JP2007247049A - High strength hot rolled steel sheet having excellent stretch-flanging property - Google Patents
High strength hot rolled steel sheet having excellent stretch-flanging property Download PDFInfo
- Publication number
- JP2007247049A JP2007247049A JP2006076451A JP2006076451A JP2007247049A JP 2007247049 A JP2007247049 A JP 2007247049A JP 2006076451 A JP2006076451 A JP 2006076451A JP 2006076451 A JP2006076451 A JP 2006076451A JP 2007247049 A JP2007247049 A JP 2007247049A
- Authority
- JP
- Japan
- Prior art keywords
- crystal grains
- steel sheet
- ferrite
- ferrite crystal
- precipitated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、自動車などの高強度構造用部品に採用される高強度熱延鋼板に関し、詳しくは、バーリング加工性や伸びフランジ性に優れ、かつ、鋼板の打ち抜き時の端面の損傷が発生し難い高強度熱延鋼板に関するものである。 The present invention relates to a high-strength hot-rolled steel sheet used for high-strength structural parts such as automobiles. Specifically, the steel sheet is excellent in burring workability and stretch flangeability, and is difficult to cause damage to the end face when the steel sheet is punched. The present invention relates to a high-strength hot-rolled steel sheet.
最近の自動車用部材においては、省エネルギー化の視点から軽量化が重視されながらも、安全性や耐久性も重視される傾向があり、従来にも増して、鉄鋼材料部材の高強度化が急速に進んでいる。その結果、従来の外板パネルに要求されてきた高成形能に対し、構造用部材では、穴拡げ性などの異なる指標での加工性も要求されるようになり、加工性の優れた高強度熱延鋼板の開発が進められてきた。 In recent automobile parts, while weight reduction is emphasized from the viewpoint of energy saving, safety and durability tend to be emphasized, and the strength of steel material members is rapidly increasing compared to the past. Progressing. As a result, in contrast to the high formability required for conventional skin panels, structural members are also required to have workability with different indices such as hole expansibility and high strength with excellent workability. Hot-rolled steel sheets have been developed.
引張強さ590MPa以上の高強度鋼に着目した場合、炭素、シリコン、マンガンといった従来の固溶強化法だけでは、要求される強度の達成は容易でない。元来、フェライト組織だけでは強度不足であるため、ベイナイトやマルテンサイトなどの硬質相を組み合わせた複合組織鋼板の延性が研究された。 When attention is focused on high-strength steel having a tensile strength of 590 MPa or more, it is not easy to achieve the required strength only by conventional solid solution strengthening methods such as carbon, silicon, and manganese. Originally, the ferrite structure alone is insufficient in strength, so the ductility of a composite structure steel sheet combined with hard phases such as bainite and martensite was studied.
その結果、例えば、フェライトとベイナイトの混合組織を用いた鋼板(例えば、特許文献1、参照)、または、マルテンサイト組織をさらに混合した鋼板(例えば、特許文献2、参照)が開発された。 As a result, for example, a steel plate using a mixed structure of ferrite and bainite (see, for example, Patent Document 1) or a steel sheet in which a martensite structure is further mixed (see, for example, Patent Document 2) has been developed.
しかしながら、これらの鋼板においては、引張強度590MPa以上の強度クラスの鋼板にしては、伸びフランジ性が低い。つまり、これらの鋼板は、一様伸びなどには優れるが、穴拡げ性に代表される伸びフランジ性が、むしろ劣化するという欠点を抱えていて、近年の高強度鋼板に要求される加工性を実現させるには、ベイナイトやマルテンサイトなどの硬質相を混合させた鋼材組織では、どうしても限界があると考えられ始めている。 However, these steel sheets have low stretch flangeability for steel sheets having a tensile strength of 590 MPa or more. In other words, these steel sheets are excellent in uniform elongation and the like, but have the disadvantage that the stretch flangeability represented by hole expansibility is rather deteriorated, and have the workability required for high-strength steel sheets in recent years. In order to achieve this, it has begun to be considered that there is a limit to the steel structure in which hard phases such as bainite and martensite are mixed.
これに対し、ベイナイトを主体とした組織により穴拡げ性を改善した熱延鋼板の製造方法が提案されている(例えば、特許文献3、参照)が、この鋼板は、伸び特性に劣ることから適用部品に制約があった。また、フェライトとベイニティック・フェライトと呼ばれる相からなる組織を有し、伸びフランジ性に優れる鋼板が開示されている(例えば、特許文献4、参照)が、延性に欠けるものである。 On the other hand, a method for producing a hot-rolled steel sheet with improved hole expansibility by a structure mainly composed of bainite has been proposed (for example, see Patent Document 3), but this steel sheet is applied because it has poor elongation characteristics. There were restrictions on the parts. Further, a steel sheet having a structure composed of phases called ferrite and bainitic ferrite and having excellent stretch flangeability is disclosed (for example, see Patent Document 4), but lacks ductility.
これらの技術経過をまとめると、従来の2相組織(Dual Phase:例えば、フェライト+マルテンサイト、フェライト+ベイナイト等)を持つ鋼板では、軟質なフェライト相を持つが故、延性に優れるが、2相の硬度差が大きいため伸びフランジ性に欠け、単相組織を持つ高強度鋼板は、一様の組織を持ち、伸びフランジ性に優れるが、延性に欠けるという問題があった。 Summarizing these technical courses, steel sheets with a conventional two-phase structure (Dual Phase: for example, ferrite + martensite, ferrite + bainite, etc.) have a soft ferrite phase and are therefore excellent in ductility. The high-strength steel sheet lacking stretch flangeability due to its large hardness difference and having a single-phase structure has a uniform structure and excellent stretch flangeability, but has a problem of lacking ductility.
このように、高強度鋼板の延性と伸びフランジ性の改善は相反する指標であり、両者を同時に向上させることは困難であった。 Thus, the improvement of ductility and stretch flangeability of high-strength steel sheets are contradictory indicators, and it has been difficult to improve both at the same time.
マルテンサイトやベイナイトなどの強化組織を利用する検討に対し、本来のフェライト相の均一組織の優れた変形能を維持したまま高強度化を図ろうとする技術開発が、近年、再び検討され始め、例えば、TiやNbなどの易炭化物形成元素を活用して微細な炭化物を析出させ、それらの炭化物と転位の相互作用を利用する強化法が注目されている。 In contrast to the study of utilizing a strengthened structure such as martensite and bainite, technical development to increase the strength while maintaining the excellent deformability of the original uniform structure of the ferrite phase has begun to be examined again in recent years. Attention has been focused on a strengthening method in which fine carbides are precipitated using easily carbide-forming elements such as Ti and Nb and the interaction between these carbides and dislocations is utilized.
このような鋼板として、複合析出物を検討し、TiとMoを含む微細な炭化物をフェライト組織中に分散析出させ、鋼中のC固溶量を0.002%以下とすることで、引張強さを780MPa以上、全伸び(一様伸び+局部伸び)を20%以上、穴広げ率を70%以上とした鋼板が開示されている(例えば、特許文献5、参照)。 As such a steel sheet, composite precipitates are studied, fine carbides containing Ti and Mo are dispersed and precipitated in the ferrite structure, and the C solid solution amount in the steel is made 0.002% or less, whereby the tensile strength is increased. A steel sheet having a thickness of 780 MPa or more, a total elongation (uniform elongation + local elongation) of 20% or more, and a hole expansion ratio of 70% or more is disclosed (for example, see Patent Document 5).
この技術の特徴は、微細炭化物を一様に分布させて均一化組織を得るところにあると考えられるが、その思想は、粒子分散強化法により最大強度を得つつ、さらに、析出炭化物を微細化することで延性の確保を図るということである。 It is thought that the feature of this technology is to obtain a uniform structure by uniformly distributing fine carbides, but the idea is that while obtaining the maximum strength by the particle dispersion strengthening method, the precipitated carbides are further refined This is to ensure ductility.
しかし、この鋼板では、鋼板の伸びフランジ加工時に発生する打ち抜き端面の損傷に関しては考慮されておらず、上記全伸びと引張強さを維持しつつ、鋼板の打ち抜き時に発生する端面の損傷を抑えることができなかった。 However, this steel sheet does not take into account the punched end face damage that occurs during the stretch flange processing of the steel sheet, and suppresses the end face damage that occurs during the punching of the steel sheet while maintaining the above total elongation and tensile strength. I could not.
また、TiやNbを含み、製造条件を工夫することで、延性と伸びフランジ性のバランスを改善した鋼板が開示されているが(例えば、特許文献6、参照)、炭化物を含む組織が詳細に規定されておらず、鋼材の設計指針を提示するまでには至っていない。 Further, although steel sheets containing Ti and Nb and improving the balance between ductility and stretch flangeability by devising production conditions have been disclosed (for example, see Patent Document 6), the structure containing carbide is detailed. It is not stipulated, and it has not reached the point of presenting steel design guidelines.
本発明は、上記した従来の問題点を解決するためなされたものであって、590MPaクラス以上の薄鋼板において、優れた伸びフランジ性と延性を両立させ、さらには、打ち抜き端面の損傷を防止した高強度熱延鋼板を提供しようとするものである。 The present invention has been made in order to solve the above-described conventional problems. In a thin steel plate of 590 MPa class or more, the present invention achieves both excellent stretch flangeability and ductility, and further prevents damage to the punched end face. It intends to provide a high strength hot rolled steel sheet.
本発明は、上記新知見に基づきなされたものであり、その要旨とするところは、以下の通りである。 This invention is made | formed based on the said new knowledge, The place made into the summary is as follows.
(1) 引張強度590MPa以上のフェライト単相組織からなる高強度熱延鋼板において、(a)質量%で、C:0.01〜0.2%、Si:0.01〜1.5%、Mn:0.25〜3%を含有し、さらに、炭化物形成元素として、Ti:0.03〜0.2%、Nb:0.01〜0.2%、V:0.01〜0.2%、および、Mo:0.01〜0.2%のうちの1種または2種以上を含有し、残部がFeおよび不可避的不純物からなり、(b)上記C量のうち、固溶C量が、質量%で、0.002%以上であり、(c)上記フェライト単相組織が、(c-1)結晶粒内に、最大径8nm以下の析出炭化物が個数密度1×1017〜5×1018個/cm3で分散した硬質フェライト結晶粒Aと、(c-2)結晶粒内に、最大径8nm以下の析出炭化物が個数密度1×1015〜5×1016個/cm3で分散した軟質フェライト結晶粒Bからなり、かつ、(d)全体積に占める上記硬質フェライト結晶粒Aの体積分率A/(A+B)が、0.1〜0.5であることを特徴とする伸びフランジ性に優れた高強度熱延鋼板。
(1) In a high-strength hot-rolled steel sheet composed of a ferrite single-phase structure having a tensile strength of 590 MPa or more, (a) in mass%, C: 0.01 to 0.2%, Si: 0.01 to 1.5%, Mn: 0.25 to 3%, further, as carbide forming elements, Ti: 0.03 to 0.2%, Nb: 0.01 to 0.2%, V: 0.01 to 0.2 %, And Mo: 0.01 to 0.2% of one or more, and the balance consists of Fe and inevitable impurities, (b) out of the C amount, the amount of solid solution C Is 0.002% or more by mass%, and (c) the ferrite single-phase structure is (c-1) precipitated carbides having a maximum diameter of 8 nm or less in the crystal grains are
(2) 前記硬質フェライト結晶粒Aおよび軟質フェライト結晶粒Bにおける粒界偏析C量が、粒界位置の両側2nmの範囲において平均したとき、原子数%で、0.5〜3%であることを特徴とする前記(1)に記載の伸びフランジ性に優れた高強度熱延鋼板。 (2) When the grain boundary segregation C amount in the hard ferrite crystal grains A and the soft ferrite crystal grains B is averaged in the range of 2 nm on both sides of the grain boundary position, it is 0.5% to 3% in terms of number of atoms. A high-strength hot-rolled steel sheet excellent in stretch flangeability as described in (1) above.
本発明の適用により、引張強さ590MPaクラス以上で、従来にない伸びフランジ性−延性バランスを有し、かつ、打ち抜き端面の損傷発生を抑制した熱延高強度鋼板を供給することが可能になり、さらに、上記バランスを制御することが可能になった。 By applying the present invention, it becomes possible to supply a hot-rolled high-strength steel sheet having a tensile strength of 590 MPa class or more, an unprecedented stretch flangeability-ductility balance, and suppressing the occurrence of damage on the punched end face. Furthermore, the balance can be controlled.
本発明の詳細について、以下に説明する。 Details of the present invention will be described below.
従来の技術課題に対し、本発明者らは、延性と伸びフランジ性の両立を図るため、フェライト組織をベースに、微細炭化物の分散析出法による強化と延性に係る挙動を鋭意検討した。 In order to achieve both ductility and stretch flangeability, the present inventors have intensively studied the behavior related to strengthening and ductility by the dispersion precipitation method of fine carbides in order to achieve both ductility and stretch flangeability.
その結果、本発明者らは、従来の同一フェライト結晶粒のみからなるフェライト単一組織とは異なり、炭化物の析出状態の異なる2種のフェライト粒からなるフェライト単一組織をもって、今までにない延性と伸びフランジ性の両立と、引張強度を確保できる鋼板に辿り着いた。 As a result, the present inventors, unlike the conventional ferrite single structure consisting only of the same ferrite crystal grains, have a ferrite single structure consisting of two types of ferrite grains having different carbide precipitation states, which has never been achieved. And a steel sheet that can achieve both tensile flange strength and tensile strength.
即ち、本発明者らは、検討の結果、鋼板組織の結晶粒として延性に優れるフェライト結晶粒を持ちながらも、該結晶粒を、析出炭化物密度の異なる2種類のフェライト粒とすることにより、延性と伸びフランジ性の両方をともに改善した鋼板を見出したのである。 That is, as a result of the study, the present inventors have obtained ferrite grains having excellent ductility as crystal grains of the steel sheet structure, but by making the grains into two types of ferrite grains having different precipitated carbide densities, the ductility is improved. And a steel sheet with improved stretch flangeability.
また、本発明者らは、打ち抜き端面の損傷に関して、析出炭化物の分散により最大強度を得た場合、固溶炭素が低減し、粒界の偏析炭素が少なくなることにより発生するのではないかと考え、フェライト結晶粒中に析出炭化物を部分的に分散析出させて、粒界に偏析炭素を残すことにより、打ち抜き端面の損傷を抑えることを見出した。 In addition, regarding the damage to the punched end face, the present inventors believe that when maximum strength is obtained by the dispersion of precipitated carbides, solid solution carbon is reduced and segregation carbon at grain boundaries is reduced. The present inventors have found that the damage of the punched end face is suppressed by partially dispersing and precipitating the precipitated carbide in the ferrite crystal grains to leave segregated carbon at the grain boundaries.
即ち、本発明は、延性(20%以上)、伸びフランジ性(穴拡げ性:80%以上)、引張強度(590MPa以上)、および、耐打ち抜き端面損傷性の全てを満足する鋼板を提供することを技術課題とし、この技術課題を解決する技術手段を得るため、
(A)延性が良好なフェライト単相組織をベースとし、該組織の結晶粒内に、伸びフランジ性(穴拡げ性)を低下させないサイズ(8nm以下)の微細析出炭化物を析出分散させることにより、引張強度を向上させ、
(B)前記フェライト単相組織中に、耐打ち抜き端面損傷性の向上に寄与する粒界偏析Cを適正量確保するため、鋼中に、所定量のC固溶量を維持しつつ、(B-1)前記微細析出炭化物の個数密度が高い(1×1017/cm3以上)硬質フェライト結晶粒Aと、粒内析出炭化物の個数密度が低い(5×1016個/cm3以下)軟質フェライト結晶粒Bの2種類のフェライト結晶粒を形成して、鋼板の引張強度(590MPa以上)を良好に維持し、(B-2)従来の析出強化型フェライト高張力鋼板に比べて延性の向上(20%以上)を図り、
(C)前記硬質フェライト結晶粒Aの析出炭化物の個数密度(上限)、および、軟質フェライト結晶粒Bの析出炭化物の個数密度(下限)を、これらの結晶粒における硬度差が過度に大きくならない適正範囲(1×1015〜5×1018個/cm3)内にすることで、従来のフェライトとベイナイトまたはマルテンサイトの2相組織高張力鋼板に比べて伸びフランジ性(穴拡げ率:80%以上)の向上を図り、
(D)前記フェライト単相組織の全体積に占める前記硬質フェライト結晶粒Aの体積分率A/(A+B)を、適正範囲(0.1〜0.5)にすることで、引張強度(A/(A+B)の下限)と延性(A/(A+B)の上限)の両方を満足すること、
を技術思想とする。
That is, the present invention provides a steel sheet satisfying all of ductility (20% or more), stretch flangeability (hole expandability: 80% or more), tensile strength (590 MPa or more), and punching end face damage resistance. To obtain technical means to solve this technical problem,
(A) Based on a ferrite single-phase structure having good ductility, and by precipitating and dispersing finely precipitated carbides having a size (8 nm or less) that does not reduce stretch flangeability (hole expandability) in the crystal grains of the structure, Improve the tensile strength,
(B) In order to ensure an appropriate amount of grain boundary segregation C that contributes to the improvement of punching end face damage resistance in the ferrite single phase structure, while maintaining a predetermined amount of C solid solution in the steel, (B -1) The number density of the finely precipitated carbides is high (1 × 10 17 / cm 3 or more) and the number density of the intragranular precipitated carbides is low (5 × 10 16 pieces / cm 3 or less) soft. Two types of ferrite crystal grains, ferrite crystal grains B, are formed to maintain good tensile strength (590 MPa or more) of the steel sheet. (B-2) Improved ductility compared to conventional precipitation strengthened ferrite high strength steel sheets (20% or more)
(C) The number density (upper limit) of the precipitated carbides of the hard ferrite crystal grains A and the number density (lower limit) of the precipitated carbides of the soft ferrite crystal grains B are appropriate so that the hardness difference between these crystal grains does not become excessively large. By setting it within the range (1 × 10 15 to 5 × 10 18 pieces / cm 3 ), stretch flangeability (hole expansion rate: 80%) compared to conventional high-strength steel sheets of ferrite and bainite or martensite. )
(D) By setting the volume fraction A / (A + B) of the hard ferrite crystal grains A in the total volume of the ferrite single-phase structure to an appropriate range (0.1 to 0.5), the tensile strength (A / (A + B) lower limit) and ductility (A / (A + B) upper limit),
Is the technical idea.
さらに、本発明は、耐打ち抜き端面損傷性をより良好なものとする技術的手段を得るため、
(E)前記粒内微細析出炭化物の析出量を調整することにより、前記硬質フェライト結晶粒Aおよび軟質フェライト結晶粒Bの粒界偏析Cを、原子量%で、0.5〜3%とすること、
も技術思想とする。
Furthermore, the present invention provides a technical means for improving the punching end face damage resistance,
(E) Grain boundary segregation C of the hard ferrite crystal grains A and the soft ferrite crystal grains B is adjusted to 0.5 to 3% in atomic weight% by adjusting the precipitation amount of the intra-grain fine precipitation carbides. ,
Is also a technical idea.
本発明では、フェライト単相組織としたが、これは、実質的に、析出物以外のマトリックスがフェライト組織だけからなることを意味する。つまり、本発明の目的とする鋼板特性を阻害しない限り、フェライトの体積分率を97%以上確保できれば、フェライト組織中に規定する以外の組織相または成分の析出物を含有することが許容される。 In the present invention, the ferrite single-phase structure is used, which means that the matrix other than the precipitate is substantially composed of the ferrite structure. In other words, as long as the volume fraction of ferrite can be ensured to be 97% or more as long as the steel plate characteristics targeted by the present invention are not impaired, it is allowed to contain precipitates of a structure phase or components other than those specified in the ferrite structure. .
また、フェライトとは、結晶構造としてBCCであるフェライト結晶粒を意味し、転位を含んでいてもよく、ポリゴナルフェライト、アシュケラーフェライト、ベイネティックフェライト等を含むものとする。 Further, the ferrite means ferrite crystal grains that are BCC as a crystal structure, may include dislocations, and includes polygonal ferrite, ashkel ferrite, bainetic ferrite, and the like.
また、上記析出炭化物のサイズは、析出炭化物の最大径、すなわち、析出炭化物が球状の場合は直径、板状の場合は対角長とし、測定値の平均値を析出炭化物のサイズとする。 The size of the precipitated carbide is the maximum diameter of the precipitated carbide, that is, the diameter when the precipitated carbide is spherical, the diagonal length when it is plate-like, and the average value of the measured values is the size of the precipitated carbide.
また、本発明において上記析出炭化物とは、炭化物だけでなく、炭化物中に窒素が若干混入した炭窒化物も含むものを意味する。 In the present invention, the above-mentioned precipitated carbide means not only carbides but also carbonitrides in which nitrogen is slightly mixed in the carbides.
次に、本発明の特徴とする鋼板のミクロ組織に係る限定理由について説明する。 Next, the reason for limitation relating to the microstructure of the steel sheet, which is a feature of the present invention, will be described.
本発明者らは、上記技術的思想の下に、鋼板の延性、伸びフランジ性、および、引張強さを満足するため、フェライト単相組織を構成する2種のフェライト結晶粒内に存在する析出炭化物のサイズおよび個数密度の最適条件について、実験的に検討した。 In order to satisfy the ductility, stretch flangeability, and tensile strength of the steel sheet under the above technical idea, the present inventors have precipitated in two types of ferrite crystal grains constituting a ferrite single phase structure. The optimum conditions for the size and number density of carbides were studied experimentally.
表1に示す成分組成を有する鋼材を熱延し、異なる熱処理条件で、表2に示す種々の鋼板を製造した。なお、表中の化学成分の分析値の単位は質量%である。それぞれの鋼板の引張強さについては、JISZ 2201に記載の5号試験片を作製し、JIS Z 2241に記載の試験方法に従って引張試験を行って評価した。また、鋼板の伸びフランジ性については、日本鉄鋼連盟規格JFS T 1001−1996記載の試験方法に従って穴拡げ試験を行って評価した。 The steel materials having the component compositions shown in Table 1 were hot rolled, and various steel plates shown in Table 2 were produced under different heat treatment conditions. In addition, the unit of the analysis value of the chemical component in a table | surface is the mass%. About the tensile strength of each steel plate, the No. 5 test piece as described in JISZ 2201 was produced, and it evaluated by performing the tensile test according to the test method as described in JIS Z2241. Further, the stretch flangeability of the steel sheet was evaluated by conducting a hole expansion test according to the test method described in the Japan Iron and Steel Federation Standard JFS T 1001-1996.
小さな析出炭化物を透過型電子顕微鏡で観察する場合、転位との識別が困難であるので、フェライト結晶粒内の析出炭化物サイズと析出炭化物密度の測定は、FIM観察および三次元アトムプローブ測定法を用いて、以下のように行った。 When observing small precipitated carbides with a transmission electron microscope, it is difficult to distinguish them from dislocations. Therefore, FIM observation and three-dimensional atom probe measurement methods are used to measure the size and density of precipitated carbides in ferrite grains. Then, it went as follows.
まず、測定対象の試料から、切断と電解研磨法により、針状の試料を作製する。なお、この際、電解研磨法と併せて、集束イオンビーム加工法を活用してもよい。次に、FIM観察により、比較的広い視野で、析出炭化物の有無を観察し、任意の30個の析出炭化物のサイズを測定し、その平均値を求める。 First, a needle-like sample is prepared from a sample to be measured by cutting and electropolishing. At this time, a focused ion beam processing method may be used together with the electropolishing method. Next, the presence or absence of precipitated carbide is observed with a relatively wide field of view by FIM observation, the size of any 30 precipitated carbides is measured, and the average value is obtained.
また、三次元アトムプローブ測定では、積算されたデータを再構築して、実空間での実際の原子の分布像を求めることができる。析出炭化物の立体分布像の体積と析出炭化物の数から、析出炭化物の個数密度(析出物密度)を求めることができる。 In the three-dimensional atom probe measurement, the accumulated data can be reconstructed to obtain an actual distribution image of atoms in real space. From the volume of the three-dimensional distribution image of the precipitated carbide and the number of the precipitated carbide, the number density of the precipitated carbide (precipitate density) can be obtained.
本発明において、フェライト結晶粒内の析出炭化物のサイズは、析出炭化物の最大径、すなわち、析出炭化物が球状の場合は直径、板状の場合は対角長を測定した30個の値の平均値とする。 In the present invention, the size of the precipitated carbide in the ferrite crystal grains is the maximum value of the precipitated carbide, that is, the average value of 30 values obtained by measuring the diameter when the precipitated carbide is spherical, and the diagonal length when it is plate-like. And
図1に、鋼板のフェライト結晶粒内の析出炭化物サイズ(nm)と鋼板の穴拡げ率λ(%)の関係を示す。図1によれば、フェライト結晶粒内の析出炭化物の平均サイズが8nmを超える場合は、鋼板の穴拡げ率が著しく低下する。このため、本発明では、鋼板のフェライト結晶粒内の析出炭化物のサイズ(nm)は、8nm以下とする。 FIG. 1 shows the relationship between the precipitated carbide size (nm) in the ferrite crystal grains of the steel sheet and the hole expansion ratio λ (%) of the steel sheet. According to FIG. 1, when the average size of the precipitated carbide in the ferrite crystal grains exceeds 8 nm, the hole expansion rate of the steel sheet is significantly reduced. For this reason, in this invention, the size (nm) of the precipitation carbide | carbonized_material in the ferrite crystal grain of a steel plate shall be 8 nm or less.
さらに、フェライト結晶粒内の析出炭化物により、穴拡げ率を低下させず、鋼板の強度を安定して維持する点から、析出炭化物の平均サイズ(nm)は、好ましくは0.4〜5nmとする。 Further, the average size (nm) of the precipitated carbide is preferably 0.4 to 5 nm from the viewpoint of stably maintaining the strength of the steel sheet without reducing the hole expansion ratio due to the precipitated carbide in the ferrite crystal grains. .
また、鋼板におけるフェライト結晶粒界においては、粒界が優先核生成サイトとなり、粒界に、比較的粗大な粒界析出炭化物が析出する場合があるが、該析出は、鋼板の伸びフランジ性に悪影響を及ぼさないので、本発明においては、フェライト結晶粒界の析出炭化物のサイズは、特に限定する必要はない。 Moreover, in the ferrite crystal grain boundary in the steel sheet, the grain boundary becomes a preferential nucleation site, and a relatively coarse grain boundary precipitated carbide may precipitate at the grain boundary. In the present invention, the size of the precipitated carbides at the ferrite grain boundaries does not have to be particularly limited because no adverse effect is exerted.
図2に、2種のフェライト結晶粒の析出炭化物の個数密度と、鋼材の延性および穴拡げ率の関係を示す。 FIG. 2 shows the relationship between the number density of precipitated carbides of two types of ferrite crystal grains and the ductility and hole expansion ratio of the steel material.
縦軸および横軸は、それぞれ、硬質フェライト結晶粒Aおよび軟質フェライト結晶粒Bの平均析出炭化物の個数密度である。また、図中、目標とする鋼板の伸び(≧20%)と引張強さ(≧590MPa)を共に満足する領域を(1)で示し、目標とする鋼板の穴拡げ率(≧80%)と引張強さ(≧590MPa)を共に満足する領域を(2)で示した。 The vertical axis and the horizontal axis represent the number density of average precipitated carbides of the hard ferrite crystal grains A and the soft ferrite crystal grains B, respectively. Further, in the figure, a region satisfying both the target steel plate elongation (≧ 20%) and tensile strength (≧ 590 MPa) is indicated by (1), and the target steel plate hole expansion rate (≧ 80%) Regions satisfying both tensile strengths (≧ 590 MPa) are indicated by (2).
ここで、2種類あるフェライト粒のうち、析出炭化物の個数密度の高い方の粒を、硬質フェライト結晶粒Aとし、析出炭化物の個数密度の低い方の粒を、軟質フェライト結晶粒Bとし、何れのフェライト結晶粒についても、析出炭化物のサイズは、図1において、穴拡げ率を低下させないサイズ範囲内にある、8nm以下とした。 Here, of the two types of ferrite grains, the grain with the higher number density of precipitated carbide is the hard ferrite crystal grain A, and the grain with the lower number density of precipitated carbide is the soft ferrite crystal grain B. Also for the ferrite crystal grains, the size of the precipitated carbide was 8 nm or less, which is in the size range in which the hole expansion rate is not lowered in FIG.
図2において、硬質フェライト結晶粒Aおよび軟質フェライト結晶粒Bのいずれにおいても、結晶粒内に存在する析出炭化物の個数密度が高くなると、それに伴い、鋼板の強度が上昇するが、両方のフェライト結晶粒内の析出炭化物の個数密度が過度に高くなると、鋼板の伸びおよび穴拡げ率は低下する(図中(4)の領域)。 In FIG. 2, in both the hard ferrite crystal grains A and the soft ferrite crystal grains B, as the number density of precipitated carbides present in the crystal grains increases, the strength of the steel sheet increases accordingly. When the number density of precipitated carbides in the grains becomes excessively high, the elongation and hole expansion rate of the steel sheet decrease (region (4) in the figure).
逆に、硬質フェライト結晶粒Aおよび軟質フェライト結晶粒Bのいずれにおいても、結晶粒内に存在する析出炭化物の個数密度が低くなるほど、鋼板の伸びを確保する上で有利であるが、析出炭化物の個数密度が過度に低くなると、鋼板の引張強さは低下する(図中(3)の領域)。 Conversely, in both the hard ferrite crystal grains A and the soft ferrite crystal grains B, the lower the number density of precipitated carbides present in the crystal grains, the more advantageous in securing the elongation of the steel sheet. When the number density becomes excessively low, the tensile strength of the steel sheet decreases (region (3) in the figure).
また、フェライト単相組織を、結晶粒内における析出炭化物の個数密度が異なる2種類のフェライト結晶粒で構成する場合において、鋼板の引張強度を維持しつつ、鋼板の穴拡げ率および伸びの両方の加工性を向上させるためには、2種類のフェライト結晶粒内の析出炭化物の個数密度を、それぞれ、最適な範囲にすることが必要である。 Further, in the case where the ferrite single-phase structure is composed of two types of ferrite crystal grains in which the number density of precipitated carbides in the crystal grains is different, both the hole expansion ratio and elongation of the steel sheet are maintained while maintaining the tensile strength of the steel sheet. In order to improve the workability, it is necessary to set the number density of the precipitated carbides in the two types of ferrite crystal grains within an optimum range.
つまり、図2から解るように、鋼板の引張強度590MPa以上の強度と、伸び20%以上の高い延性の両方を満足するためには、硬質フェライト結晶粒Aの析出炭化物の個数密度を1×1017個/cm3以上、かつ、軟質フェライト結晶粒Bの析出炭化物の個数密度を5×1016個/cm3以下(図中(1)の範囲)とする必要がある。この理由は、析出炭化物密度の低い軟質フェライト粒Bが、延性を確保するからであると考えられる。
That is, as can be seen from FIG. 2, in order to satisfy both the tensile strength of the steel sheet of 590 MPa or more and the high ductility of 20% or more, the number density of precipitated carbides of the hard ferrite crystal grains A is set to 1 × 10. 17 / cm 3 or more, and it is necessary to make the number density of carbide precipitates soft
さらに、鋼板の引張強度590MPa以上の高強度と、穴拡げ性80%以上の高い伸びフランジ性の両方を満足するためには、硬質フェライト結晶粒Aの析出炭化物の個数密度の上限、および、軟質フェライト結晶粒Bの析出炭化物の個数密度の下限が、ともに、1×1015〜5×1018個/cm3の範囲内(図中(2)の範囲)にある必要がある。 Furthermore, in order to satisfy both the high strength of the steel sheet with a tensile strength of 590 MPa or more and the high stretch flangeability with a hole expandability of 80% or more, the upper limit of the number density of precipitated carbides of the hard ferrite crystal grains A and the softness The lower limit of the number density of the precipitated carbides of the ferrite crystal grains B needs to be within the range of 1 × 10 15 to 5 × 10 18 pieces / cm 3 (range (2) in the figure).
この理由は、経験的に、鋼板の伸びフランジ性は、強度が同じ場合、一様な組織を持つ鋼板の方が良いことが知られているところ、2種類のフェライト結晶粒内の析出炭化物の個数密度が互いに近いほど、伸びフランジ性が向上するからであると考えられる。 This is because, empirically, it is known that the steel sheet having a uniform structure is better for the stretch flangeability of the steel sheet when the strength is the same. This is probably because stretch flangeability improves as the number density is closer to each other.
つまり、2種類のフェライト結晶粒内の析出炭化物の個数密度が、互いに、大きく異なる場合には、2種類のフェライト結晶粒間の硬度差が大きくなり、硬質フェライト結晶粒Aが、鋼板の局部伸びが起こった際に割れの起点となると考えられる。 That is, when the number density of precipitated carbides in two types of ferrite crystal grains is greatly different from each other, the difference in hardness between the two types of ferrite crystal grains is large, and the hard ferrite crystal grains A are stretched locally in the steel sheet. It is considered that it becomes the starting point of cracking when this happens.
前述したように、従来のフェライトとベイナイトまたはマルテンサイトの2相組織高張力鋼板(DP鋼板)において、鋼板の伸びフランジ性が悪い理由は、フェライトの軟質相とベイナイトまたはマルテンサイトの硬質相との硬度差が大きいためである。したがって、本発明において、2種類のフェライト結晶粒内の析出炭化物の個数密度が、互いに大きくなると、2相組織高張力鋼板(DP鋼板)と同様に、鋼板の伸びフランジ性が劣化するので、好ましくない。 As described above, in the conventional high-strength steel sheet (DP steel sheet) of ferrite and bainite or martensite, the reason why the stretch flangeability of the steel sheet is bad is that the ferrite soft phase and the hard phase of bainite or martensite This is because the hardness difference is large. Therefore, in the present invention, when the number density of precipitated carbides in the two types of ferrite crystal grains is increased, the stretch flangeability of the steel sheet is deteriorated as in the case of the dual-phase high-strength steel sheet (DP steel sheet). Absent.
以上のことから、本発明では、目標とする鋼板の引張強度590MPa以上において、20%以上の伸び、および、80%以上の穴拡げ率の全ての特性を満足させるため、前述したように、析出炭化物サイズを、穴拡げ性を阻害しないサイズの8nm以下とすることに加え、フェライト単一組織を構成する2種類のフェライト結晶粒について、硬質フェライト結晶粒A内の析出炭化物の個数密度を1×1017〜5×1018個/cm3とし、軟質フェライト結晶粒B内の析出炭化物の個数密度を1×1015〜5×1016個/cm3とする。 From the above, in the present invention, in order to satisfy all the properties of elongation of 20% or more and hole expansion ratio of 80% or more at a tensile strength of 590 MPa or more of the target steel plate, In addition to setting the carbide size to 8 nm or less that does not impair hole expansibility, the number density of precipitated carbides in the hard ferrite crystal grain A is set to 1 × for two types of ferrite crystal grains constituting the ferrite single structure. 10 17 to 5 × 10 18 pieces / cm 3, and the number density of precipitated carbides in the soft ferrite crystal grains B is set to 1 × 10 15 to 5 × 10 16 pieces / cm 3 .
さらに、鋼板の上記特性をより安定して得るためには、好ましくは、硬質フェライト結晶粒Aの析出炭化物密度を3×1017〜2×1018個/cm3とし、軟質フェライト結晶粒Bの析出炭化物密度を3×1015〜2×1016個/cm3とする。 Further, in order to obtain the above-mentioned characteristics of the steel sheet more stably, preferably, the density of precipitated carbide of the hard ferrite crystal grains A is set to 3 × 10 17 to 2 × 10 18 pieces / cm 3 , and the soft ferrite crystal grains B The density of precipitated carbide is set to 3 × 10 15 to 2 × 10 16 pieces / cm 3 .
図1および図2において鋼板の引張強さ、伸び、および、穴拡げ率を満足し、フェライト結晶粒Aについては、析出炭化物がサイズ2nm、析出炭化物の個数密度が6×1017、フェライト結晶粒Bについては、析出炭化物サイズが3nm、析出炭化物の個数密度が7×1015の鋼板について、FIM観察および三次元アトムプローブ法により、硬質フェライト結晶粒Aと、軟質フェライト結晶粒Bの体積を測定し、鋼板組織の全体積に占める硬質フェライト結晶粒Aの体積分率「硬質フェライト結晶粒Aの体積%/(硬質フェライト結晶粒Aの体積%+軟質フェライト結晶粒Bの体積%)」を見積もった。 1 and 2, the tensile strength, elongation, and hole expansion ratio of the steel sheet are satisfied. With respect to ferrite crystal grains A, the precipitation carbide has a size of 2 nm, the number density of the precipitation carbide is 6 × 10 17 , and the ferrite crystal grains As for B, the volume of hard ferrite crystal grains A and soft ferrite crystal grains B is measured by FIM observation and three-dimensional atom probe method on a steel plate having a precipitated carbide size of 3 nm and a number density of precipitated carbide of 7 × 10 15. The volume fraction of the hard ferrite crystal grains A in the total volume of the steel sheet structure is estimated as “volume% of hard ferrite crystal grains A / (volume% of hard ferrite crystal grains A + volume% of soft ferrite crystal grains B)”. It was.
なお、上記体積分率については、鋼板の化学成分および熱処理条件を変え、硬質フェライト結晶粒Aの体積%を変えることにより調整した。 The volume fraction was adjusted by changing the chemical composition of the steel sheet and the heat treatment conditions, and changing the volume percentage of the hard ferrite crystal grains A.
図3に、鋼板組織の全体積に占める硬質フェライト結晶粒Aの体積分率(A/A+B)と鋼板の強度および延性との関係を示す。図3から、鋼板組織の全体積に占める硬質フェライト結晶粒Aの体積分率を0.1〜0.5の範囲とすることにより、引張強度と鋼板の伸びがともに満足し、強度延性バランスが良好な鋼板を得ることができることが解った。鋼板組織における硬質フェライト結晶粒Aの体積分率が0.1より小さいと、強度が低下し、引張強度590MPa以上の強度を確保することが困難となる。 FIG. 3 shows the relationship between the volume fraction of hard ferrite crystal grains A (A / A + B) in the total volume of the steel sheet structure, and the strength and ductility of the steel sheet. From FIG. 3, by setting the volume fraction of hard ferrite crystal grains A in the total volume of the steel sheet structure to be in the range of 0.1 to 0.5, both the tensile strength and the elongation of the steel sheet are satisfied, and the strength ductility balance is It was found that a good steel plate can be obtained. When the volume fraction of the hard ferrite crystal grains A in the steel sheet structure is smaller than 0.1, the strength is lowered, and it becomes difficult to secure a strength of 590 MPa or more.
一方、鋼板の延性を確保するためには、軟質フェライト結晶粒Bをフェライト単相組織中に含有させることが不可欠である。フェライト単相組織中の硬質フェライト結晶粒Aの体積分率が0.5以上となると強度は増加するが、軟質フェライト結晶粒Bの比率の低下に伴い、鋼板の延性および伸びフランジ性が低下するので、鋼板の20%以上の伸びと、80%以上の穴拡げ率を得ることが困難となる。 On the other hand, in order to ensure the ductility of the steel sheet, it is essential to include the soft ferrite crystal grains B in the ferrite single phase structure. When the volume fraction of the hard ferrite crystal grains A in the ferrite single phase structure is 0.5 or more, the strength increases, but as the ratio of the soft ferrite crystal grains B decreases, the ductility and stretch flangeability of the steel sheet decrease. Therefore, it becomes difficult to obtain an elongation of 20% or more of the steel sheet and a hole expansion ratio of 80% or more.
したがって、本発明では、鋼板の全体積に占める硬質フェライト結晶粒Aの体積分率を0.1〜0.5とする。さらに好ましくは0.15〜0.3とする。 Therefore, in this invention, the volume fraction of the hard ferrite crystal grain A which occupies for the whole volume of a steel plate shall be 0.1-0.5. More preferably, it is 0.15-0.3.
以上の結果より、本発明鋼板のマクロ組織は、硬質フェライト結晶粒Aと軟質フェライト結晶粒Bからなるフェライト単相組織とし、硬質フェライト結晶粒Aの析出炭化物の個数密度が1×1017〜5×1018個/cm3、軟質フェライト結晶粒Bの析出炭化物の個数密度が1×1015〜5×1016個/cm3であり、かつ、フェライト単相組織における全体積に占める硬質フェライト相Aの体積分率(A/A+B)が0.1〜0.5であるものとする。 From the above results, the macro structure of the steel sheet of the present invention is a ferrite single phase structure composed of hard ferrite crystal grains A and soft ferrite crystal grains B, and the number density of precipitated carbides of the hard ferrite crystal grains A is 1 × 10 17 to 5 × 10 18 pieces / cm 3 , the number density of precipitated carbides of soft ferrite crystal grains B is 1 × 10 15 to 5 × 10 16 pieces / cm 3 , and the hard ferrite phase occupies the total volume in the ferrite single-phase structure The volume fraction of A (A / A + B) shall be 0.1-0.5.
これにより、引張強度590MPa以上の強度を有し、かつ、穴拡げ率80%以上の伸びフランジ性、および、伸び20%以上の延性を有する、強度および加工性に優れた高張力鋼板を実現することが可能となる。 As a result, a high-tensile steel sheet having a tensile strength of 590 MPa or more, a stretch flangeability with a hole expansion ratio of 80% or more, and a ductility with an elongation of 20% or more and excellent in strength and workability is realized. It becomes possible.
また、本発明では、前述のように、2種類のフェライト結晶粒中の析出炭化物サイズと析出炭化物個数密度を規定することにより、それぞれのフェライト結晶粒内に適正量の析出炭化物を分散析出させることに加えて、後述する鋼板成分のCのうち、固溶Cを0.002%以上確保し、それぞれのフェライト結晶の粒界に偏析する偏析炭素を適量残留させることで、鋼板の耐打ち抜き端面の損傷性も良好に維持することができる。なお、固溶C量は、より好ましくは0.005%以上である。 Further, in the present invention, as described above, by defining the precipitated carbide size and the precipitated carbide number density in the two types of ferrite crystal grains, an appropriate amount of precipitated carbide is dispersed and precipitated in each ferrite crystal grain. In addition to the C of the steel sheet components described later, solid solution C is secured by 0.002% or more, and by leaving an appropriate amount of segregated carbon segregating at the grain boundaries of each ferrite crystal, Damageability can also be maintained well. The amount of solute C is more preferably 0.005% or more.
本発明の鋼板では、鋼板の熱延後の冷却過程において、析出炭化物の析出量のピークよりもやや早い段階で冷却を終了し、フェライト結晶粒内に、部分的に、適正サイズおよび適正個数密度の析出炭化物を分散析出させつつ、フェライト結晶粒内に固溶Cを残すことにより、強度、延性、および、伸びフランジ性とともに、鋼板の打ち抜き時の端面の耐損傷性を良好に維持することができる。 In the steel sheet of the present invention, in the cooling process after hot rolling of the steel sheet, the cooling is finished at a slightly earlier stage than the peak of the precipitation amount of the precipitated carbide, and partially in the ferrite crystal grains, the appropriate size and the appropriate number density By maintaining the solid solution C in the ferrite crystal grains while dispersing and precipitating carbides, it is possible to maintain the damage resistance of the end face when the steel sheet is punched together with the strength, ductility, and stretch flangeability. it can.
さらに、鋼板の打ち抜き時の端面の耐損傷性を向上させるためには、以下の通り、フェライト結晶粒界の粒界偏析C量を適正量化することが好ましい。 Furthermore, in order to improve the damage resistance of the end face at the time of punching the steel sheet, it is preferable to appropriately set the grain boundary segregation C amount of the ferrite crystal grain boundary as follows.
表2に、粒界偏析C量の測定結果、および、実施例に示す穴拡げ試験と同様に10mm径の穴を打ち抜き、その端面欠陥の有無を目視観察した結果を示す。また、図4に、鋼板組織中のフェライト結晶粒界の偏析C量と鋼板の打ち抜き端面の損傷発生率との関係を示す。 Table 2 shows the measurement result of the grain boundary segregation C amount and the result of visually observing the presence or absence of the end face defect by punching a 10 mm diameter hole as in the hole expansion test shown in the examples. FIG. 4 shows the relationship between the segregation C amount of ferrite grain boundaries in the steel sheet structure and the damage occurrence rate of the punched end face of the steel sheet.
ここで、粒界偏析C量は、フェライト結晶の粒界面の両側2nm以内に含まれる原子の平均濃度(原子数%)とし、粒界を含む領域の三次元アトムプローブによる測定の結果から、粒界位置両側2nmの範囲を区切り、その中のC原子数から求める平均C濃度である。 Here, the amount C of grain boundary segregation is the average concentration of atoms (number of atoms%) contained within 2 nm on both sides of the grain interface of the ferrite crystal. This is the average C concentration obtained by dividing the range of 2 nm on both sides of the field position and calculating from the number of C atoms therein.
表2に示す結果から、鋼板組織中のフェライト結晶粒内に固溶Cが質量%で0.002%以上存在する場合には、結晶粒界に偏析Cが0.5原子数%以上残留させることが可能となることが解る。即ち、表2および図4から、鋼板の打ち抜き端面における損傷の発生を抑制することができる。 From the results shown in Table 2, when solid solution C is present in the ferrite crystal grains in the steel sheet structure in an amount of 0.002% or more by mass%, segregation C remains at 0.5 atomic% or more at the grain boundaries. I understand that it will be possible. That is, from Table 2 and FIG. 4, it is possible to suppress the occurrence of damage on the punched end surface of the steel sheet.
フェライト結晶粒界における偏析C量が0.5原子数%以上である場合に、鋼板の耐端面損傷性が向上する理由は、偏析Cにより結晶粒界が強化され、伸びフランジ加工時に、粒界におけるき裂の進展が抑制されるからであると考えられる。 When the segregation C amount in the ferrite crystal grain boundary is 0.5 atomic% or more, the reason why the end face damage resistance of the steel sheet is improved is that the grain boundary is strengthened by the segregation C, and the grain boundary is This is thought to be due to the suppression of crack growth in the steel.
また、表2および図4から、フェライト結晶粒界における偏析C量が3原子数%を超えると、結晶粒界にCが濃化し、鋼板の伸びフランジ性を低下させるセメンタイトの析出を抑えることができなくなり、鋼板の打ち抜き端面の損傷が発生し易くなって、好ましくないことが解る。 Moreover, from Table 2 and FIG. 4, when the amount of segregation C at the ferrite grain boundary exceeds 3 atomic%, C concentrates at the grain boundary and suppresses the precipitation of cementite which reduces the stretch flangeability of the steel sheet. It becomes impossible, it becomes easy to generate | occur | produce the damage of the punching end surface of a steel plate, and it turns out that it is not preferable.
図4に示すように、本発明においては、鋼板の伸びフランジ加工時における耐端面損傷性を安定して向上させるために、鋼板のフェライト結晶粒における偏析C量を0.5〜3原子数%とすることが好ましく、より好ましくは0.8〜2%とする。 As shown in FIG. 4, in the present invention, in order to stably improve the end face damage resistance during stretch flange processing of a steel sheet, the segregation C amount in ferrite crystal grains of the steel sheet is 0.5-3 atomic%. And more preferably 0.8 to 2%.
本発明は、鋼板組織として、上記粒内析出炭化物の析出分散状態の異なる2種類のフェライト結晶粒からなるフェライト単相組織を実現し、鋼板の延性(20%以上)、伸びフランジ性(穴拡げ性:80%以上)、引張強度(590MPa以上)、および、耐打ち抜き端面損傷性の全てを満足する鋼板を実現するためには、鋼板の成分組成を、以下のように規定する必要がある。 The present invention realizes a ferrite single-phase structure composed of two types of ferrite crystal grains having different precipitation dispersion states of the intragranular precipitated carbide as a steel sheet structure, and has ductility (20% or more) and stretch flangeability (hole expansion) of the steel sheet. Property: 80% or higher), tensile strength (590 MPa or higher), and punching end face damage resistance, in order to realize a steel plate, it is necessary to define the component composition of the steel plate as follows.
なお、本発明においては、以下に説明する基本成分組成により、目的とする鋼板特性は十分に得られるが、上記鋼板特性を阻害しない範囲で、その他の成分を添加することは、当然に許容される。また、以下に示す「%」は、特に説明がない限り、「質量%」を意味する。 In the present invention, the target steel plate characteristics can be sufficiently obtained by the basic component composition described below, but it is a matter of course that other components may be added as long as the steel plate characteristics are not impaired. The Further, “%” shown below means “% by mass” unless otherwise specified.
C:Cは、0.01〜0.2%とする。C含有量を0.01%以上としたのは、0.01%未満では強度が低下するからである。一方、C含有量を0.2%以下としたのは、0.2%を超える炭素濃度の増加は、セメンタイトの生成や、パーライトやマルテンサイトなどの変態組織の形成を促進し、本発明で扱うところのフェライト相を得るための製造条件が厳しくなるからである。 C: C is set to 0.01 to 0.2%. The reason why the C content is set to 0.01% or more is that when the C content is less than 0.01%, the strength decreases. On the other hand, the C content is set to 0.2% or less because the increase in carbon concentration exceeding 0.2% promotes the formation of cementite and the formation of transformation structures such as pearlite and martensite. This is because the manufacturing conditions for obtaining the ferrite phase to be handled become severe.
Si:Siは、固溶強化元素として強度上昇に有効であるが、Si含有量が0.01%未満では、強度上昇効果が得られず、一方、Si含有量が1.5%を超えると、加工性が劣化する。したがって、Si含有量は0.01〜1.5%の範囲が好ましい。 Si: Si is effective for increasing the strength as a solid solution strengthening element. However, if the Si content is less than 0.01%, the effect of increasing the strength cannot be obtained. On the other hand, if the Si content exceeds 1.5% , Workability deteriorates. Therefore, the Si content is preferably in the range of 0.01 to 1.5%.
Mn:Mnは、脱酸、脱硫のために必要であり、また、固溶強化元素としても有効であるが、Mn含有量が0.25%未満では、上記効果が得られず、一方、Mn含有量が3.0%を超えると、偏析が生じ易くなり、伸びフランジ性が劣化する。したがって、Mn含有量は0.25〜3.0%が好ましい。 Mn: Mn is necessary for deoxidation and desulfurization, and is also effective as a solid solution strengthening element. However, if the Mn content is less than 0.25%, the above effect cannot be obtained. When the content exceeds 3.0%, segregation is likely to occur, and stretch flangeability deteriorates. Therefore, the Mn content is preferably 0.25 to 3.0%.
Ti、Nb、V、Moのうちの1種または2種以上:本発明では、鋼板のフェライト結晶粒内の炭化物析出元素として、Ti、Nb、V、Moのうちの1種または2種以上を、鋼板中に含有させる。 One or more of Ti, Nb, V, and Mo: In the present invention, one or more of Ti, Nb, V, and Mo are used as carbide precipitation elements in the ferrite crystal grains of the steel sheet. And contained in the steel sheet.
Tiは、フェライト結晶粒内に炭化物を析出し、析出強化により鋼板の強度上昇に寄与するとともに、この析出により、セメンタイト生成に寄与するCを固着する作用をなすが、0.03%未満では、上記効果が不十分であり、一方、0.2%を超えて含有すると、炭化物の粗大化が避けられず、結晶粒内の個数密度を低減する原因となる。したがって、Tiを含有させる場合は、Ti含有量を0.03〜0.2%とするのが好ましい。 Ti precipitates carbides in the ferrite crystal grains and contributes to an increase in the strength of the steel sheet by precipitation strengthening, and by this precipitation, it acts to fix C contributing to the formation of cementite, but less than 0.03%, On the other hand, when the content exceeds 0.2%, coarsening of the carbide is unavoidable, which causes a reduction in the number density in the crystal grains. Therefore, when Ti is contained, the Ti content is preferably 0.03 to 0.2%.
V、Nb、Moも、Tiと同様に、フェライト結晶粒内に炭化物を析出し、Tiを補完する析出強化元素として、また、セメンタイト生成に寄与するCを固着する作用をなす元素として添加される。ただし、これらの元素の含有量が0.01%未満であると、上記効果が不十分であり、一方、0.2%を超えると、粗大析出炭化物が生成し、結晶粒内の個数密度を低減する原因となる。したがって、V、Nb、Moを添加する場合は、いずれもその含有量を0.01〜0.2%とするのが好ましい。 V, Nb, and Mo are also added as precipitation strengthening elements that precipitate carbides in ferrite crystal grains and supplement Ti, and elements that act to fix C contributing to the formation of cementite, similarly to Ti. . However, when the content of these elements is less than 0.01%, the above effect is insufficient. On the other hand, when the content exceeds 0.2%, coarse precipitated carbides are generated, and the number density in the crystal grains is reduced. Causes to reduce. Therefore, when adding V, Nb, and Mo, it is preferable that the content is 0.01 to 0.2%.
以上が、本発明鋼板の基本成分組成であるが、さらに、本発明鋼板において不可避的不純物成分として扱うN、P、S、および、Alの含有量の上限は、以下のように制限するのが好ましい。 The above is the basic component composition of the steel sheet of the present invention. Further, the upper limit of the contents of N, P, S, and Al handled as inevitable impurity components in the steel sheet of the present invention is limited as follows. preferable.
N:Nは、TiNを形成し、鋼板の加工性を低下させるので、できるだけ少ないほうが好ましい。特に、N含有量が0.009%を超えると、粗大なTiNが生成し、鋼板の加工性が劣化するので、N含有量は0.009%以下に制限するのが好ましい。 N: N forms TiN and lowers the workability of the steel sheet. In particular, if the N content exceeds 0.009%, coarse TiN is generated and the workability of the steel sheet deteriorates, so the N content is preferably limited to 0.009% or less.
P:Pは、固溶強化元素として作用し、鋼板の強度を上昇させるが、その含有量が高くなると、鋼板の加工性や溶接性が低下するので、好ましくない。特に、P含有量が0.1%を超えると、鋼板の加工性や溶接性の低下が顕著となるので、P含有量は0.1%以下に制限するのが好ましい。 P: P acts as a solid solution strengthening element and increases the strength of the steel sheet. However, when the content is increased, the workability and weldability of the steel sheet are deteriorated, which is not preferable. In particular, when the P content exceeds 0.1%, the workability and weldability of the steel sheet are significantly reduced. Therefore, the P content is preferably limited to 0.1% or less.
S:S含有量は、高すぎるとMnSなどの介在物を形成し伸びフランジ性を劣化させ、さらに、熱間圧延時に割れを引き起こすので、極力、低減するのが好ましい。特に、熱間圧延時に割れを防止し、加工性を良好にするためには、S含有量を0.005%以下に制限するのが好ましい。 S: If the S content is too high, inclusions such as MnS are formed, the stretch flangeability is deteriorated, and further, cracking occurs during hot rolling, so it is preferable to reduce as much as possible. In particular, in order to prevent cracking during hot rolling and improve workability, the S content is preferably limited to 0.005% or less.
Al:Alは、溶鋼脱酸のために0.002%以上の添加が必要であるが、鋼板の加工性を向上させるためには低減するのが好ましい。Al含有量が0.5%を超えると、Alは、窒化物などの粗大析出物を形成し、鋼板の伸びを劣化させる。鋼板の伸びを良好にするためには、Al含有量は0.5%以下に制限するのが好ましい。 Al: Al needs to be added in an amount of 0.002% or more for molten steel deoxidization, but it is preferably reduced in order to improve the workability of the steel sheet. When the Al content exceeds 0.5%, Al forms coarse precipitates such as nitrides and degrades the elongation of the steel sheet. In order to improve the elongation of the steel sheet, the Al content is preferably limited to 0.5% or less.
また、本発明において、上記基本成分の他に、鋼板の強度を向上する目的で、固溶強化元素として、Cr、Wの添加も有効であり、これらを、1種または2種以上を添加してもよい。 In the present invention, in addition to the above basic components, for the purpose of improving the strength of the steel sheet, addition of Cr and W as a solid solution strengthening element is also effective. May be.
ここで、本発明の熱延鋼板を製造する製造方法について説明する。製造方法は、析出炭化物サイズを8nm以下に抑え、かつ、析出炭化物密度を本発明で規定する範囲内に、粒界偏析C濃度を0.5〜3原子数%の範囲にすることができれば、どのような製造条件を採用しても構わないが、中でも、好ましい製造条件の一つを以下に説明する。 Here, the manufacturing method which manufactures the hot rolled sheet steel of this invention is demonstrated. If the production method can suppress the precipitation carbide size to 8 nm or less, and the precipitation carbide density is within the range specified in the present invention, and the grain boundary segregation C concentration can be within the range of 0.5 to 3 atomic%, Any manufacturing conditions may be adopted, but one of the preferable manufacturing conditions is described below.
まず、上記成分組成を有する鋼片を1200℃以上の温度に再加熱する。鋼片は、連続鋳造設備で製造した直後のスラブであってもよいし、電気炉で製造したものでもよい。また、1200℃以上の温度への再加熱は、溶鋼から直接製造したスラブに対する加熱条件でもある。 First, a steel piece having the above component composition is reheated to a temperature of 1200 ° C. or higher. The slab may be a slab immediately after being manufactured in a continuous casting facility, or may be manufactured in an electric furnace. Moreover, the reheating to the temperature of 1200 degreeC or more is also a heating condition with respect to the slab manufactured directly from molten steel.
1200℃以上と規定している理由は、炭化物形成元素と炭素を、鋼材中に、十分に分解溶解させるためである。場合によっては、1250℃に上げることもある。そして、1時間以上の加熱保持の後に熱間圧延を施すが、鋼板の特性ばらつきを抑えるためには、オーステナイト域で熱間圧延を終了するのが好ましい。 The reason why the temperature is defined as 1200 ° C. or higher is to sufficiently decompose and dissolve the carbide forming element and carbon in the steel material. In some cases, the temperature may be raised to 1250 ° C. Then, hot rolling is performed after heating and holding for 1 hour or more, but it is preferable to end the hot rolling in the austenite region in order to suppress variations in the characteristics of the steel sheet.
次に、熱間圧延終了後は、フェライト変態および炭化物の形成を極力抑制するために、30℃/sec以上の速い速度で700℃以下まで冷却することが望ましい。その後、部分的に、フェライト変態および炭化物の析出を実現させるために、700℃から550℃の間のある温度(T1)において、2秒から10秒の間の短時間、保定処理を行うことが望ましい。保定時間が2秒より短いと、フェライト変態および炭化物の析出が起きず、また、10秒より長いと、フェライト変態が進んでしまい、本発明の2種類のフェライト粒を得ることが困難となる。それ故、保定時間は、2〜10秒が好ましい。 Next, after the hot rolling is completed, it is desirable to cool to 700 ° C. or less at a fast rate of 30 ° C./sec or more in order to suppress ferrite transformation and carbide formation as much as possible. Thereafter, in order to partially realize ferrite transformation and carbide precipitation, a holding treatment is performed for a short time between 2 seconds and 10 seconds at a temperature (T1) between 700 ° C. and 550 ° C. desirable. If the holding time is shorter than 2 seconds, ferrite transformation and carbide precipitation do not occur, and if it is longer than 10 seconds, the ferrite transformation proceeds, making it difficult to obtain the two types of ferrite grains of the present invention. Therefore, the holding time is preferably 2 to 10 seconds.
次に、T1温度で、短時間、保定した後は、部分的に析出した析出炭化物の粗大化を抑制するために、10℃/sec以上の冷却速度で、600℃から480℃の間のある温度(T2)まで冷却する。その後、未変態部におけるフェライト変態および析出を起こさせるために、T2温度において、再び、2秒から10秒の間の短時間保定処理を行うことが望ましい。 Next, after holding at the T1 temperature for a short time, in order to suppress the coarsening of the partially precipitated carbide, it is between 600 ° C. and 480 ° C. at a cooling rate of 10 ° C./sec or more. Cool to temperature (T2). Thereafter, in order to cause ferrite transformation and precipitation in the untransformed portion, it is desirable to perform a short-time holding treatment again for 2 seconds to 10 seconds at the T2 temperature.
次に、T2温度で、短時間の保定処理を行った後は、再び、10℃/sec以上の冷却速度で、巻取り温度へ冷却する。巻取り温度が350℃未満であると、硬質なマルテンサイトが生成し、伸びフランジ性が劣化する可能性があるので、巻取り温度は350℃以上が望ましい。逆に、巻取り温度が600℃超になると、結晶粒内で炭化物の析出が進み、粒界への偏析C量が減少し、打抜き時に、端面損傷が発生するばかりか、伸びフランジ性に有害なパーライトセメンタイトが生成する可能性があるので、600℃以下での巻取りが好ましい。 Next, after performing a short-term holding treatment at the T2 temperature, it is cooled again to the winding temperature at a cooling rate of 10 ° C./sec or more. If the coiling temperature is less than 350 ° C., hard martensite is generated and stretch flangeability may be deteriorated. Therefore, the coiling temperature is preferably 350 ° C. or more. On the other hand, when the coiling temperature exceeds 600 ° C., the precipitation of carbide progresses in the crystal grains, the amount of segregation C at the grain boundaries decreases, and not only the end face damage occurs but also harmful to stretch flangeability. Winding at 600 ° C. or lower is preferable because there is a possibility that pearlite cementite is generated.
このような多段の冷却工程を採用すると、出発成分や途中での保定条件により、様々な鋼材組織を、しばしば形成するが、冷却に係る諸条件を吟味し、析出炭化物密度の異なる2種類のフェライト結晶粒からなる組織を得た時に、本発明が完成し、伸びおよび伸びフランジ性に優れた高強度熱延鋼板を製造することができる。 When such a multi-stage cooling process is adopted, various steel structures are often formed depending on the starting components and the holding conditions in the middle, but by examining the various conditions related to cooling, two types of ferrites with different density of precipitated carbides When a structure composed of crystal grains is obtained, the present invention is completed, and a high-strength hot-rolled steel sheet excellent in elongation and stretch flangeability can be produced.
本発明の実施例を、比較例とともに説明する。 Examples of the present invention will be described together with comparative examples.
表1に示す成分組成を有する材料を種々溶解した。表の成分値は、化学分析値であり、単位は、質量%である。炭化物形成元素として、主に、Tiを選択し、その他、Nb、V、Moを選択した。 Various materials having the component composition shown in Table 1 were dissolved. The component value of a table | surface is a chemical analysis value, and a unit is the mass%. Ti was mainly selected as the carbide forming element, and Nb, V, and Mo were selected in addition.
次に、それぞれの熱延板について、JIS Z 2201に記載の5号試験片を作製し、JIS Z 2241に記載の試験方法に則って試験し、引張強度を評価した。本発明では、引張強度が590MPa以上の鋼板を対象とする。 Next, for each hot-rolled sheet, No. 5 test piece described in JIS Z 2201 was prepared, tested according to the test method described in JIS Z 2241, and evaluated for tensile strength. In the present invention, a steel sheet having a tensile strength of 590 MPa or more is targeted.
伸びフランジ性については、日本鉄鋼連盟規格JFS T 1001−1996記載の試験方法に従う穴拡げ試験を行って評価した。また、打ち抜き端面における損傷の発生の有無は、穴拡げ試験と同様に、鋼板に10mm径の穴を打ち抜き、その端面形状を目視で観察して確認した。 The stretch flangeability was evaluated by conducting a hole expansion test according to the test method described in the Japan Iron and Steel Federation Standard JFS T 1001-1996. The presence or absence of damage on the punched end face was confirmed by punching a 10 mm diameter hole in the steel plate and visually observing the end face shape in the same manner as the hole expansion test.
また、鋼板から、0.3mmx0.3mmx10mmの柱状試料を切り出し、その先端部分を、電解研磨で先鋭な針状形状とし、三次元アトムプローブ測定法により、析出炭化物のサイズと密度、および、粒界近傍の偏析C濃度を計測した。さらに、TEM観察により、8nm超の大型析出炭化物の有無を確認した。 In addition, a columnar sample of 0.3 mm × 0.3 mm × 10 mm is cut out from the steel plate, the tip portion thereof is made into a sharp needle shape by electrolytic polishing, and the size and density of precipitated carbides and grain boundaries are measured by a three-dimensional atom probe measurement method. Nearby segregation C concentration was measured. Furthermore, the presence or absence of large precipitated carbides exceeding 8 nm was confirmed by TEM observation.
一連の結果を、種々の製造条件とともに、表2に示した。表2においては、各試験に用いた試料の鋼種をA〜Dで記載している。種々の製造条件で作製した鋼板について、引張強度(TS)、伸び、穴拡げ率を測定した。材質パラメーターとしての析出炭化物のサイズは、FIM観察および三次元アトムプローブ測定法で計測した時のサイズであり、同密度は、体積当たりの析出炭化物の個数である。 A series of results are shown in Table 2 together with various production conditions. In Table 2, the steel types of the samples used for each test are described as A to D. About the steel plate produced on various manufacturing conditions, tensile strength (TS), elongation, and the hole expansion rate were measured. The size of the precipitated carbide as the material parameter is a size measured by FIM observation and a three-dimensional atom probe measurement method, and the density is the number of precipitated carbide per volume.
次に、表2に示す各データについて、その概略を説明する。 Next, the outline of each data shown in Table 2 will be described.
試料Aを用いた試験1〜4において、試験1では、強度の高い硬質フェライト結晶粒Aの体積比率が不足したために、590MPa以上の強度を実現できず、試験4では、軟質フェライト結晶粒Bの析出炭化物密度が高くなって、延性が劣化し、また、粒界C濃度が低下して、打ち抜き端面に損傷が発生した。
In Tests 1 to 4 using Sample A, in
試料Bを用いた試験5〜7において、試験6では、1種類のフェライト結晶粒しか存在せず、伸びフランジ性は良いが、十分な延性を確保できず、試験7では、析出炭化物サイズの大きいものが含まれていて、伸びフランジ性が十分でない。 In Tests 5 to 7 using Sample B, in Test 6, only one type of ferrite crystal grain is present and stretch flangeability is good, but sufficient ductility cannot be ensured. In Test 7, the size of precipitated carbide is large. Things are included and stretch flangeability is not enough.
試料Cを用いた試験8〜11において、試験8では、軟質フェライト結晶粒Bの析出炭化物密度が非常に低くて、十分な延性を発現しているが、伸びフランジ性が十分でなく、試験10では、硬質フェライト結晶粒Aの析出炭化物密度が高く、伸びフランジ性が悪化している。また、試験11では、軟質フェライト結晶粒Bの析出炭化物密度が高く、延性が劣化している。
In Tests 8 to 11 using Sample C, in Test 8, the precipitated carbide density of the soft ferrite crystal grains B was very low and sufficient ductility was exhibited, but the stretch flangeability was not sufficient, and
試料Dを用いた試験12〜14において、試験12では、硬質フェライト結晶粒Aの析出炭化物密度が低くて、延性が十分でなく、試験13では、軟質フェライト結晶粒Bの析出炭化物密度が低くて、伸びフランジ性が悪化している。 In the tests 12 to 14 using the sample D, in the test 12, the precipitated carbide density of the hard ferrite crystal grains A is low and the ductility is not sufficient, and in the test 13, the precipitated carbide density of the soft ferrite crystal grains B is low. The stretch flangeability is getting worse.
試料Eを用いた試験15〜17において、試験16では、硬質フェライト結晶粒Aの析出炭化物密度が低くて、延性が劣化していて、また、析出炭化物サイズが大きいので、伸びフランジ性も十分でなく、試験17では、フェライト結晶粒ABにおいて析出炭化物が粗大化し、伸びフランジ性、延性が、ともに十分な値に達しておらず、また、粒界C濃度が低下し、打ち抜き端面に損傷が発生している。
In
前述したように、本発明の適用により、引張強さ590MPaクラス以上で、従来にない伸びフランジ性−延性バランスを有し、かつ、打ち抜き端面の損傷発生を抑制した熱延高強度鋼板を供給することが可能になり、さらに、上記バランスを制御することが可能になった。したがって、本発明は、産業上極めて有用なものである。 As described above, by applying the present invention, a hot-rolled high-strength steel sheet having a tensile strength of 590 MPa class or more, having an unprecedented stretch flangeability-ductility balance, and suppressing the occurrence of damage on the punched end face is supplied. And the balance can be controlled. Therefore, the present invention is extremely useful industrially.
Claims (2)
(a)質量%で、C:0.01〜0.2%、Si:0.01〜1.5%、Mn:0.25〜3.0%を含有し、さらに、炭化物形成元素として、Ti:0.03〜0.2%、Nb:0.01〜0.2%、V:0.01〜0.2%、および、Mo:0.01〜0.2%のうちの1種または2種以上を含有し、残部がFeおよび不可避的不純物からなり、
(b)上記C量のうち、固溶C量が、質量%で、0.002%以上であり、
(c)上記フェライト単相組織が、(c-1)結晶粒内に、最大径8nm以下の析出炭化物が個数密度1×1017〜5×1018個/cm3で分散した硬質フェライト結晶粒Aと、(c-2)結晶粒内に、最大径8nm以下の析出炭化物が個数密度1×1015〜5×1016個/cm3で分散した軟質フェライト結晶粒Bからなり、かつ、
(d)全体積に占める上記硬質フェライト結晶粒Aの体積分率A/(A+B)が、0.1〜0.5である
ことを特徴とする伸びフランジ性に優れた高強度熱延鋼板。 In a high-strength hot-rolled steel sheet consisting of a ferrite single-phase structure with a tensile strength of 590 MPa or more,
(a) By mass%, C: 0.01 to 0.2%, Si: 0.01 to 1.5%, Mn: 0.25 to 3.0%, and further, as a carbide forming element, One of Ti: 0.03-0.2%, Nb: 0.01-0.2%, V: 0.01-0.2%, and Mo: 0.01-0.2% Or contains two or more, the balance consists of Fe and inevitable impurities,
(b) Among the above C amounts, the solid solution C amount is 0.002% or more in mass%,
(c) The ferrite single-phase structure is (c-1) hard ferrite crystal grains in which precipitated carbides having a maximum diameter of 8 nm or less are dispersed at a number density of 1 × 10 17 to 5 × 10 18 particles / cm 3 in the crystal grains. A and (c-2) soft ferrite crystal grains B in which precipitated carbides having a maximum diameter of 8 nm or less are dispersed in the crystal grains at a number density of 1 × 10 15 to 5 × 10 16 particles / cm 3 , and
(d) A high-strength hot-rolled steel sheet excellent in stretch flangeability, wherein the volume fraction A / (A + B) of the hard ferrite crystal grains A occupying the entire volume is 0.1 to 0.5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006076451A JP4528275B2 (en) | 2006-03-20 | 2006-03-20 | High-strength hot-rolled steel sheet with excellent stretch flangeability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006076451A JP4528275B2 (en) | 2006-03-20 | 2006-03-20 | High-strength hot-rolled steel sheet with excellent stretch flangeability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007247049A true JP2007247049A (en) | 2007-09-27 |
JP4528275B2 JP4528275B2 (en) | 2010-08-18 |
Family
ID=38591663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006076451A Active JP4528275B2 (en) | 2006-03-20 | 2006-03-20 | High-strength hot-rolled steel sheet with excellent stretch flangeability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4528275B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008123366A1 (en) * | 2007-03-27 | 2008-10-16 | Nippon Steel Corporation | High-strength hot rolled steel sheet being free from peeling and excelling in surface and burring properties and process for manufacturing the same |
WO2009017256A1 (en) * | 2007-07-31 | 2009-02-05 | Jfe Steel Corporation | High-strength steel sheet |
JP2011012308A (en) * | 2009-07-02 | 2011-01-20 | Nippon Steel Corp | High-yield-ratio type hot-rolled steel plate superior in burring property and manufacturing method therefor |
JP2011179071A (en) * | 2010-03-01 | 2011-09-15 | Nippon Steel Corp | High-tensile cold-rolled steel sheet and method of producing the same |
JP2013028847A (en) * | 2011-07-29 | 2013-02-07 | Nippon Steel & Sumitomo Metal Corp | High-tensile strength hot-rolled steel sheet and production method thereof |
WO2013065313A1 (en) * | 2011-11-04 | 2013-05-10 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet and process for producing same |
JP2013124395A (en) * | 2011-12-15 | 2013-06-24 | Jfe Steel Corp | High-strength hot-rolled steel sheet with excellent blanking property, and manufacturing method therefor |
JP2013133524A (en) * | 2011-12-27 | 2013-07-08 | Jfe Steel Corp | High-tensile hot-rolled steel sheet excellent in blanking property and stretch flange formability, and manufacturing method therefor |
JP2014009372A (en) * | 2012-06-29 | 2014-01-20 | Jfe Steel Corp | High strength hot rolled steel sheet with excellent bendability and method for producing the same |
JP2015187302A (en) * | 2014-03-12 | 2015-10-29 | 新日鐵住金株式会社 | Steel sheet and method for manufacturing steel sheet |
EP2808413A4 (en) * | 2012-01-26 | 2016-05-04 | Jfe Steel Corp | High-strength hot-rolled steel sheet and method for producing same |
CN107406937A (en) * | 2015-03-06 | 2017-11-28 | 杰富意钢铁株式会社 | High-strength steel sheet and its manufacture method |
WO2018026015A1 (en) * | 2016-08-05 | 2018-02-08 | 新日鐵住金株式会社 | Steel sheet and plated steel sheet |
RU2675183C2 (en) * | 2014-03-25 | 2018-12-17 | Тиссенкрупп Стил Юроп Аг | Method for producing a high-strength flat steel product |
US10689737B2 (en) | 2015-02-25 | 2020-06-23 | Nippon Steel Corporation | Hot-rolled steel sheet |
US10752972B2 (en) | 2015-02-25 | 2020-08-25 | Nippon Steel Corporation | Hot-rolled steel sheet |
US10913988B2 (en) | 2015-02-20 | 2021-02-09 | Nippon Steel Corporation | Hot-rolled steel sheet |
US11236412B2 (en) | 2016-08-05 | 2022-02-01 | Nippon Steel Corporation | Steel sheet and plated steel sheet |
KR20220055544A (en) * | 2020-10-26 | 2022-05-04 | 현대제철 주식회사 | Hot rolled steel having high strength and high deformation and method of manufacturing the same |
US11401571B2 (en) | 2015-02-20 | 2022-08-02 | Nippon Steel Corporation | Hot-rolled steel sheet |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002012943A (en) * | 2000-06-30 | 2002-01-15 | Nkk Corp | Thin steel sheet for press molding and its production method |
JP2004238687A (en) * | 2003-02-06 | 2004-08-26 | Jfe Steel Kk | High-tension hot-rolled steel sheet and high-tension plated steel sheet which are excellent in bake hardenability and ductility and their production methods |
-
2006
- 2006-03-20 JP JP2006076451A patent/JP4528275B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002012943A (en) * | 2000-06-30 | 2002-01-15 | Nkk Corp | Thin steel sheet for press molding and its production method |
JP2004238687A (en) * | 2003-02-06 | 2004-08-26 | Jfe Steel Kk | High-tension hot-rolled steel sheet and high-tension plated steel sheet which are excellent in bake hardenability and ductility and their production methods |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008123366A1 (en) * | 2007-03-27 | 2008-10-16 | Nippon Steel Corporation | High-strength hot rolled steel sheet being free from peeling and excelling in surface and burring properties and process for manufacturing the same |
JP4874333B2 (en) * | 2007-03-27 | 2012-02-15 | 新日本製鐵株式会社 | High-strength hot-rolled steel sheet with no occurrence of peeling and excellent surface properties and burring properties and method for producing the same |
US8157933B2 (en) | 2007-03-27 | 2012-04-17 | Nippon Steel Corporation | High-strength hot rolled steel sheet being free from peeling and excellent in surface properties and burring properties, and method for manufacturing the same |
WO2009017256A1 (en) * | 2007-07-31 | 2009-02-05 | Jfe Steel Corporation | High-strength steel sheet |
JP2011012308A (en) * | 2009-07-02 | 2011-01-20 | Nippon Steel Corp | High-yield-ratio type hot-rolled steel plate superior in burring property and manufacturing method therefor |
JP2011179071A (en) * | 2010-03-01 | 2011-09-15 | Nippon Steel Corp | High-tensile cold-rolled steel sheet and method of producing the same |
JP2013028847A (en) * | 2011-07-29 | 2013-02-07 | Nippon Steel & Sumitomo Metal Corp | High-tensile strength hot-rolled steel sheet and production method thereof |
WO2013065313A1 (en) * | 2011-11-04 | 2013-05-10 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet and process for producing same |
JP2013095996A (en) * | 2011-11-04 | 2013-05-20 | Jfe Steel Corp | High-strength hot-rolled steel sheet having excellent workability and method for producing the same |
CN103917679A (en) * | 2011-11-04 | 2014-07-09 | 杰富意钢铁株式会社 | High-strength hot-rolled steel sheet and process for producing same |
TWI465582B (en) * | 2011-11-04 | 2014-12-21 | Jfe Steel Corp | Hot rolled steel sheets with high tensile strength and producing method of the same |
JP2013124395A (en) * | 2011-12-15 | 2013-06-24 | Jfe Steel Corp | High-strength hot-rolled steel sheet with excellent blanking property, and manufacturing method therefor |
JP2013133524A (en) * | 2011-12-27 | 2013-07-08 | Jfe Steel Corp | High-tensile hot-rolled steel sheet excellent in blanking property and stretch flange formability, and manufacturing method therefor |
EP2808413A4 (en) * | 2012-01-26 | 2016-05-04 | Jfe Steel Corp | High-strength hot-rolled steel sheet and method for producing same |
JP2014009372A (en) * | 2012-06-29 | 2014-01-20 | Jfe Steel Corp | High strength hot rolled steel sheet with excellent bendability and method for producing the same |
JP2015187302A (en) * | 2014-03-12 | 2015-10-29 | 新日鐵住金株式会社 | Steel sheet and method for manufacturing steel sheet |
RU2675183C2 (en) * | 2014-03-25 | 2018-12-17 | Тиссенкрупп Стил Юроп Аг | Method for producing a high-strength flat steel product |
US11401571B2 (en) | 2015-02-20 | 2022-08-02 | Nippon Steel Corporation | Hot-rolled steel sheet |
US10913988B2 (en) | 2015-02-20 | 2021-02-09 | Nippon Steel Corporation | Hot-rolled steel sheet |
US10689737B2 (en) | 2015-02-25 | 2020-06-23 | Nippon Steel Corporation | Hot-rolled steel sheet |
US10752972B2 (en) | 2015-02-25 | 2020-08-25 | Nippon Steel Corporation | Hot-rolled steel sheet |
US10815547B2 (en) | 2015-03-06 | 2020-10-27 | Jfe Steel Corporation | High strength steel sheet and manufacturing method therefor |
EP3266897A4 (en) * | 2015-03-06 | 2018-03-28 | JFE Steel Corporation | High strength steel sheet and manufacturing method therefor |
CN107406937A (en) * | 2015-03-06 | 2017-11-28 | 杰富意钢铁株式会社 | High-strength steel sheet and its manufacture method |
JP6358406B2 (en) * | 2016-08-05 | 2018-07-18 | 新日鐵住金株式会社 | Steel plate and plated steel plate |
US10889879B2 (en) | 2016-08-05 | 2021-01-12 | Nippon Steel Corporation | Steel sheet and plated steel sheet |
JPWO2018026015A1 (en) * | 2016-08-05 | 2018-08-02 | 新日鐵住金株式会社 | Steel plate and plated steel plate |
US11236412B2 (en) | 2016-08-05 | 2022-02-01 | Nippon Steel Corporation | Steel sheet and plated steel sheet |
WO2018026015A1 (en) * | 2016-08-05 | 2018-02-08 | 新日鐵住金株式会社 | Steel sheet and plated steel sheet |
KR20220055544A (en) * | 2020-10-26 | 2022-05-04 | 현대제철 주식회사 | Hot rolled steel having high strength and high deformation and method of manufacturing the same |
KR102464386B1 (en) * | 2020-10-26 | 2022-11-08 | 현대제철 주식회사 | Hot rolled steel having high strength and high deformation and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP4528275B2 (en) | 2010-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4528275B2 (en) | High-strength hot-rolled steel sheet with excellent stretch flangeability | |
EP2295615B1 (en) | High-strength hot-rolled steel sheet for line pipe excellent in low-temperature toughness and ductile-fracture-stopping performance and process for producing the same | |
JP5093422B2 (en) | High strength steel plate and manufacturing method thereof | |
JP4575893B2 (en) | High strength steel plate with excellent balance of strength and ductility | |
JP5042914B2 (en) | High strength steel and manufacturing method thereof | |
JP4528276B2 (en) | High strength steel plate with excellent stretch flangeability | |
KR20170107057A (en) | High-strength cold-rolled steel plate and method for producing same | |
JP4712838B2 (en) | High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability | |
JP5466552B2 (en) | High-strength cold-rolled steel sheet that combines elongation, stretch flangeability and weldability | |
JP2005336526A (en) | High strength steel sheet having excellent workability and its production method | |
JP7218533B2 (en) | Steel material and its manufacturing method | |
JP2010285636A (en) | High-strength cold-rolled steel sheet having elongation, stretch-flange formability and weldability | |
WO2019088104A1 (en) | Hot-rolled steel sheet and manufacturing method therefor | |
JP2013060657A (en) | High-strength cold rolled steel sheet excellent in elongation and stretch-flange formability, and method for producing the same | |
JP2021105197A (en) | Steel | |
JP2010189738A (en) | High strength hot rolled steel sheet having excellent workability, and method for producing the same | |
JP5302840B2 (en) | High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability | |
JP5741426B2 (en) | High strength hot-rolled steel sheet and manufacturing method thereof | |
JP2005314796A (en) | High strength hot rolled steel sheet having excellent elongation property, stretch flange property and tensile fatigue property, and its production method | |
JP2010084170A (en) | Thick steel plate for high toughness line pipe in which lowering of yield stress caused by bauschinger effect is reduced and its production method | |
JP2008261029A (en) | High-strength hot-rolled steel sheet superior in punching workability, and manufacturing method thereof | |
JP2017066453A (en) | Cold rolled steel sheet, plating steel sheet and manufacturing method of them | |
JP2011179050A (en) | High strength cold rolled steel sheet having excellent balance in elongation and stretch flange property | |
JP2005060835A (en) | Low-yield-ratio high-strength steel sheet excellent in toughness of welding-heat-affected part and its production method | |
JP4712839B2 (en) | High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080303 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100302 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100428 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100525 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100604 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130611 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4528275 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130611 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130611 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |