃焼排ガスとする構成とされ、前記二次乾燥排ガスを燃焼炉に導入する前に、前記二次乾燥排ガスを前記燃焼炉からの燃焼排ガスと熱交換し、前記燃焼排ガスの温度を下げる有機性汚泥の乾燥および脱臭処理方法において、
前記高温ガスとして高温空気を用い、
前記熱交換された二次乾燥排ガスの一部を回収し、前記高温ガス又は一次乾燥排ガスに対して混合することを特徴とする有機性汚泥の乾燥および脱臭処理方法。
The dehydrated cake is mixed with the surface of a large amount of dry sludge produced in advance, and the primary dry exhaust gas that is part of the dry exhaust gas after drying this mixed sludge is mixed with high-temperature gas to dry the mixed sludge. On the other hand, the secondary dry exhaust gas, which is the remainder of the dry exhaust gas, is introduced into the combustion furnace and burned to be deodorized to form a combustion exhaust gas, before the secondary dry exhaust gas is introduced into the combustion furnace. In the method for drying and deodorizing organic sludge, the secondary dry exhaust gas is heat-exchanged with the combustion exhaust gas from the combustion furnace, and the temperature of the combustion exhaust gas is lowered.
Using hot air as the hot gas,
A method for drying and deodorizing organic sludge, wherein a part of the heat-exchanged secondary dry exhaust gas is collected and mixed with the high-temperature gas or primary dry exhaust gas.
前記高温ガス又は一次乾燥排ガスに対して混合するのは、熱交換が完了する前の二次乾燥排ガスの一部である請求項1記載の有機性汚泥の乾燥および脱臭処理方法。   The method for drying and deodorizing organic sludge according to claim 1, wherein the high-temperature gas or the primary dry exhaust gas is mixed with a part of the secondary dry exhaust gas before heat exchange is completed. 予め製造しておいた大量の乾燥汚泥の表面に脱水ケーキを混合し、この混合汚泥を乾燥した後の乾燥排ガスを乾燥ファンにて誘引し、この誘引した乾燥排ガスの一部である一次乾燥排ガスを第1のダクトを通じて高温ガスに混合して、前記混合汚泥の乾燥に用いる一方、前記乾燥排ガスの残部である二次乾燥排ガスを第2のダクトを通じて燃焼炉に導入し燃焼することにより脱臭処理して燃焼排ガスとする構成とされ、前記二次乾燥排ガスを燃焼炉に導入する前に、前記二次乾燥排ガスを熱交換器を通過させることで前記燃焼炉からの燃焼排ガスと熱交換し、前記燃焼排ガスの温度を下げる有機性汚泥の乾燥および脱臭処理システムにおいて、
前記高温ガスとして高温空気を用い、
前記第1のダクトと熱交換器との間に、前記熱交換器で熱交換された二次乾燥排ガスの一部を回収し前記高温ガス又は一次乾燥排ガスに対して混合するガス回収混合手段を設けたことを特徴とする有機性汚泥の乾燥および脱臭処理システム。
The dehydrated cake is mixed with the surface of a large amount of dry sludge produced in advance, and the dry exhaust gas after drying this mixed sludge is attracted by a drying fan, and the primary dry exhaust gas that is part of this attracted dry exhaust gas Is mixed with high-temperature gas through the first duct and used for drying the mixed sludge, while the secondary dry exhaust gas that is the remainder of the dry exhaust gas is introduced into the combustion furnace through the second duct and burned to deodorize it. It is configured as a combustion exhaust gas, and before introducing the secondary dry exhaust gas into the combustion furnace, heat exchange with the combustion exhaust gas from the combustion furnace by passing the secondary dry exhaust gas through a heat exchanger, In the organic sludge drying and deodorizing treatment system for lowering the temperature of the combustion exhaust gas,
Using hot air as the hot gas,
Gas recovery mixing means for recovering a part of the secondary dry exhaust gas heat-exchanged in the heat exchanger and mixing it with the high-temperature gas or primary dry exhaust gas between the first duct and the heat exchanger. An organic sludge drying and deodorizing system characterized by being provided.
前記熱交換器は、一次及び二次熱交換器部を有し、
前記ガス回収混合手段は、前記一次熱交換器部と二次熱交換器部とを接続する接続ダクトと、この接続ダクトに設けられ前記接続ダクトを流れるガス流量を調節する第1の調節弁と、前記接続ダクトの第1の調節弁の上流側と前記第1のダクトであって高温ガスが導入される部位より上流側部分とを連通する連通ダクトとを有し、
前記一次熱交換器部から二次熱交換器部に供給される二次乾燥排ガスの一部を前記連通ダクトを通じて回収して、前記高温ガス又は一次乾燥排ガスとの混合に用いる請求項3記載の有機性汚泥の乾燥および脱臭処理システム。
The heat exchanger has primary and secondary heat exchanger parts,
The gas recovery and mixing means includes a connection duct that connects the primary heat exchanger part and the secondary heat exchanger part, and a first control valve that is provided in the connection duct and adjusts a gas flow rate that flows through the connection duct; A communication duct that communicates the upstream side of the first control valve of the connection duct and the upstream part of the first duct from the site where the high-temperature gas is introduced,
The part of the secondary dry exhaust gas supplied from the primary heat exchanger unit to the secondary heat exchanger unit is recovered through the communication duct and used for mixing with the high-temperature gas or the primary dry exhaust gas. Organic sludge drying and deodorization treatment system.
前記乾燥ファンの下流側を流れる乾燥排ガスの温度を検出する温度センサと、
前記第1のダクトの、前記連通ダクトとの接続部位より下流側を流れる一次乾燥排ガスの圧力を検出する圧力センサと、
前記温度センサ及び圧力センサよりの信号に基づいて前記第1の調節弁を制御して、前記熱交換された二次乾燥排ガスの回収ガス量を調節することで前記第1のダクトへの高温ガスの導入量を制御する制御回路とを有する請求項4記載の有機性汚泥の乾燥および脱臭処理システム。
A temperature sensor for detecting the temperature of the dry exhaust gas flowing downstream of the drying fan;
A pressure sensor for detecting the pressure of the primary dry exhaust gas flowing downstream from the connection portion of the first duct with the communication duct;
The first control valve is controlled based on signals from the temperature sensor and the pressure sensor, and the amount of recovered gas of the heat-exchanged secondary dry exhaust gas is adjusted, whereby the high-temperature gas to the first duct is adjusted. The organic sludge drying and deodorizing treatment system according to claim 4, further comprising: a control circuit that controls the amount of the introduced water.
前記第2のダクトに、前記第2のダクトを流れるガス流量を調節する第2の調節弁を設け、
この第2の調節弁で、熱交換器に導入する二次乾燥排ガスの量を調節しながら、前記乾燥ファンの下流側の乾燥排ガスの温度を制御する請求項3〜5のいずれかに記載の有機性汚泥の乾燥および脱臭処理システム。
The second duct is provided with a second control valve that adjusts the flow rate of gas flowing through the second duct,
The temperature of the dry exhaust gas on the downstream side of the drying fan is controlled by adjusting the amount of the secondary dry exhaust gas introduced into the heat exchanger by the second control valve. Organic sludge drying and deodorization treatment system.
前記予め製造しておいた大量の顆粒状乾燥汚泥は、前記脱水ケーキの10倍以上である請求項3〜6のいずれかに記載の有機性汚泥の乾燥および脱臭処理システム。   The organic sludge drying and deodorizing treatment system according to any one of claims 3 to 6, wherein the large amount of granular dried sludge produced in advance is 10 times or more that of the dehydrated cake.
JP2004065750A 2004-03-09 2004-03-09 Method and system for drying and deodorizing organic sludge Expired - Fee Related JP3782425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004065750A JP3782425B2 (en) 2004-03-09 2004-03-09 Method and system for drying and deodorizing organic sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004065750A JP3782425B2 (en) 2004-03-09 2004-03-09 Method and system for drying and deodorizing organic sludge

Publications (2)

Publication Number Publication Date
JP2005254055A true JP2005254055A (en) 2005-09-22
JP3782425B2 JP3782425B2 (en) 2006-06-07

Family

ID=35080320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004065750A Expired - Fee Related JP3782425B2 (en) 2004-03-09 2004-03-09 Method and system for drying and deodorizing organic sludge

Country Status (1)

Country Link
JP (1) JP3782425B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204286A (en) * 2008-02-29 2009-09-10 Toppan Cosmo Inc Drying device of printing body
CN101265009B (en) * 2008-04-09 2011-05-18 浙江大学 Clean energy-saving sludge drying method for reclaiming and utilizing tail gas residual heat
JP2011167649A (en) * 2010-02-19 2011-09-01 Daido Steel Co Ltd Carbonization treatment facility of sludge
JP2016205695A (en) * 2015-04-21 2016-12-08 宇部興産株式会社 Oxygen concentration estimation method in drying system of drying equipment
CN113154412A (en) * 2021-04-17 2021-07-23 浙江宜可欧环保科技有限公司 Resource treatment method for pyrolysis desorption gas
CN113531556A (en) * 2021-07-21 2021-10-22 重庆乐乐环保科技有限公司 Control method of self-maintaining smoldering treatment system for high-water-content sludge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204286A (en) * 2008-02-29 2009-09-10 Toppan Cosmo Inc Drying device of printing body
CN101265009B (en) * 2008-04-09 2011-05-18 浙江大学 Clean energy-saving sludge drying method for reclaiming and utilizing tail gas residual heat
JP2011167649A (en) * 2010-02-19 2011-09-01 Daido Steel Co Ltd Carbonization treatment facility of sludge
JP2016205695A (en) * 2015-04-21 2016-12-08 宇部興産株式会社 Oxygen concentration estimation method in drying system of drying equipment
CN113154412A (en) * 2021-04-17 2021-07-23 浙江宜可欧环保科技有限公司 Resource treatment method for pyrolysis desorption gas
CN113531556A (en) * 2021-07-21 2021-10-22 重庆乐乐环保科技有限公司 Control method of self-maintaining smoldering treatment system for high-water-content sludge

Also Published As

Publication number Publication date
JP3782425B2 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
CN102476907B (en) Method of high-efficiency high-speed environmentally-friendly energy-saving sludge treatment system
JPH11325439A (en) Method and apparatus for incinerating solid fine particles
DK152578B (en) PROCEDURE FOR PORTLAND CEMENT MANUFACTURING
WO2014024498A1 (en) Sludge treatment facility and treatment method
JP5780806B2 (en) Sludge incineration treatment system and sludge incineration treatment method
JP2016191539A (en) Stoker type waste incinerator and waste incineration method
CN110220204A (en) A kind of system and method for waste incineration cooperatively processing sludge
JP2004084981A (en) Waste incinerator
US20120247374A1 (en) Independent vector control system for gasification furnace
JP3782425B2 (en) Method and system for drying and deodorizing organic sludge
US4541572A (en) Pulverizing, drying and transporting system for injecting a pulverized fuel into a blast furnace
JP5800237B2 (en) Waste incinerator and waste incineration method
JP6363808B1 (en) Biomass carbide production system
JP6218117B2 (en) Grate-type waste incinerator and waste incineration method
JP2002098308A (en) Circulated fluidized bed combustion apparatus
JP5871207B2 (en) Waste incinerator and waste incineration method
JP2012122623A (en) Method and apparatus for drying and incinerating sewage sludge
JP3866000B2 (en) Method and apparatus for manufacturing ground improvement material
JP2001317715A (en) Method and device for incineration disposal of solid waste
JP6455717B2 (en) Grate-type waste incinerator and waste incineration method
JP6363810B1 (en) Biomass carbide production system
KR20000002871A (en) Incinerator drying facilitating device using recirculation of ignition gas
JP5243840B2 (en) Combustion method of stoker type incinerator
JP2009085572A (en) Combustion boiler for combustible material containing powder and particulate
JP2000028129A (en) Pulverized coal combustor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060309

R150 Certificate of patent or registration of utility model

Ref document number: 3782425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees