[go: nahoru, domu]

JP2008156734A - High-strength hot-dip galvanized steel sheet and its manufacturing method - Google Patents

High-strength hot-dip galvanized steel sheet and its manufacturing method Download PDF

Info

Publication number
JP2008156734A
JP2008156734A JP2006349488A JP2006349488A JP2008156734A JP 2008156734 A JP2008156734 A JP 2008156734A JP 2006349488 A JP2006349488 A JP 2006349488A JP 2006349488 A JP2006349488 A JP 2006349488A JP 2008156734 A JP2008156734 A JP 2008156734A
Authority
JP
Japan
Prior art keywords
steel sheet
hot
temperature
dip galvanized
cracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006349488A
Other languages
Japanese (ja)
Other versions
JP5082432B2 (en
Inventor
Hidenao Kawabe
英尚 川辺
Koji Maitake
孝二 舞嶽
Michitaka Sakurai
理孝 櫻井
Takeshi Fujita
毅 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006349488A priority Critical patent/JP5082432B2/en
Publication of JP2008156734A publication Critical patent/JP2008156734A/en
Application granted granted Critical
Publication of JP5082432B2 publication Critical patent/JP5082432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength hot-dip galvanized steel sheet having excellent drawability and its manufacturing method. <P>SOLUTION: Fracture in a vertical wall portion at deep drawing is suppressed by improving the structure of a surface layer of a steel sheet. Specifically, a structure having the following characteristics is provided: ferrite phase of ≤10 μm average grain size and martensite phase of 30 to 90% volume fraction are contained; the ratio of hardness in a sheet-thickness surface layer to hardness in a sheet-thickness center ranges from 0.6 to 1; the maximum depth of cracks propagating from the interface between a plating layer and a steel sheet toward the inner part on the steel sheet side and of recessed portions is 0 to 20 μm; and the area ratio of smooth portions except the cracks and the recessed portions is 60 to 100%. In order to obtain the steel sheet having such a structure, e.g. hot-dip galvanizing treatment is performed as follows: an atmosphere in a heat treatment furnace in the course from a ≥600°C temperature-raising process, via an annealing temperature, to a cooling process down to 450°C is controlled so that it has 2 to 20% hydrogen concentration and -60 to -10°C dew point; after holding at 760 to 860°C annealing temperature for 10 to 500 sec, cooling is done at 1 to 30°C/sec average cooling rate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、厳しい形状にプレス成形されることが要求される自動車部品などに用いて好適な、引張強度780MPa以上の高強度溶融亜鉛めっき鋼板およびその製造方法に関するものである。   The present invention relates to a high-strength hot-dip galvanized steel sheet having a tensile strength of 780 MPa or more, which is suitable for use in automobile parts that are required to be pressed into a strict shape, and a method for producing the same.

自動車部品などに用いられる高強度溶融亜鉛めっき鋼板は、その用途の特徴から高強度化に加え、加工性に優れていることが重要である。そして、最近では、車体軽量化による燃費向上、衝突安全性確保の観点から高強度の鋼板が自動車車体に求められ、適用拡大している。また、従来は軽加工主体であったが、複雑形状への適用も検討され始めている。しかしながら、鋼板の高強度化にともない加工性は低下する傾向にあり、高強度鋼板を適用するにあたっての一番の課題としてプレス成形時の割れがある。したがって、部品形状に応じて加工性すなわち絞り成形性、曲げ性、張り出し性および伸びフランジ性が向上することが要求されている。
例えば、特許文献1〜5では、鋼成分や組織の限定、熱延条件、焼鈍条件の最適化により、成形性を向上させる方法が開示されている。例えば、特許文献6〜10には、めっき層と鋼板地鉄界面構造について記載されている。
特許第2761095号公報 特許第2761096号公報 特許第3376882号公報 特開2001-303178号公報 特開2002-206139号公報 特開2001-355043号公報 特開2003-171752号公報 特開2004-18970号公報 特開2004-18971号公報 特開2004-211157号公報
It is important that high strength hot-dip galvanized steel sheets used for automobile parts and the like have excellent workability in addition to high strength due to the characteristics of their applications. Recently, high-strength steel sheets have been demanded for automobile bodies from the viewpoint of improving fuel efficiency by reducing the weight of the vehicle body and ensuring collision safety, and their application has been expanded. Conventionally, light processing has been mainly used, but application to complex shapes is also being studied. However, the workability tends to decrease as the strength of the steel plate increases, and cracking during press forming is a major problem in applying the high strength steel plate. Therefore, it is required to improve workability, that is, drawability, bendability, stretchability and stretch flangeability according to the part shape.
For example, Patent Documents 1 to 5 disclose methods for improving formability by limiting steel components and structures, optimizing hot rolling conditions, and annealing conditions. For example, Patent Documents 6 to 10 describe a plated layer and a steel plate ground iron interface structure.
Japanese Patent No. 2761095 Japanese Patent No. 2761096 Japanese Patent No. 3376882 JP 2001-303178 A JP 2002-206139 A JP 2001-355043 Japanese Patent Laid-Open No. 2003-171752 Japanese Patent Laid-Open No. 2004-18970 Japanese Unexamined Patent Publication No. 2004-18971 JP 2004-211157 A

難成形部品では、プレス時の材料の変形は、絞り成形や張り出し成形などが組み合わさった複合成形であることが多い。絞り成形ではポンチ肩あるいは縦壁部で割れを発生することが多い。円筒絞り形状などではポンチ肩破断が多々観察され、角筒絞りおよびオープン断面のハット型絞りなどでは縦壁部で破断を生じることがあり、従来の高強度溶融亜鉛めっき鋼板の製造技術では、高強度化と優れた絞り成形性の両立は困難であった。絞り成形性はr値と相関があることが広く知られているが、変態組織強化した冷延焼鈍鋼板または溶融亜鉛めっき鋼板ではr値は1.0未満であることが一般的であり、r値向上による絞り成形性の付与は極めて困難である。この点に関し、特許文献1〜5には、絞り成形性向上に関してなんら示唆するところはない。
特許文献6には、グラニュラーベイニティックフェライトまたはクワシーポリゴナルフェライトを主相とする高強度熱延鋼板の組織を有する鋼について、めっき層と鋼板との界面における個々の結晶の間の結晶粒界が幅2.0μm以下エッチングされていることを特徴とするめっき鋼板について記載されている。その効果はめっき密着性確保に有効であり、密着性を確保させることによって初めて打ち抜き加工時の損傷による結晶粒の欠落を防止し、穴拡率が向上することが開示されている。しかしながら、絞り成形性に重要である鋼板表層と中心の硬度比、めっき層と鋼板の界面における鋼板内に進展している亀裂および鋼板表面の平滑部に関する知見はない。そして、特許文献6と本発明では組織が異なり、熱履歴などが全く異なるフェライトおよびマルテンサイトから構成される絞り成形性に優れる冷延鋼板に関する知見は特許文献6にはない。
特許文献7はフェライトおよびベイナイトを主相とする鋼について鋼板内に存在する粒界酸化相の深さについてのみ記載されており、界面の性状に関する記載は無く、また、成形性に関する知見はない。
特許文献8〜10は残留オーステナイトを含む、フェライトおよびベイナイトを主相とする鋼について、断面観察における界面から10μm以内の鋼中に存在する酸化物の種類、および面積率という指標で鋼板内部の量を規定しているがめっき層と地鉄の界面状態に関する知見はない。
In difficult-to-mold parts, the deformation of the material during pressing is often composite molding in which drawing molding or stretch molding is combined. In drawing, cracks often occur in the punch shoulder or vertical wall. Many punch shoulder breaks are observed in cylindrical drawing shapes, etc., and square wall drawing and hat-shaped drawing with open cross section may cause breakage at the vertical wall. It was difficult to achieve both strength and excellent drawability. It is widely known that drawability has a correlation with r value, but in cold-rolled annealed steel sheet or hot-dip galvanized steel sheet with transformation structure strengthened, r value is generally less than 1.0, and r value is improved. It is extremely difficult to impart drawability by means of. In this regard, Patent Documents 1 to 5 do not suggest anything regarding improvement of drawability.
Patent Document 6 discloses a steel having a structure of a high-strength hot-rolled steel sheet mainly composed of granular bainitic ferrite or quasi-polygonal ferrite, and crystal grains between individual crystals at the interface between the plating layer and the steel sheet. It describes a plated steel sheet characterized in that the boundary is etched by a width of 2.0 μm or less. It is disclosed that the effect is effective for securing plating adhesion, and that the lack of crystal grains due to damage during punching is prevented and the hole expansion rate is improved only by ensuring adhesion. However, there is no knowledge about the hardness ratio between the steel sheet surface layer and the center, which is important for drawability, the cracks progressing in the steel sheet at the interface between the plating layer and the steel sheet, and the smooth portion of the steel sheet surface. Patent Document 6 does not have any knowledge about cold-rolled steel sheets that are excellent in drawability and are composed of ferrite and martensite that have different structures and completely different thermal histories in Patent Document 6 and the present invention.
Patent Document 7 describes only the depth of the grain boundary oxidation phase existing in the steel sheet for the steel having ferrite and bainite as the main phase, and does not describe the properties of the interface and has no knowledge about the formability.
Patent Documents 8 to 10 include residual austenite, steel with ferrite and bainite as the main phase, the amount of oxide inside the steel within 10 μm from the interface in the cross-sectional observation, and the amount inside the steel sheet with an index of area ratio However, there is no knowledge about the interface state between the plating layer and the ground iron.

以上のように、従来技術では、いずれも絞り成形性に優れた高強度溶融亜鉛めっき鋼板とその製造方法に関する検討はなされていない。
本発明では、かかる事情に鑑みなされたもので、絞り成形性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法を提供することを目的とする。
As described above, none of the conventional techniques has been studied on a high-strength hot-dip galvanized steel sheet having excellent drawability and its manufacturing method.
The present invention has been made in view of such circumstances, and an object thereof is to provide a high-strength hot-dip galvanized steel sheet having excellent drawability and a method for producing the same.

本発明者らは、上記の課題を解決すべく、鋭意研究した。その結果、鋼板表層組織の改善(硬度、平滑度)により、深絞り成形時の縦壁部での破断を抑制することが可能となり、絞り成形性に優れる高強度溶融亜鉛めっき鋼板が得られることを見出した。   The present inventors have intensively studied to solve the above problems. As a result, it is possible to suppress fracture at the vertical wall during deep drawing by improving the steel surface layer structure (hardness, smoothness), and to obtain a high-strength hot-dip galvanized steel sheet with excellent drawability I found.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]mass%で、C:0.03〜0.12%、Si:0.01〜1.0%、Mn:1.5〜2.5%、P:0.001〜0.05%、S:0.0001〜0.005%、Al:0.005〜0.15%、N:0.001〜0.01%、Cr:0.01〜0.5%、Ti:0.005〜0.05%、Nb:0.005〜0.05%、V:0.005〜0.5%、B:0.0003〜0.0030%を含有し、残部がFe及び不可避不純物からなり、平均結晶粒径10μm以下のフェライト相と体積分率30〜90%のマルテンサイト相を含む組織を有し、板厚表層硬度の板厚中心硬度に対する比が0.6〜1であり、めっき層と鋼板の界面から鋼板側内部へ進展している亀裂および凹部の最大深さが0〜20μmであり、さらに、前記亀裂および前記凹部以外の平滑部面積率が60%〜100%であることを特徴とする高強度溶融亜鉛めっき鋼板。
[2]前記[1]において、さらに、mass%で、Mo:0.01〜0.5%、Cu:0.01〜0.5%、Ni:0.01〜0.5%のうちの1種以上を含有することを特徴とする高強度溶融亜鉛めっき鋼板。
[3]前記[1]または[2]に記載の成分からなる鋼に、熱間圧延、酸洗および冷間圧延を行い、溶融亜鉛めっき処理を経て溶融亜鉛めっき鋼板を製造するに際し、前記熱間圧延では、スラブ加熱温度を1150〜1300℃、仕上げ圧延温度を850〜950℃、巻取り温度を400〜600℃とし、前記酸洗では、浴温度を10〜100℃未満、塩酸濃度を1〜20%とし、前記溶融亜鉛めっき処理では、600℃以上の昇温過程から焼鈍温度を経て450℃までの冷却過程までの熱処理炉内雰囲気を水素濃度2〜20%かつ露点-60〜-10℃とし、760〜860℃の焼鈍温度で10〜500秒保持した後、1〜30℃/秒の平均冷却速度で冷却することを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
[4]前記[3]において、前記溶融亜鉛めっき処理後に、さらに、合金化処理することを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] In mass%, C: 0.03-0.12%, Si: 0.01-1.0%, Mn: 1.5-2.5%, P: 0.001-0.05%, S: 0.0001-0.005%, Al: 0.005-0.15%, N : 0.001-0.01%, Cr: 0.01-0.5%, Ti: 0.005-0.05%, Nb: 0.005-0.05%, V: 0.005-0.5%, B: 0.0003-0.0030%, the balance being Fe and inevitable impurities And having a structure including a ferrite phase with an average crystal grain size of 10 μm or less and a martensite phase with a volume fraction of 30 to 90%, the ratio of the sheet thickness surface hardness to the sheet thickness center hardness is 0.6 to 1, The maximum depth of cracks and recesses extending from the interface between the layer and the steel plate to the inside of the steel plate is 0 to 20 μm, and the area ratio of the smooth part other than the cracks and the recesses is 60% to 100% High strength hot-dip galvanized steel sheet.
[2] In the above [1], the composition further contains at least one of mass: Mo: 0.01 to 0.5%, Cu: 0.01 to 0.5%, and Ni: 0.01 to 0.5%. Strength hot dip galvanized steel sheet.
[3] When the steel composed of the component described in [1] or [2] is hot-rolled, pickled and cold-rolled, and subjected to hot-dip galvanizing treatment to produce a hot-dip galvanized steel sheet, the heat In the intermediate rolling, the slab heating temperature is 1150 to 1300 ° C, the finish rolling temperature is 850 to 950 ° C, the winding temperature is 400 to 600 ° C, and in the pickling, the bath temperature is less than 10 to 100 ° C and the hydrochloric acid concentration is 1 In the hot dip galvanizing treatment, the atmosphere in the heat treatment furnace from the temperature rising process of 600 ° C. or higher to the cooling process to 450 ° C. through the annealing temperature is 2 to 20% in hydrogen concentration and -60 to -10 dew point. A method for producing a high-strength hot-dip galvanized steel sheet, wherein the steel sheet is held at an annealing temperature of 760 to 860 ° C. for 10 to 500 seconds and then cooled at an average cooling rate of 1 to 30 ° C./second.
[4] The method for producing a high-strength hot-dip galvanized steel sheet according to [3], further comprising an alloying treatment after the hot-dip galvanizing treatment.

なお、本明細書において、鋼の成分を示す%は、すべてmass%である。また、本発明において、高強度溶融亜鉛めっき鋼板とは、引張強度(以下、TSと称することもある)が780MPa以上の冷延鋼板である。   In addition, in this specification,% which shows the component of steel is all mass%. In the present invention, the high-strength hot-dip galvanized steel sheet is a cold-rolled steel sheet having a tensile strength (hereinafter sometimes referred to as TS) of 780 MPa or more.

本発明によれば、絞り成形性に優れる高強度溶融亜鉛めっき鋼板を得ることができる。そして、本発明により得られる高強度溶融亜鉛めっき鋼板は、自動車部品として要求される強度、成形性の全ての特性を満足しており、厳しい形状にプレス成形される自動車部品として好適である。   According to the present invention, a high-strength hot-dip galvanized steel sheet having excellent drawability can be obtained. The high-strength hot-dip galvanized steel sheet obtained by the present invention satisfies all the properties of strength and formability required for automobile parts, and is suitable as an automobile part that is press-formed into a strict shape.

本発明は、高強度溶融亜鉛めっき鋼板の絞り成形性向上に関し鋭意検討した結果得られたものであり、平均結晶粒径10μm以下のフェライト相と体積分率30〜90%のマルテンサイトを含む組織を有し、板厚表層硬度の板厚中心硬度に対する比が0.6〜1であり、めっき層と鋼板の界面から鋼板側内部へ進展している亀裂および凹部の最大深さが0〜20μmであり、さらに、亀裂および凹部以外の平滑部面積率が60%〜100%であることを特徴とする。このように、組織、中でも鋼板表層組織を改善し、上記のような硬度、平滑度にすることにより、深絞り成形時の縦壁部での破断を抑制することが可能となり、絞り成形性に優れた高強度溶融亜鉛めっき鋼板が得られることになる。
以下に、絞り成形性に優れる高強度溶融亜鉛めっき鋼板を得るための鋼の化学成分、組織の限定理由について詳細に説明する。
The present invention was obtained as a result of diligent investigations regarding the improvement of drawability of high-strength hot-dip galvanized steel sheets, and includes a ferrite phase having an average crystal grain size of 10 μm or less and martensite having a volume fraction of 30 to 90%. The ratio of the surface thickness hardness to the center thickness of the plate thickness is 0.6 to 1, and the maximum depth of cracks and recesses extending from the interface between the plating layer and the steel plate to the inside of the steel plate is 0 to 20 μm Furthermore, the area ratio of the smooth portion other than the cracks and the recesses is 60% to 100%. In this way, by improving the structure, especially the steel sheet surface layer structure, and making the hardness and smoothness as described above, it becomes possible to suppress breakage at the vertical wall during deep drawing, thereby reducing drawability. An excellent high-strength hot-dip galvanized steel sheet can be obtained.
Below, the reason for limitation of the chemical composition and structure | tissue of steel for obtaining the high intensity | strength hot-dip galvanized steel plate excellent in draw formability is demonstrated.

まず、本発明における鋼の化学成分(組成)の限定理由は以下の通りである。
C:0.03〜0.12%
マルテンサイト相の強度はC量に比例する傾向にあり、Cはマルテンサイト相を利用して鋼を強化するために必要不可欠である。780MPa以上のTSを得るには0.03%以上必要であり、C量の増加にともないTSは増加する。一方、0.12%を超えて含有すると、スポット溶接性が著しく劣化し、またマルテンサイト相が過度に硬質化し伸びフランジ性など成形性も低下する傾向にある。以上より、Cは0.03%以上0.12 %以下とする。TSを安定して780MPa以上確保するとともに、より優れた成形性、スポット溶接性を得る点から、C量の好ましい範囲は0.06%以上0.10%以下である。
First, the reasons for limiting the chemical composition (composition) of steel in the present invention are as follows.
C: 0.03-0.12%
The strength of the martensite phase tends to be proportional to the C content, and C is indispensable for strengthening steel using the martensite phase. To obtain a TS of 780 MPa or more, 0.03% or more is necessary, and TS increases as the amount of C increases. On the other hand, if the content exceeds 0.12%, the spot weldability is remarkably deteriorated, the martensite phase is excessively hardened, and the formability such as stretch flangeability tends to be lowered. Therefore, C is set to 0.03% or more and 0.12% or less. From the viewpoint of stably securing TS of 780 MPa or more and obtaining better formability and spot weldability, the preferable range of C content is 0.06% or more and 0.10% or less.

Si:0.01〜1.0%
Siは固溶強化により強度向上に寄与する元素である。しかしながら含有量が0.01%に満たないと添加効果はない。一方、1.0%を越えて含有してもその効果は飽和するばかりではなくフェライト相の延性も低下する。また過度に含有することにより、熱延時に難剥離性のスケールを生成し鋼板の表面性状を劣化させ、加えて鋼板表面、結晶粒界などに偏析、濃化し材質を劣化する。以上より、Siは0.01%以上1.0%以下、好ましくは0.02%以上0.5%以下とする。
Si: 0.01 to 1.0%
Si is an element that contributes to strength improvement by solid solution strengthening. However, if the content is less than 0.01%, there is no effect of addition. On the other hand, the content exceeding 1.0% not only saturates the effect but also reduces the ductility of the ferrite phase. Moreover, when it contains excessively, the scale of a hard-peeling property is produced | generated at the time of hot rolling, and the surface property of a steel plate is deteriorated, In addition, it segregates and concentrates on the steel plate surface, a crystal grain boundary, etc., and a material deteriorates. From the above, Si is 0.01% or more and 1.0% or less, preferably 0.02% or more and 0.5% or less.

Mn:1.5〜2.5%
Mnは強度に寄与し、このような作用は1.5%以上を含有することで認められる。一方、2.5%を越えて過度に含有すると、Mnの偏析などに起因し部分的に変態点が異なる組織となり、結果としてフェライト相とマルテンサイト相がバンド状に存在し、不均一化な組織となり加工性は低下する。また鋼板表面、結晶粒界などに偏析、濃化し材質を劣化する。以上より、Mnは1.5%以上2.5%以下、好ましくは1.8%以上2.4%以下とする。
Mn: 1.5-2.5%
Mn contributes to strength, and such an effect is recognized by containing 1.5% or more. On the other hand, if the content exceeds 2.5% excessively, it becomes a structure where the transformation point is partially different due to segregation of Mn, etc., and as a result, the ferrite phase and martensite phase exist in a band shape, resulting in a non-uniform structure. Processability decreases. In addition, segregates and concentrates on the steel plate surface, grain boundaries, etc., and deteriorates the material. Accordingly, Mn is set to 1.5% to 2.5%, preferably 1.8% to 2.4%.

P:0.001〜0.05%
Pは、溶接性を劣化させる元素であり、P量が0.05%を超えると、その影響が顕著に現れる。一方で、P量の過度の低減は製鋼工程における製造コストの増加を伴う。以上より、Pは0.001%以上0.05%以下、好ましくは0.001%以上0.015%以下、より好ましくは0.001%以上0.010%以下とする。
P: 0.001 to 0.05%
P is an element that deteriorates weldability, and when the amount of P exceeds 0.05%, the effect appears remarkably. On the other hand, excessive reduction of the amount of P is accompanied by an increase in production cost in the steelmaking process. Accordingly, P is 0.001% to 0.05%, preferably 0.001% to 0.015%, and more preferably 0.001% to 0.010%.

S:0.0001〜0.005%
S量が増加すると熱間赤熱脆性の原因となり製造工程上不具合を生じる場合がある。また、介在物MnSを形成し、冷間圧延後に板状の介在物として存在することにより、特に材料の極限変形能を低下させ、成形性を低下させる。S量が0.005%までであれば、上記は特に問題とならない。一方、過度の低減は製鋼工程における脱硫コストの増加を伴う。以上より、Sは0.0001%以上0.005%以下、好ましくは0.0001%以上0.0015%以下とする。
S: 0.0001 to 0.005%
If the amount of S increases, it may cause hot red hot brittleness and may cause problems in the manufacturing process. In addition, inclusion MnS is formed and present as a plate-like inclusion after cold rolling, thereby particularly reducing the ultimate deformability of the material and lowering the formability. If the amount of S is up to 0.005%, the above is not a problem. On the other hand, excessive reduction is accompanied by an increase in desulfurization cost in the steelmaking process. Accordingly, S is set to be 0.0001% or more and 0.005% or less, preferably 0.0001% or more and 0.0015% or less.

Al:0.005%〜0.15%
Alは、製鋼工程において脱酸剤として有効であり、局部延性を低下させる非金属介在物をスラグ中に分離する点でも有効である。またAlは焼鈍時に、めっき性を阻害する表層へのMn、Si系の酸化物の形成を抑制し、めっき表面外観を向上させる効果がある。さらに、Ac3変態点を上昇させ、フェライト+オーステナイト2相域を拡大することで、適正焼鈍温度範囲を拡大する効果もある。このような作用を得るには0.005%以上の添加が必要である。一方、0.15%を超えて添加すると、鋼成分コスト増を生じるだけではなく、溶接性を低下させる。以上より、Alは0.005%〜0.15%以下、好ましくは0.01%以上0.06%以下とする。
Al: 0.005% to 0.15%
Al is effective as a deoxidizer in the steelmaking process, and is also effective in separating non-metallic inclusions that reduce local ductility into the slag. In addition, Al has the effect of suppressing the formation of Mn and Si-based oxides on the surface layer that hinders plating properties during annealing and improving the plating surface appearance. Furthermore, by raising the Ac 3 transformation point and expanding the ferrite + austenite two-phase region, there is also an effect of expanding the appropriate annealing temperature range. Addition of 0.005% or more is necessary to obtain such an action. On the other hand, if added over 0.15%, not only the steel component cost increases, but also the weldability decreases. Accordingly, Al is 0.005% to 0.15% or less, preferably 0.01% or more and 0.06% or less.

N:0.001〜0.01%
組織強化鋼において材料特性に及ぼすNの影響はあまり大きくはなく、0.01%以下であれば本発明の効果を損なわない。一方、フェライトの清浄化による加工性向上の観点からはN量は少ないほうが好ましいが、製鋼上のコストも増大するので、下限は0.001%とする。以上より、Nは0.001%以上0.01%以下、好ましくは0.001%以上0.0060%以下とする。
N: 0.001 to 0.01%
The influence of N on the material properties in the structure strengthened steel is not so great, and if it is 0.01% or less, the effect of the present invention is not impaired. On the other hand, from the viewpoint of improving workability by cleaning ferrite, the N content is preferably small, but the cost for steelmaking also increases, so the lower limit is made 0.001%. Accordingly, N is set to be 0.001% to 0.01%, preferably 0.001% to 0.0060%.

Cr:0.01〜0.5%
Crは鋼の焼入れ強化に有効な元素である。この効果を得るには、0.01%以上の添加を必要
とする。一方、Crが0.5%を超えるとこの効果は飽和し、表面品質を著しく低下させる。よって、Crは0.01%以上0.5%以下、好ましくは0.04%0以上0.2%以下とする。
Cr: 0.01-0.5%
Cr is an effective element for hardening hardening of steel. In order to obtain this effect, addition of 0.01% or more is required. On the other hand, when Cr exceeds 0.5%, this effect is saturated, and the surface quality is significantly reduced. Therefore, Cr is 0.01% to 0.5%, preferably 0.04% to 0.2%.

Ti:0.005〜0.05%
Tiは鋼中でCまたはNと微細炭化物や微細窒化物を形成することにより、熱延板組織ならびに焼鈍後の鋼板組織の細粒化および析出強化付与に有効に作用する。この効果を得るためには、Ti量は0.005%以上の添加を必要とする。一方、0.05%を超えると効果は飽和する。よって、Tiは0.005%以上0.05%以下、好ましくは0.01%以上0.04%以下とする。
Ti: 0.005-0.05%
Ti forms fine carbides and fine nitrides with C or N in steel, and thus effectively acts to refine the hot-rolled sheet structure and the steel sheet structure after annealing and to impart precipitation strengthening. In order to obtain this effect, it is necessary to add 0.005% or more of Ti. On the other hand, if it exceeds 0.05%, the effect is saturated. Therefore, Ti is 0.005% to 0.05%, preferably 0.01% to 0.04%.

Nb:0.005〜0.05%
Nbは固溶強化または析出強化により強度向上に寄与する元素である。またフェライトを強化することによりマルテンサイト相との硬度差を低減する効果を通じて、伸びフランジ成形性を向上させる。このような効果はNb量が0.005%以上で得られる。一方、過度に含有すると、熱延板が硬化し、熱間圧延、冷間圧延での圧延荷重が増大する。また、フェライトの延性が劣化し、加工性が低下する。このため、Nb量は0.05%以下とする。強度、加工性の観点から、Nbは0.01%以上0.04%以下が好ましい。
V:0.005〜0.5%
Vは炭化物を析出し、連続焼鈍時の加熱段階でのフェライト相の粗大化を抑制し、鋼組織を微細均一化して伸びフランジ性を著しく向上させる。また、Vは鋼の強化に有効な元素である。これらの効果を得るには、Vは0.005%以上の添加を必要とする。一方で、Vの添加量が0.5%を超えると、これらの効果は飽和する。よって、Vは0.005%以上0.5%以下、好ましくは0.01%以上0.2%以下とする。
Nb: 0.005-0.05%
Nb is an element that contributes to strength improvement by solid solution strengthening or precipitation strengthening. In addition, by strengthening ferrite, stretch flangeability is improved through the effect of reducing the hardness difference from the martensite phase. Such an effect is obtained when the Nb content is 0.005% or more. On the other hand, when it contains excessively, a hot-rolled sheet will harden | cure and the rolling load in hot rolling and cold rolling will increase. In addition, the ductility of the ferrite deteriorates and the workability decreases. For this reason, the Nb content is 0.05% or less. From the viewpoint of strength and workability, Nb is preferably 0.01% or more and 0.04% or less.
V: 0.005-0.5%
V precipitates carbides, suppresses the coarsening of the ferrite phase in the heating stage during continuous annealing, makes the steel structure fine and uniform, and significantly improves stretch flangeability. V is an element effective for strengthening steel. In order to obtain these effects, V needs to be added in an amount of 0.005% or more. On the other hand, when the added amount of V exceeds 0.5%, these effects are saturated. Therefore, V is 0.005% to 0.5%, preferably 0.01% to 0.2%.

B:0.0003〜0.0030%
Bは焼入れ性を高め、焼鈍冷却過程にて起こるフェライトの生成を抑制し、所望のマルテンサイト量を得るのに寄与する。この効果を得るためには、B量は0.0003%以上の添加を必要とする。一方、B量が0.0030%を超えると、上記効果が飽和する。以上より、Bは0.0003%以上0.0030%以下の範囲とする。好ましくはBを0.0003%以上0.0020%以下とする。
B: 0.0003 to 0.0030%
B enhances hardenability, suppresses the formation of ferrite that occurs during the annealing and cooling process, and contributes to obtaining a desired amount of martensite. In order to obtain this effect, the amount of B needs to be 0.0003% or more. On the other hand, when the amount of B exceeds 0.0030%, the above effect is saturated. From the above, B is in the range of 0.0003% to 0.0030%. Preferably, B is 0.0003% or more and 0.0020% or less.

本発明の鋼板は、上記の必須添加元素で目的とする特性が得られるが、所望の特性に応じて以下の元素を含有することができる。
Mo:0.01〜0.5%、Cu:0.01〜0.5%、Ni:0.01〜0.5%のうちの1種以上
Moは鋼の焼入れ強化に有効な元素であり、この効果を得るには、0.01%以上の添加を必要
とする。しかし、Mo量が0.5%を超えると、この効果は飽和する。よって、Moを含有する場合、含有量は0.01%以上0.5%以下の範囲とする。より好ましくは0.05%以上0.35%以下である。
Cu、Niは強度に寄与する元素であり、強化のため添加する場合、それぞれ0.01%以上が必要とされる。一方、過度に添加してもその効果は飽和するのでCu、Niの上限は0.5%とする。よって、含有する場合、Cu、Niは0.01%以上0.5%以下とする。さらに好ましくは、Cu、Niはそれぞれ0.01%以上0.3%以下である。
また、本願の本質であるめっき性を大きく変化させることなく、硫化物系介在物の形態を制御する作用を有し、これにより成形性の向上に有効に寄与するREM、あるいは鋼板表層の結晶を整粒にする作用を有するSbなどを0.0001%以上0.1%以下の範囲で含有しても構わない。なお、上記以外の残部はFe及び不可避的不純物とする。
The steel sheet of the present invention can achieve the desired characteristics with the above-mentioned essential additive elements, but can contain the following elements depending on the desired characteristics.
One or more of Mo: 0.01-0.5%, Cu: 0.01-0.5%, Ni: 0.01-0.5%
Mo is an element effective for strengthening the quenching of steel. To obtain this effect, addition of 0.01% or more is required. However, this effect is saturated when the Mo content exceeds 0.5%. Therefore, when Mo is contained, the content is in the range of 0.01% to 0.5%. More preferably, it is 0.05% or more and 0.35% or less.
Cu and Ni are elements that contribute to strength. When added for strengthening, 0.01% or more of each is required. On the other hand, even if added excessively, the effect is saturated, so the upper limit of Cu and Ni is 0.5%. Therefore, when it contains, Cu and Ni shall be 0.01% or more and 0.5% or less. More preferably, Cu and Ni are each 0.01% or more and 0.3% or less.
In addition, it has the effect of controlling the form of sulfide inclusions without significantly changing the plating property, which is the essence of the present application, and this effectively contributes to improving the formability of REM or crystals on the steel sheet surface layer. Sb or the like having the effect of regulating the size may be contained in the range of 0.0001% to 0.1%. The remainder other than the above is made of Fe and inevitable impurities.

次に、本発明にとって重要な要件の一つである鋼の組織の限定理由について説明する。
フェライト相の平均結晶粒径は10μm以下
結晶の微細化は鋼板の伸びフランジ性の向上に寄与する。そこで、本発明では、複合組織中のフェライト相の平均結晶粒径を10μm以下に制限する。フェライト相の平均結晶粒径が過度に粗大化することによりプレス成形後に鋼板表面が荒れることもある。また、軟質な領域と硬質な領域が粗に存在すると、変形が不均一となり成形性が劣化する。フェライト相とマルテンサイト相が均一微細に存在することにより成形時に鋼板の変形が均一となるため、フェライト相の平均結晶粒径は小さいほうが望ましい。以上より、フェライト相の平均結晶粒径は10μm以下、成形性の劣化を抑制する観点から、好ましくは、フェライト相の平均粒径は1μm以上5μm以下である。
Next, the reason for limiting the steel structure, which is one of the important requirements for the present invention, will be described.
The average crystal grain size of ferrite phase is 10 μm or less Crystal refinement contributes to the improvement of stretch flangeability of steel sheets. Therefore, in the present invention, the average crystal grain size of the ferrite phase in the composite structure is limited to 10 μm or less. If the average crystal grain size of the ferrite phase becomes excessively large, the surface of the steel sheet may be roughened after press forming. In addition, if the soft region and the hard region are present roughly, the deformation becomes non-uniform and the moldability deteriorates. Since the ferrite phase and the martensite phase are present uniformly and finely, the deformation of the steel sheet becomes uniform during forming. Therefore, it is desirable that the average crystal grain size of the ferrite phase is small. From the above, the average crystal grain size of the ferrite phase is 10 μm or less, and from the viewpoint of suppressing the deterioration of formability, the average grain size of the ferrite phase is preferably 1 μm or more and 5 μm or less.

マルテンサイト相の体積分率は30〜90%
TS780MPa以上を得るために、本発明の鋼板では、マルテンサイト相を体積分率で30%以上含有させる必要がある。マルテンサイト相は硬質相であり、変態組織強化によって鋼板の強度を増加させる作用を有している。また、変態生成時に可動転位の発生を伴うため、鋼板の降伏比を低下させる作用も有する。一方でマルテンサイト相が90%を超えて存在すると過度に高強度化し、軟質なフェライト相が減少し成形性の確保が困難となる。以上より、マルテンサイト相の体積分率は30%以上90%以下、好ましくは40%以上70%以下とする。
The volume fraction of martensite phase is 30-90%
In order to obtain TS780 MPa or more, the steel sheet of the present invention needs to contain a martensite phase of 30% or more by volume fraction. The martensite phase is a hard phase and has an action of increasing the strength of the steel sheet by strengthening the transformation structure. In addition, since the generation of movable dislocation is accompanied at the time of transformation generation, it also has the effect of reducing the yield ratio of the steel sheet. On the other hand, if the martensite phase exceeds 90%, the strength becomes excessively high, the soft ferrite phase decreases, and it becomes difficult to ensure the moldability. From the above, the volume fraction of the martensite phase is 30% to 90%, preferably 40% to 70%.

板厚表層硬度の板厚中心硬度に対する比は0.6〜1
良好な絞り成形性を得るために、本発明の鋼板では、板厚表層硬度の板厚中心硬度に対する比(以下、硬度比と称することもある)を0.6〜1とする。この硬度比が0.6〜1の場合、絞り成形時の縦壁部は板厚方向に均一な組織となっており、均一に変形する。しかしながら、硬度比が0.6未満の場合は表層が板厚中心より過度に軟質化しており、また、硬度比が1より大きい場合は表層が硬質化していることになる。このように、表層と板厚中心において硬度の乖離が大きいすなわち組織が不均一であると、絞り成形時に導入される歪によって鋼板が受ける縦壁部の板厚表層と板厚中心部ではダメージが異なる。その結果、このように板厚方向における組織が不均一な場合、成形が進行するにしたがい表層部と板厚中心部の変形挙動が異なり、板厚方向に均一な組織を有する場合に比較すると早く破断に至ることになる。以上より、板厚表層硬度の板厚中心硬度に対する比は0.6〜1とする。好ましい範囲は0.75〜1である。
なお、表層および板厚中心の硬度は、ビッカース硬度計を用い押し付け荷重100gの条件にて、圧延方向に平行な板厚断面の所定位置の硬度を任意5点測定し、単純平均値として測定することができる。また、本発明において、表層とは、めっき層と鋼板地鉄界面を0μmとし、界面から板厚中心深さ方向25μm位置であり、板厚中心とは実測板厚の1/2である。例えばめっき厚みも含む実測板厚1.40mmの場合、おおよそ、表層とはめっき、地鉄界面から25μm近辺であり、板厚中心とはめっき表面から0.70mm近傍である。
また、硬度比を0.6〜1に制御するためには、例えば600℃以下の低温巻取りを行うのが効果的である。
Ratio of sheet thickness surface layer hardness to sheet thickness center hardness is 0.6-1
In order to obtain good drawability, in the steel sheet of the present invention, the ratio of sheet thickness surface layer hardness to sheet thickness center hardness (hereinafter also referred to as hardness ratio) is set to 0.6-1. When the hardness ratio is 0.6 to 1, the vertical wall portion at the time of drawing is a uniform structure in the plate thickness direction and is uniformly deformed. However, when the hardness ratio is less than 0.6, the surface layer is excessively softened from the thickness center, and when the hardness ratio is greater than 1, the surface layer is hardened. In this way, if the difference in hardness between the surface layer and the center of the plate thickness is large, that is, the structure is non-uniform, damage is caused at the plate thickness surface layer and the center of the plate thickness of the vertical wall that the steel plate receives due to the strain introduced at the time of drawing. Different. As a result, when the structure in the plate thickness direction is non-uniform in this way, the deformation behavior of the surface layer portion and the plate thickness center portion is different as the molding progresses, faster than when the structure has a uniform structure in the plate thickness direction. It will lead to breakage. From the above, the ratio of the sheet thickness surface layer hardness to the sheet thickness center hardness is set to 0.6 to 1. A preferred range is from 0.75 to 1.
In addition, the hardness of the surface layer and the center of the plate thickness is measured as a simple average value by measuring the hardness at a predetermined position on the cross section of the plate thickness parallel to the rolling direction at a pressing load of 100 g using a Vickers hardness tester. be able to. Further, in the present invention, the surface layer is defined as 0 μm at the interface between the plated layer and the steel plate, and the center of the thickness is 25 μm from the interface, and the center of the thickness is 1/2 of the actual measured thickness. For example, in the case of a measured plate thickness of 1.40 mm including the plating thickness, the surface layer is approximately 25 μm from the surface of the plated and ground iron interface, and the center of the plate thickness is approximately 0.70 mm from the plated surface.
In order to control the hardness ratio to 0.6 to 1, it is effective to perform low-temperature winding at, for example, 600 ° C. or less.

めっき層と鋼板の界面から、鋼板側内部へ進展している亀裂と凹部の最大深さ0〜20μm、亀裂と凹部以外の平滑部面積率60%〜100%
良好な絞り成形性を得るために、本発明の鋼板では、めっき層と鋼板の界面から鋼板側内部へ進展している亀裂と凹部の最大深さが0〜20μmであり、亀裂と凹部以外の平滑部面積率が60〜100%、すなわち、亀裂と凹部の面積率を0〜40%とする。絞り成形の場合、鋼板はフランジ部からダイ肩部を通過して縦壁部へ流入する。例えば、円筒成形の場合、絞り、曲げ、曲げ戻し変形を受けてダイス内へ流れ込む、あるいはハット成形の場合では曲げ、曲げ戻し変形を受けてダイス内へ流れ込むという成形様式をとることが多い。したがって、曲げ戻し変形時に鋼板表層には歪が導入される。ここで、めっき層と鋼板の界面に亀裂や凹部が存在し、かつ一定以上の割合で存在すると、絞り成形時に亀裂発生の起点となり、破断に至り、絞り成形性を満足することが困難となる。亀裂や凹部の深さが20μm以下であれば顕在化することはない。また、亀裂や凹部の存在割合が40%を超えて存在すると、絞り成形性が劣化する。亀裂が存在しないのが好ましいが、このためには、冷間圧延後、熱処理前工程に切削など機械的に除去する工程や、酸、アルカリ処理など薬液により除去する工程など、追加工程が必要となりコスト増となり工業的には困難となる。ゆえに、顕在化しない範囲として、上記上限を設けることとする。
以上より、めっき層と鋼板の界面から鋼板側内部へ進展している亀裂と凹部の最大深さは0〜20μm、亀裂と凹部以外の平滑部面積率は60%〜100%とする。好ましくは、亀裂と凹部の最大深さは0〜5μm、亀裂と凹部以外の平滑部面積率は75%〜100%である。
なお、本発明において、めっき層と鋼板の界面から、鋼板側内部へ進展している亀裂とは、板表面は平滑であるが、任意断面組織観察において線状に、例えば、結晶粒界に沿って鋼板内部に進展しているものであり、凹部とは板表面観察においてクレーター状、例えば、鋼板表面の一部が剥離しており、任意断面組織観察において線状ではなく、例えば、1個の結晶粒が元々存在していたところにおいて、結晶が剥離しくぼみ状に観察される部分である。
また、最大深さは、めっき層と鋼板地鉄界面位置を基準(0μm)とし、亀裂の場合はめっき地鉄界面から亀裂先端部までの板厚方向の深さ、凹部の深さは開口部から凹部の最深底までの板厚方向の深さのようにして測定することができ、詳細には実施例に後述する。同様に、平滑部面積率についても、詳細には実施例に後述する。
また、めっき層と鋼板の界面から、鋼板側内部へ進展している亀裂と凹部の最大深さ0〜20μmであり、かつ亀裂と前記凹部以外の平滑部面積率が60%〜100%に制御するためには、例えば、熱延後の巻取温度を400〜600℃の範囲に制御し、表面スケール生成、鋼板内部の酸化物生成を抑制すること、熱処理炉内水素濃度を2〜20%、かつ露点:-60〜-10℃の範囲に制御することが有効である。
Maximum depth of cracks and recesses extending from the interface between the plating layer and steel sheet to the inside of the steel sheet 0 to 20 μm, smooth area ratio other than cracks and recesses 60% to 100%
In order to obtain good drawability, in the steel sheet of the present invention, the maximum depth of cracks and recesses extending from the interface between the plating layer and the steel sheet to the inside of the steel sheet is 0 to 20 μm. The area ratio of the smooth part is 60 to 100%, that is, the area ratio of cracks and recesses is 0 to 40%. In the case of drawing, the steel plate passes from the flange portion through the die shoulder portion and flows into the vertical wall portion. For example, in the case of cylindrical molding, the molding style is often such that it flows into the die after being subjected to drawing, bending, and bending back deformation, or in the case of hat molding, the molding is such that it flows into the die after being subjected to bending and bending back deformation. Therefore, strain is introduced into the steel sheet surface layer during bending back deformation. Here, if there is a crack or a recess at the interface between the plating layer and the steel sheet, and if it exists at a certain ratio or more, it becomes the starting point of crack generation at the time of drawing, leading to breakage, making it difficult to satisfy drawability. . If the depths of the cracks and recesses are 20 μm or less, they will not become apparent. In addition, if the existence ratio of cracks and recesses exceeds 40%, the drawability deteriorates. It is preferable that there are no cracks, but this requires additional steps such as a mechanical removal process such as cutting and a chemical removal process such as acid and alkali treatment after the cold rolling and before the heat treatment. The cost increases and it becomes difficult industrially. Therefore, the above upper limit is set as a range that does not become apparent.
From the above, the maximum depth of cracks and recesses extending from the interface between the plating layer and the steel plate to the inside of the steel plate is 0 to 20 μm, and the area ratio of the smooth part other than the cracks and recesses is 60% to 100%. Preferably, the maximum depth of the crack and the recess is 0 to 5 μm, and the area ratio of the smooth portion other than the crack and the recess is 75% to 100%.
In the present invention, the crack progressing from the interface between the plating layer and the steel sheet to the inside of the steel sheet side is smooth, but the surface of the sheet is smooth, but linearly observed in an arbitrary cross-sectional structure observation, for example, along the grain boundary The concave portion is a crater shape in the plate surface observation, for example, a part of the steel plate surface is peeled off, and is not linear in the arbitrary cross-sectional structure observation, for example, one piece In the place where the crystal grains originally existed, it is a portion where the crystal is peeled off and observed in a hollow shape.
Also, the maximum depth is based on the position of the interface between the plating layer and the steel sheet steel (0 μm) .In the case of a crack, the depth in the thickness direction from the plating metal interface to the crack tip, and the depth of the recess is the opening. To the deepest bottom of the recess can be measured in the thickness direction, and will be described later in detail in the examples. Similarly, the smooth portion area ratio will be described later in detail in Examples.
Also, the maximum depth of cracks and recesses extending from the interface between the plating layer and the steel sheet to the inside of the steel sheet is 0 to 20 μm, and the area ratio of the smooth part other than the cracks and the recesses is controlled to 60% to 100%. To do so, for example, the coiling temperature after hot rolling is controlled in the range of 400 to 600 ° C. to suppress surface scale generation and oxide generation inside the steel sheet, and the hydrogen concentration in the heat treatment furnace is 2 to 20%. In addition, it is effective to control the dew point in the range of -60 to -10 ° C.

次に本発明の高強度溶融亜鉛めっき鋼板の製造方法について説明する。
まず、以上の化学成分範囲に調整された溶鋼から、連続鋳造または造塊でスラブを溶製する。次いで、得られたスラブを冷却後再加熱するか、あるいはそのまま熱間圧延を行う。この時、スラブ加熱温度は1150〜1300℃とし、熱延板を均一組織化し、伸びフランジ性など成形性を向上させるため仕上げ圧延温度は850〜950℃とする。表面性状および冷間圧延性を向上させるため巻取り温度は400℃以上とする。また、冷間圧延後の幅方向の板厚変動の抑制、スケール生成抑制による表面の平滑化により表面性状を向上、かつ、フェライト相とパーライト相の2相からなるバンド状組織を抑制させるため巻取温度は600℃以下とする。次いで、熱延後の酸洗を浴温度10〜100℃未満、塩酸濃度1〜20%として行う。次いで、冷間圧延した後、所望の板厚とする。冷間圧延率は、フェライト相の再結晶促進により延性を向上させるため30%以上が望ましい。溶融亜鉛めっき処理は、亜鉛浴工程直前まで鋼板表面性状を良好に保つため600℃以上の昇温過程から焼鈍温度を経て450℃までの冷却過程までの熱処理炉内雰囲気を水素濃度2〜20%かつ露点-10〜-60℃とし、760〜860℃の焼鈍温度で10〜500秒保持した後、1〜30℃/秒の平均冷却速度にて冷却する。冷却後、引き続き、溶融亜鉛浴に鋼板を浸漬させて、亜鉛めっき処理する。或いは、更に、亜鉛めっき後に、めっきの合金化処理を行うこともできる。溶融亜鉛めっきの付着量は、ガスワイピング等により制御でき、また合金化処理は、450〜600℃の温度範囲にて10〜120秒保持する程度で十分である。上記のようにめっき処理後、或いは合金化処理後に室温まで冷却して高強度溶融亜鉛めっき鋼板を得ることができる。
以下、これらの製造条件について詳細に説明する。
Next, the manufacturing method of the high-strength hot-dip galvanized steel sheet of this invention is demonstrated.
First, slab is melted by continuous casting or ingot-making from molten steel adjusted to the above chemical component range. Subsequently, the obtained slab is cooled and then reheated or hot rolled as it is. At this time, the slab heating temperature is set to 1150 to 1300 ° C., and the finish rolling temperature is set to 850 to 950 ° C. in order to make the hot rolled sheet uniform and improve formability such as stretch flangeability. The coiling temperature is set to 400 ° C. or higher in order to improve surface properties and cold rolling properties. In addition, it is possible to reduce the sheet thickness variation in the width direction after cold rolling, to improve the surface properties by smoothing the surface by suppressing scale formation, and to reduce the band-like structure consisting of two phases of ferrite phase and pearlite phase. Sampling temperature shall be 600 ℃ or less. Next, pickling after hot rolling is performed at a bath temperature of less than 10-100 ° C. and a hydrochloric acid concentration of 1-20%. Next, after cold rolling, a desired plate thickness is obtained. The cold rolling rate is preferably 30% or more in order to improve ductility by promoting recrystallization of the ferrite phase. In hot dip galvanizing, the atmosphere in the heat treatment furnace from the temperature rising process of 600 ° C or higher to the cooling process to 450 ° C through the annealing temperature is maintained in a hydrogen concentration of 2-20% until just before the zinc bath process. In addition, the dew point is set to -10 to -60 ° C, and the annealing temperature of 760 to 860 ° C is maintained for 10 to 500 seconds, followed by cooling at an average cooling rate of 1 to 30 ° C / second. After cooling, the steel sheet is subsequently immersed in a molten zinc bath and galvanized. Or, further, after the galvanization, an alloying treatment of the plating can be performed. The adhesion amount of hot dip galvanizing can be controlled by gas wiping or the like, and the alloying treatment is sufficient to hold for 10 to 120 seconds in a temperature range of 450 to 600 ° C. As described above, a high-strength hot-dip galvanized steel sheet can be obtained by cooling to room temperature after plating or alloying.
Hereinafter, these manufacturing conditions will be described in detail.

スラブ加熱温度:1150〜1300℃
鋳造時に析出したTi、Nb、V析出物を再溶解させる必要があり、加熱段階に存在している析出物は最終的に得られる鋼板内では粗大な析出物として存在するため、強度に寄与しない。1150℃以上の加熱により強度への寄与が認められるが、1300℃を超えて加熱すると、表層からの脱炭、オーステナイト粒の粗大化を引き起こし、コストが増加する。また、スラブ表層の気泡、偏析など欠陥をスケールオフし、鋼板表面の亀裂、凹凸を減少し、平滑な鋼板表面を達成する観点からも1150℃以上に加熱するのが好ましい。以上より、スラブ加熱温度は1150℃以上1300℃以下の範囲とする。
Slab heating temperature: 1150 ~ 1300 ℃
It is necessary to redissolve the Ti, Nb, and V precipitates precipitated during casting, and the precipitates that exist in the heating stage are present as coarse precipitates in the steel sheet that is finally obtained, so they do not contribute to strength. . Heating above 1150 ° C contributes to strength, but heating above 1300 ° C causes decarburization from the surface layer and coarsening of austenite grains, increasing costs. It is also preferable to heat to 1150 ° C. or higher from the viewpoint of scaling off defects such as bubbles and segregation on the surface of the slab, reducing cracks and irregularities on the steel sheet surface, and achieving a smooth steel sheet surface. From the above, the slab heating temperature is set in the range of 1150 ° C to 1300 ° C.

仕上げ圧延温度:850〜950℃
仕上げ圧延温度を850℃以上とすることによりプレス成形性(TS×λ≧45000MPa・%かつTS×El≧18000MPa・%)が著しく向上することができる。仕上げ圧延温度が850℃未満の場合、熱間圧延後に、特に幅方向エッジ部などに顕著であるが、一部熱間圧延により展伸された結晶粒径を有する未再結晶のオーステナイトと再結晶したオーステナイトが混在する場合がある。整粒な再結晶オーステナイトからは整粒な組織が、元々展伸粒が存在している領域には旧オーステナイト粒界近傍に層状にフェライト相と低温変態相が存在し、バンド状組織を形成することになる。例えば製鋼段階での鋳造偏析に起因し、オーステナイト安定化元素であるMnが偏析していると、その領域のAr3変態点が低下し、低温までオーステナイト域となる。また、温度が低下することにより未再結晶温度域と圧延終了温度が同じ温度域となり、結果的に熱間圧延中に未再結晶のオーステナイトが存在すると考えられる。このように、不均一な組織となると成形時の材料の均一な変形を阻害し、著しく優れた成形性を有することが困難となる。
一般に、熱延スケールは、高温域では短時間に成長しやすく、時間に対し、指数関数的にスケール厚は増加する。950℃を超えると酸化物生成量が急激に増大し、地鉄-酸化物界面が荒れ、酸洗、冷間圧延後の表面品質が劣化する。このように、冷間圧延後の表面品質が低下すると、最終製品である溶融亜鉛めっき鋼板において、めっき-鋼板界面の鋼板側内部へ進展している亀裂と凹部の存在が顕著となり、プレス成形時に割れ易くなる。また、結晶粒径が過度に粗大となり、成形時にプレス品表面荒れを生じる場合がある。よって、仕上げ圧延温度は850〜950℃とする。尚、仕上げ圧延温度の好ましい条件は900℃〜950℃である。
Finishing rolling temperature: 850 ~ 950 ℃
The press formability (TS × λ ≧ 45000 MPa ·% and TS × El ≧ 18000 MPa ·%) can be remarkably improved by setting the finish rolling temperature to 850 ° C. or higher. When the finish rolling temperature is less than 850 ° C., it is remarkable after the hot rolling, especially in the edge portion in the width direction, etc., but the unrecrystallized austenite and recrystallized with the crystal grain size partially stretched by hot rolling Austenite may be mixed. A sized structure is formed from sized recrystallized austenite, and in the region where originally expanded grains are present, a ferrite phase and a low-temperature transformation phase exist in the vicinity of the former austenite grain boundary, forming a band structure. It will be. For example, if Mn, an austenite stabilizing element, is segregated due to casting segregation at the steelmaking stage, the Ar3 transformation point in that region is lowered, and the austenite region is obtained up to a low temperature. Moreover, it is thought that a non-recrystallized austenite exists during hot rolling as a result that the non-recrystallized temperature region and the rolling end temperature become the same temperature region as the temperature decreases. Thus, when it becomes a non-uniform | heterogenous structure | tissue, the uniform deformation | transformation of the material at the time of shaping | molding will be inhibited, and it will become difficult to have remarkably outstanding moldability.
In general, a hot-rolled scale is likely to grow in a short time in a high temperature region, and the scale thickness increases exponentially with time. If the temperature exceeds 950 ° C, the amount of oxides generated will increase rapidly, the iron-oxide interface will become rough, and the surface quality after pickling and cold rolling will deteriorate. Thus, when the surface quality after cold rolling deteriorates, in the hot dip galvanized steel sheet, which is the final product, the presence of cracks and recesses progressing into the steel plate side at the plating-steel interface becomes noticeable. It becomes easy to break. Further, the crystal grain size becomes excessively large, and the surface of the pressed product may be roughened during molding. Therefore, the finish rolling temperature is 850 to 950 ° C. In addition, the preferable conditions of finish rolling temperature are 900 degreeC-950 degreeC.

巻取り温度:400〜600℃
巻取り温度については、600℃を超えると、表層からの脱炭、スケールの成長が著しく表面品質が劣化する。また鋼板内部においても、結晶粒界および粒内にSi、Mn系酸化物が生成し、酸洗後に微小亀裂、冷間圧延後に鉄粉が剥離し凹部となることにより冷間圧延材の表面が荒れ、成形性が低下する。また、巻取り温度は、熱延板強度の上昇による冷間圧延負荷の増大を抑制するため、400℃以上とする。
Winding temperature: 400 ~ 600 ℃
When the coiling temperature exceeds 600 ° C., decarburization from the surface layer and scale growth are remarkable and surface quality deteriorates. Also inside the steel sheet, Si and Mn-based oxides are formed in the grain boundaries and in the grains, microcracks after pickling, iron powder is peeled off after cold rolling, and the surface of the cold rolled material becomes a recess. Roughness and formability deteriorate. The coiling temperature is set to 400 ° C. or higher in order to suppress an increase in cold rolling load due to an increase in hot rolled sheet strength.

熱延後酸洗浴温度:10〜100℃未満、塩酸濃度:1〜20%
酸洗浴温度が10℃未満、塩酸濃度が1%未満の場合、熱延および巻取り時に生成したスケールの除去が不完全となり、鋼板表面性状は劣化しめっき外観不良が発生する。一方、酸洗浴温度が100℃以上の場合、或いは塩酸濃度が20%を超える場合、スケール除去後、過酸洗となり、地鉄-酸化物界面が荒れ、酸洗、冷間圧延後の表面品質が劣化し、最終製品である溶融亜鉛めっき鋼板において、鋼板側内部へ進展している亀裂と凹部により、プレス成形性が低下する。以上のことから熱延後酸洗浴温度:10〜100℃未満、塩酸濃度:1〜20%とする。なお、同様な効果を得られるのであれば、酸の種類は塩酸に限定するものではない。また、さらに表面性状を改善し平滑化するために酸洗に引き続きアルカリ処理工程を追加しても構わない。
After hot rolling pickling bath temperature: less than 10-100 ° C, hydrochloric acid concentration: 1-20%
When the pickling bath temperature is less than 10 ° C and the hydrochloric acid concentration is less than 1%, removal of the scale generated during hot rolling and winding is incomplete, and the surface properties of the steel sheet deteriorate and the plating appearance is poor. On the other hand, when the pickling bath temperature is 100 ° C or higher, or when the hydrochloric acid concentration exceeds 20%, the scale quality is removed, and then the pickling is over pickled, the base iron-oxide interface becomes rough, the surface quality after pickling and cold rolling. In the hot-dip galvanized steel sheet, which is the final product, press formability is reduced due to cracks and recesses that have progressed to the inside of the steel sheet. From the above, after hot rolling, pickling bath temperature: less than 10-100 ° C, hydrochloric acid concentration: 1-20%. Note that the type of acid is not limited to hydrochloric acid as long as similar effects can be obtained. Further, in order to further improve and smooth the surface properties, an alkali treatment step may be added subsequent to the pickling.

溶融亜鉛めっき処理、600℃以上の昇温過程から焼鈍温度を経て450℃までの冷却過程までの熱処理炉内水素濃度:2〜20%、露点:-60〜-10℃
めっき鋼板では、溶融亜鉛ポットに入る直前の鋼板表面の状態がめっき性や成形性に重要である。Si、Mn系酸化物は600℃以上の高温域で生成し易く、いったん600℃以上に加熱された後、亜鉛ポットに進入するまでの間に炉内水素濃度が2%未満あるいは露点が-10℃を超える条件下に鋼板がさらされるとSi、Mnが鋼板表層、粒界に濃化し、酸化が進行する。Si、Mn酸化物の生成によって結晶粒界強度は低下し、炉内ロールと接触すると酸化物を媒体として結晶粒がロールに付着、鋼板表層から剥離し、亀裂や凹部を生成する。このように、地鉄-酸化物界面が荒れ、ポット進入前の表面品質が劣化したまま(鋼板側内部へ進展している亀裂と凹部が存在したまま)で、鋼板が亜鉛浴中に浸漬して、鋼板上にめっき層が形成される。このような亜鉛めっき-鋼板界面付近に形成された亀裂と凹部により、絞り成形性が著しく低下する。
水素濃度は高ければかまわず、露点も低ければかまわないが、鋼板製造上のコストの観点から、水素濃度は20%以下、露点は-60℃以上とする。また、水素以外の炉内ガスは窒素とするが好ましい。
Hot dip galvanizing treatment, hydrogen concentration in heat treatment furnace from temperature rising process above 600 ° C to cooling process through annealing temperature to 450 ° C: 2-20%, dew point: -60-10 ° C
In a plated steel sheet, the state of the steel sheet surface immediately before entering the hot dip zinc pot is important for the plateability and formability. Si and Mn-based oxides are likely to be generated in the high temperature range of 600 ° C or higher. Once heated to 600 ° C or higher, the hydrogen concentration in the furnace is less than 2% or the dew point is -10 before entering the zinc pot. When the steel sheet is exposed to a temperature exceeding ℃, Si and Mn are concentrated in the steel sheet surface layer and grain boundaries, and oxidation proceeds. The grain boundary strength decreases due to the generation of Si and Mn oxides, and when they come into contact with the in-furnace roll, the crystal grains adhere to the roll using the oxide as a medium and peel from the surface layer of the steel sheet, generating cracks and recesses. In this way, the steel plate is immersed in the zinc bath while the surface iron-oxide interface is roughened and the surface quality before entering the pot is deteriorated (with cracks and recesses extending into the steel plate side inside). Thus, a plating layer is formed on the steel plate. Due to such cracks and recesses formed in the vicinity of the galvanized steel sheet interface, the drawability is remarkably lowered.
The hydrogen concentration may be high and the dew point may be low, but from the viewpoint of steel sheet manufacturing cost, the hydrogen concentration is 20% or less and the dew point is -60 ° C or more. Moreover, it is preferable that the furnace gas other than hydrogen is nitrogen.

焼鈍温度:760〜860℃の温度範囲で10〜500秒保持
焼鈍温度が760℃より低い場合、冷間圧延により結晶粒が展伸した組織に起因し、バンド状の不均一な組織となり、第2相が圧延方向に連続して存在すると鋼板の変形を阻害するため、板厚方向に亀裂が伝播しやすくなり、伸び、穴拡げ率および曲げ性など加工性が劣化する。また連続焼鈍時に十分なオーステナイト相が存在せず、最終製品にマルテンサイト相が得られず、強度不足をまねく。一方、焼鈍温度が860℃より高い場合、結晶粒径は過度に粗大化し穴拡げ率が低下し、またフェライト相の生成量も減少し伸びも低下する。以上より、760℃以上860℃以下の温度で焼鈍する。
滞留時間10秒未満では焼鈍中に未溶解炭化物が存在する可能性が高くなり、焼鈍中あるいは冷却開始温度におけるオーステナイト相の存在量が少なくなる可能性があり、最終的に鋼板の強度確保が困難となる。一方、長時間焼鈍により結晶粒は成長し粗大化する傾向にあり、500秒を超えると加熱焼鈍中のオーステナイト相の粒径が粗大化し、最終的に熱処理後に得られる鋼板の組織が粗大化し、穴拡げ率が低下する。加えて粗大粒に起因し、プレス成形後の肌荒れの原因ともなり好ましくない。また、冷却停止温度までの冷却過程中のフェライト相の生成量も減少するため伸びも低下する。したがって、より微細な組織を達成することと、焼鈍前の組織の影響を小さくし均一微細な組織を得ることとを両立するためには、焼鈍時間は10秒以上500秒以下とし、好ましくは20秒以上200秒以下とする。
Annealing temperature: When the holding annealing temperature is lower than 760 ° C for 10 to 500 seconds in the temperature range of 760 to 860 ° C, it becomes a band-like uneven structure due to the structure in which the crystal grains are expanded by cold rolling. If two phases are continuously present in the rolling direction, deformation of the steel sheet is hindered, so that cracks are likely to propagate in the thickness direction, and workability such as elongation, hole expansion rate, and bendability deteriorates. In addition, sufficient austenite phase does not exist during continuous annealing, and a martensite phase cannot be obtained in the final product, resulting in insufficient strength. On the other hand, when the annealing temperature is higher than 860 ° C., the crystal grain size becomes excessively coarse, the hole expansion rate decreases, the amount of ferrite phase formed decreases, and the elongation decreases. From the above, annealing is performed at a temperature of 760 ° C. or higher and 860 ° C. or lower.
If the residence time is less than 10 seconds, there is a high possibility that undissolved carbides will be present during annealing, and the austenite phase may be present at a lower temperature during annealing or at the cooling start temperature. It becomes. On the other hand, crystal grains tend to grow and become coarse due to long-term annealing, and when the time exceeds 500 seconds, the grain size of the austenite phase during heat annealing becomes coarse, and finally the structure of the steel sheet obtained after heat treatment becomes coarse, Hole expansion rate decreases. In addition, it is caused by coarse particles, which may cause rough skin after press molding, which is not preferable. In addition, since the amount of ferrite phase produced during the cooling process to the cooling stop temperature is also reduced, the elongation is also lowered. Therefore, in order to achieve both a finer structure and obtaining a uniform and fine structure by reducing the influence of the structure before annealing, the annealing time is 10 seconds or more and 500 seconds or less, preferably 20 More than 2 seconds and less than 200 seconds.

平均冷却速度:1〜30℃/秒
平均冷却速度はフェライト相とマルテンサイト相の存在比率を制御し、TS780MPa級以上を確保するのに重要な役割を担っている。すなわち、平均冷却速度が30℃/秒を超えると、過度にマルテンサイト相が生成するためTS780MPa級確保は容易であるが、成形性が劣化する。一方、平均冷却速度が1℃/秒より遅いとフェライト相が多くなりすぎ、TSの低下を招く。好ましい平均冷却速度は5〜20℃/秒である。
なお、本発明においての平均冷却速度は、焼鈍温度から500℃まで冷却する際の平均冷却速度とし、500℃以降の冷却について特に限定しなくてもよい。
また、この場合の冷却は、ガス冷却が好ましいが、放冷、ミスト冷却、ロール冷却、水冷などを用いて組み合わせて行うことが可能である。
冷却後、一般的な溶融亜鉛めっき工程を通過、あるいは加えて誘導加熱装置などにより再加熱を施し、場合によっては合金化処理工程を通過し、溶融亜鉛めっき鋼板を得る。
連続焼鈍後、最終的に得られた溶融亜鉛めっき鋼板に、形状矯正や表面粗度調整の目的から調質圧延を行ってもかまわないが、過度にスキンパス圧延をすると歪が導入され結晶粒が展伸され圧延加工組織となり、延性が低下するため、スキンパス圧延する場合の圧下率は0.1〜1.5%が好ましい。
Average cooling rate: 1-30 ° C / sec The average cooling rate controls the abundance ratio of ferrite phase and martensite phase, and plays an important role in securing TS780MPa class or higher. That is, when the average cooling rate exceeds 30 ° C./sec, a martensite phase is excessively generated, so that it is easy to secure the TS780 MPa class, but the moldability deteriorates. On the other hand, if the average cooling rate is slower than 1 ° C./second, the ferrite phase becomes too much and TS is lowered. A preferred average cooling rate is 5 to 20 ° C./second.
Note that the average cooling rate in the present invention is the average cooling rate when cooling from the annealing temperature to 500 ° C., and the cooling after 500 ° C. is not particularly limited.
The cooling in this case is preferably gas cooling, but can be performed in combination using cooling, mist cooling, roll cooling, water cooling, or the like.
After cooling, it passes through a general hot dip galvanizing process, or in addition, it is reheated by an induction heating device or the like, and in some cases, passes through an alloying process to obtain a hot dip galvanized steel sheet.
After continuous annealing, the hot-dip galvanized steel sheet finally obtained may be subjected to temper rolling for the purposes of shape correction and surface roughness adjustment. Since it is stretched to form a rolled structure and the ductility is lowered, the rolling reduction in skin pass rolling is preferably 0.1 to 1.5%.

表1に示す成分を有するスラブを用い、表2に示す各条件にて熱延、酸洗、冷延、連続焼鈍、およびめっき処理を行い板厚1.4mm、亜鉛皮膜付着量45g/m2の合金化溶融亜鉛めっき鋼板を製造した。尚、亜鉛めっき浴温度は460℃で行い、めっきの合金化は550℃で実施した。このようにして得られた溶融亜鉛めっき鋼板について、下記に示す材料試験を行い、材料特性を調査した。得られた結果を表3に示す。 Using a slab having the components shown in Table 1, hot rolling, pickling, cold rolling, continuous annealing, and plating treatment were performed under the conditions shown in Table 2, and the plate thickness was 1.4 mm and the zinc coating amount was 45 g / m 2 . An alloyed hot dip galvanized steel sheet was produced. The zinc plating bath temperature was 460 ° C., and the alloying of the plating was performed at 550 ° C. About the hot dip galvanized steel sheet obtained in this way, the material test shown below was done and the material characteristic was investigated. The results obtained are shown in Table 3.

Figure 2008156734
Figure 2008156734

Figure 2008156734
Figure 2008156734

(1)鋼板の組織
圧延方向に平行な板厚断面(深さ位置は板厚の1/4位置)を光学顕微鏡または走査型電子顕微鏡で観察することにより調査した。フェライト相結晶粒径は、JISZ0552に規定の方法に準拠して結晶粒度を測定し、平均結晶粒径に換算した。マルテンサイト相体積分率は倍率1000倍の断面組織写真を用いて、画像解析により任意に設定した100mm×100mm四方の正方形領域内に存在するマルテンサイト相の占有面積を求め、マルテンサイト相体積分率とした。
めっき層と鋼板の界面から鋼板側内部へ進展している亀裂と凹部の最大深さ、および亀裂と凹部以外の平滑部面積率の測定方法について図1に示す。図1に示すように、めっき層と地鉄界面境界における凹部と亀裂部の最大深さは、倍率が1000倍の断面SEM写真を用いて、めっき層と地鉄界面境界における凹部、亀裂部の開口端から鋼板内部に向かって進展している凹部の底、あるいは亀裂部先端までの距離の中でもっとも深い方の値を採用した。また、図1に示すように、平滑部の面積率は圧延方向に平行な板厚断面において、100μm×100μm領域内の任意10箇所の鋼板表層の断面SEM写真(倍率1000)を用いて、任意の断面線長100μmに対して、平滑部(凹部、および亀裂部の開口部を除いた平滑部分)の占める線長の総和の割合を求めた。尚、最大深さ、面積率ともに任意10ヶ所の断面の観察を実施し、それぞれ平均値を求めた。
(2)引張特性:圧延方向に対して直角方向を長手方向(引張方向)とするJISZ2201の5号試験片を用い、JISZ2241準拠した引張試験を行い評価した。なお、引張特性の評価基準はTS×El≧14000MPa・%以上を良好とした。
(3)穴拡げ率:日本鉄鋼連盟規格JFST1001に基づき実施した。初期直径d=10mmの穴を打抜き、60°の円錐ポンチを上昇させ穴を拡げた際に、亀裂が板厚貫通したところでポンチ上昇を止め、亀裂貫通後の打抜き穴径dを測定し、穴拡げ率(%)=((d- d)/ d)×100として算出した。N=3で試験し、単純平均値で求めた。なお、穴拡げ率の評価基準はTS×λ≧30000MPa・%以上を良好とした。
(4)絞り成形性:ポンチ径50mmφ、ポンチ肩半径5mmR、ダイス内径55mmφ、ダイ肩半径5mmRの円筒深絞り試験により評価した。潤滑はポリエチレンシートを用いた。直径の異なる複数の試料(円盤上の薄板)を用いて、円筒深絞り成形し、絞り比(ポンチ直径に対する試料の直径)が1.5の条件にて成形可能な場合、絞り成形性を良好とした。
(5)硬度:ビッカース硬度計を用い押し付け荷重100gの条件にて、圧延方向に平行な板厚断面の硬度を測定した。めっき層と地鉄界面を最表層とし、最表層から深さ25μmの位置の硬度(任意5点の平均)を板厚表層の硬度として測定した。また、最表層から深さ0.70mmの位置の硬度(任意5点の平均)を板厚中心の硬度として求めた。
(1) The thickness cross section (depth position is 1/4 position of the plate thickness) parallel to the direction of rolling of the steel plate was examined by observing with an optical microscope or a scanning electron microscope. For the ferrite phase crystal grain size, the crystal grain size was measured according to the method specified in JISZ0552 and converted to an average crystal grain size. The martensite phase volume fraction is obtained by obtaining the area occupied by the martensite phase in a 100 mm x 100 mm square area arbitrarily set by image analysis using a cross-sectional structure photograph with a magnification of 1000 times. Rate.
FIG. 1 shows a method of measuring the maximum depth of cracks and recesses extending from the interface between the plating layer and the steel plate to the inside of the steel plate and the area ratio of the smooth portion other than the cracks and recesses. As shown in Fig. 1, the maximum depths of the recesses and cracks at the interface between the plating layer and the ground iron interface are as follows. The deepest value was adopted in the distance from the open end to the bottom of the recess that progressed toward the inside of the steel plate or the tip of the crack. In addition, as shown in FIG. 1, the area ratio of the smooth part is arbitrary using cross-sectional SEM photographs (1000 magnifications) of the surface layer of any 10 steel plates in the 100 μm × 100 μm region in the thickness cross section parallel to the rolling direction. The ratio of the total line length occupied by the smooth portion (smooth portion excluding the concave portion and the opening portion of the crack portion) was obtained with respect to the cross-sectional line length of 100 μm. In addition, the maximum depth and the area ratio were observed at 10 arbitrary cross-sections, and the average value was obtained for each.
(2) Tensile properties: Using JISZ2201 No. 5 test piece with the direction perpendicular to the rolling direction as the longitudinal direction (tensile direction), a tensile test based on JISZ2241 was conducted and evaluated. The evaluation standard for tensile properties was TS × El ≧ 14000 MPa ·% or higher.
(3) Hole expansion rate: Implemented based on the Japan Iron and Steel Federation Standard JFST1001. When a hole with an initial diameter of d 0 = 10 mm was punched and the 60 ° conical punch was raised to widen the hole, the punch was stopped when the crack penetrated the plate thickness, and the punched hole diameter d after crack penetration was measured. The hole expansion rate (%) = ((d−d 0 ) / d 0 ) × 100. Tested at N = 3 and determined by simple average. The evaluation standard for the hole expansion rate was TS × λ ≧ 30000 MPa ·% or more.
(4) Drawability: Evaluated by a cylindrical deep drawing test with a punch diameter of 50 mmφ, a punch shoulder radius of 5 mmR, a die inner diameter of 55 mmφ, and a die shoulder radius of 5 mmR. For lubrication, a polyethylene sheet was used. When multiple samples with different diameters (thin plates on a disk) are used to perform cylindrical deep drawing and the drawing ratio (diameter of the sample relative to the punch diameter) is 1.5, the drawability is improved. .
(5) Hardness: The hardness of the plate thickness section parallel to the rolling direction was measured using a Vickers hardness tester under the condition of a pressing load of 100 g. The plating layer-base iron interface was the outermost layer, and the hardness (average of arbitrary 5 points) at a depth of 25 μm from the outermost layer was measured as the hardness of the plate thickness surface layer. Further, the hardness (average of arbitrary 5 points) at a depth of 0.70 mm from the outermost layer was determined as the hardness at the center of the plate thickness.

Figure 2008156734
Figure 2008156734

表3より、本発明例では、絞り比1.5を満足し、さらに加えてTS×El≧14000MPa・%以上、TS×λ≧30000MPa・%のすべてを同時に満足し、成形性、特に絞り成形性に優れる高強度溶融亜鉛めっき鋼板が得られていることがわかる。
一方、熱延スラブ加熱条件が本発明範囲外であるNo7は、平滑部面積が小さく(亀裂、凹部の面積率が多く)、絞り成形性が劣っている。
熱延巻取り温度、酸洗条件、水素濃度、露点条件のいずれかが本発明範囲外であるNo8、9、10、11、12は、亀裂、凹部の最大深さが長く、平滑部面積が小さいため、絞り成形性が劣っている。
焼鈍温度が高いNo13は、焼鈍中のオーステナイト分率が多く、最終的に得られるマルテンサイト量が所定量を超過しておりTS×El値が低く、成形性が劣る。No14は焼鈍温度での保持時間が過度に長く、結晶粒径が粗大化しすぎるため伸び、伸びフランジ性に劣る。
冷却速度が速いNo15はフェライトの量が少なくTSが高くなりすぎ、Elが低く延性に劣る。
C成分が本発明範囲外であるNo18はマルテンサイト相が過度に硬質化し、伸びフランジ性、絞り成形性も劣っている。
Si成分が本発明範囲外であるNo19は亀裂、凹部の亀裂深さが長く、平滑部面積が小さいため、伸びフランジ性、絞り成形性が劣っている。Mn成分が本発明範囲外であるNo20はマルテンサイト相体積分率が多く範囲外となり高TS低ElとなりTS×El値が低く成形性が劣っている。
From Table 3, the present invention example satisfies the drawing ratio of 1.5, and additionally satisfies all of TS × El ≧ 14000MPa ·% and TS × λ ≧ 30000MPa ·% at the same time. It can be seen that an excellent high-strength hot-dip galvanized steel sheet is obtained.
On the other hand, No. 7 whose hot-rolled slab heating condition is outside the scope of the present invention has a small smooth part area (a large area ratio of cracks and recesses) and inferior drawability.
No8, 9, 10, 11, 12 where any of hot rolling coiling temperature, pickling condition, hydrogen concentration, dew point condition is outside the scope of the present invention has a long maximum depth of cracks and recesses, and a smooth part area Since it is small, the drawability is inferior.
No13 with a high annealing temperature has a high austenite fraction during annealing, the amount of martensite finally obtained exceeds a predetermined amount, the TS × El value is low, and the formability is poor. No14 has an excessively long holding time at the annealing temperature, and the crystal grain size becomes too coarse, so that it stretches and is inferior in stretch flangeability.
No15, which has a fast cooling rate, has a small amount of ferrite, a TS that is too high, a low El, and a poor ductility.
No18, whose C component is outside the scope of the present invention, has an excessively hard martensite phase, and has poor stretch flangeability and drawability.
No19, whose Si component is outside the scope of the present invention, has a long crack depth of cracks and recesses and a small smooth part area, and therefore has poor stretch flangeability and drawability. No20, whose Mn component is outside the range of the present invention, has a large martensite phase volume fraction and is outside the range, resulting in high TS, low El, low TS × El value, and poor moldability.

本発明の高強度冷延鋼板は、自動車部品以外にも、建築および家電分野など厳しい寸法精度、加工性が必要とされる分野に対しても好適に用いられる。 The high-strength cold-rolled steel sheet of the present invention is suitably used not only for automobile parts but also for fields that require strict dimensional accuracy and workability, such as construction and home appliance fields.

めっき層と鋼板の界面から鋼板側内部へ進展している亀裂と凹部の最大深さ、および亀裂と凹部以外の平滑部面積率の測定方法を示す図である。(実施例1)It is a figure which shows the measuring method of the smooth part area ratio other than the crack and the maximum depth of a crack and the recessed part which have propagated from the interface of a plating layer and a steel plate side inside. (Example 1)

Claims (4)

mass%で、C:0.03〜0.12%、Si:0.01〜1.0%、Mn:1.5〜2.5%、P:0.001〜0.05%、S:0.0001〜0.005%、Al:0.005〜0.15%、N:0.001〜0.01%、Cr:0.01〜0.5%、Ti:0.005〜0.05%、Nb:0.005〜0.05%、V:0.005〜0.5%、B:0.0003〜0.0030%を含有し、残部がFe及び不可避不純物からなり、
平均結晶粒径10μm以下のフェライト相と体積分率30〜90%のマルテンサイト相を含む組織を有し、
板厚表層硬度の板厚中心硬度に対する比が0.6〜1であり、めっき層と鋼板の界面から鋼板側内部へ進展している亀裂および凹部の最大深さが0〜20μmであり、さらに、前記亀裂および前記凹部以外の平滑部面積率が60%〜100%であることを特徴とする高強度溶融亜鉛めっき鋼板。
In mass%, C: 0.03-0.12%, Si: 0.01-1.0%, Mn: 1.5-2.5%, P: 0.001-0.05%, S: 0.0001-0.005%, Al: 0.005-0.15%, N: 0.001- Contains 0.01%, Cr: 0.01-0.5%, Ti: 0.005-0.05%, Nb: 0.005-0.05%, V: 0.005-0.5%, B: 0.0003-0.0030%, the balance consists of Fe and inevitable impurities,
It has a structure containing a ferrite phase with an average crystal grain size of 10 μm or less and a martensite phase with a volume fraction of 30 to 90%,
The ratio of the sheet thickness surface layer hardness to the sheet thickness center hardness is 0.6 to 1, the maximum depth of cracks and recesses extending from the interface between the plating layer and the steel sheet to the inside of the steel sheet is 0 to 20 μm, and A high-strength hot-dip galvanized steel sheet characterized by having an area ratio of smooth parts other than cracks and recesses of 60% to 100%.
さらに、mass%で、Mo:0.01〜0.5%、Cu:0.01〜0.5%、Ni:0.01〜0.5%のうちの1種以上を含有することを特徴とする請求項1に記載の高強度溶融亜鉛めっき鋼板。   The high-strength molten zinc according to claim 1, further comprising at least one of Mo: 0.01 to 0.5%, Cu: 0.01 to 0.5%, and Ni: 0.01 to 0.5% in mass%. Plated steel sheet. 請求項1または2に記載の成分からなる鋼に、熱間圧延、酸洗および冷間圧延を行い、溶融亜鉛めっき処理を経て溶融亜鉛めっき鋼板を製造するに際し、
前記熱間圧延では、スラブ加熱温度を1150〜1300℃、仕上げ圧延温度を850〜950℃、巻取り温度を400〜600℃とし、
前記酸洗では、浴温度を10〜100℃未満、塩酸濃度を1〜20%とし、
前記溶融亜鉛めっき処理では、600℃以上の昇温過程から焼鈍温度を経て450℃までの冷却過程までの熱処理炉内雰囲気を水素濃度2〜20%かつ露点-60〜-10℃とし、760〜860℃の焼鈍温度で10〜500秒保持した後、1〜30℃/秒の平均冷却速度で冷却することを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
To the steel comprising the component according to claim 1 or 2, hot rolling, pickling and cold rolling, and when producing a hot dip galvanized steel sheet through hot dip galvanizing treatment,
In the hot rolling, the slab heating temperature is 1150-1300 ° C, the finish rolling temperature is 850-950 ° C, the winding temperature is 400-600 ° C,
In the pickling, the bath temperature is less than 10-100 ° C., the hydrochloric acid concentration is 1-20%,
In the hot dip galvanizing treatment, the atmosphere in the heat treatment furnace from the temperature rising process of 600 ° C. or higher to the cooling process through the annealing temperature to 450 ° C. is set to a hydrogen concentration of 2 to 20% and a dew point of −60 to −10 ° C., 760 to A method for producing a high-strength hot-dip galvanized steel sheet characterized by holding at an annealing temperature of 860 ° C for 10 to 500 seconds and then cooling at an average cooling rate of 1 to 30 ° C / second.
前記溶融亜鉛めっき処理後に、さらに、合金化処理することを特徴とする請求項3に記載の高強度溶融亜鉛めっき鋼板の製造方法。   The method for producing a high-strength hot-dip galvanized steel sheet according to claim 3, further comprising an alloying treatment after the hot-dip galvanizing treatment.
JP2006349488A 2006-12-26 2006-12-26 Method for producing high-strength hot-dip galvanized steel sheet Active JP5082432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006349488A JP5082432B2 (en) 2006-12-26 2006-12-26 Method for producing high-strength hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006349488A JP5082432B2 (en) 2006-12-26 2006-12-26 Method for producing high-strength hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2008156734A true JP2008156734A (en) 2008-07-10
JP5082432B2 JP5082432B2 (en) 2012-11-28

Family

ID=39657970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006349488A Active JP5082432B2 (en) 2006-12-26 2006-12-26 Method for producing high-strength hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP5082432B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222674A (en) * 2009-03-25 2010-10-07 Sumitomo Metal Ind Ltd Hot dip galvannealed steel sheet and method for producing the same
JP2010255108A (en) * 2009-03-31 2010-11-11 Jfe Steel Corp High-strength hot-dip galvanized steel plate and method for producing the same
JP2010255109A (en) * 2009-03-31 2010-11-11 Jfe Steel Corp High strength hot dip galvanized steel sheet and method for producing the same
JP2010255107A (en) * 2009-03-31 2010-11-11 Jfe Steel Corp High-strength hot-dip galvanized steel plate and method for producing the same
JP2010255110A (en) * 2009-03-31 2010-11-11 Jfe Steel Corp High-strength hot-dip galvanized steel plate and method for producing the same
JP2010255106A (en) * 2009-03-31 2010-11-11 Jfe Steel Corp High-strength hot dip galvanized steel plate and method for producing the same
JP2010255111A (en) * 2009-03-31 2010-11-11 Jfe Steel Corp High-strength hot-dip galvanized steel plate and method for producing the same
JP2011038155A (en) * 2009-08-12 2011-02-24 Jfe Steel Corp High tension steel for automobile undercarriage component excellent in formability and torsional fatigue resistance, and manufacturing method therefor
JP2011111670A (en) * 2009-11-30 2011-06-09 Nippon Steel Corp HIGH STRENGTH STEEL SHEET EXCELLENT IN DUCTILITY AND BENDABILITY AND HAVING MAXIMUM TENSILE STRENGTH OF >=900 MPa, METHOD FOR PRODUCING HIGH STRENGTH COLD ROLLED STEEL SHEET, AND METHOD FOR PRODUCING HIGH STRENGTH GALVANIZED STEEL SHEET
JP2011132602A (en) * 2009-11-30 2011-07-07 Nippon Steel Corp High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet
WO2011132763A1 (en) * 2010-04-22 2011-10-27 Jfeスチール株式会社 High strength hot-dip galvanized steel sheet with superior workability and production method therefor
EP2407572A1 (en) * 2009-03-31 2012-01-18 JFE Steel Corporation High-strength hot-dip galvanized steel plate and method for producing same
EP2415896A1 (en) * 2009-03-31 2012-02-08 JFE Steel Corporation High-strength hot-dip galvanized steel plate and method for producing same
EP2426230A1 (en) * 2009-04-28 2012-03-07 JFE Steel Corporation High-strength hot-dip zinc-coated steel sheet having excellent workability, weldability and fatigue properties, and process for production thereof
WO2012043776A1 (en) * 2010-09-29 2012-04-05 Jfeスチール株式会社 High-strength steel sheet and manufacturing method therefor
KR101278004B1 (en) 2011-06-28 2013-06-27 현대제철 주식회사 High strength steel plate and method of manufacturing the steel plate
KR101320222B1 (en) 2013-04-30 2013-10-21 현대제철 주식회사 High strength steel plate and method of manufacturing the steel plate
WO2013180180A1 (en) 2012-05-31 2013-12-05 株式会社神戸製鋼所 High strength cold-rolled steel plate and manufacturing method therefor
JP2014005514A (en) * 2012-06-26 2014-01-16 Jfe Steel Corp High-strength hot-dip galvanized steel sheet having excellent fatigue characteristic and ductility, and small in-plane anisotropy of ductility, and manufacturing method of the same
US8888933B2 (en) 2009-05-27 2014-11-18 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet, hot-dipped steel sheet, and alloy hot-dipped steel sheet that have excellent fatigue, elongation, and collision characteristics, and manufacturing method for said steel sheets
US20140370329A1 (en) * 2012-01-13 2014-12-18 Nippon Steel Sumitomo Metal Corporation Cold rolled steel sheet and manufacturing method thereof
JP2014237887A (en) * 2013-05-08 2014-12-18 株式会社神戸製鋼所 HOT DIP GALVANIZED STEEL SHEET OR HOT DIP GALVANNEALED STEEL SHEET HAVING TENSILE STRENGTH OF 1,180 MPa OR HIGHER AND EXCELLENT IN BALANCE OF STRENGTH-BENDABILITY
US20150050519A1 (en) * 2012-01-13 2015-02-19 Nippon Steel & Sumitomo Metal Corporation Hot stamped steel and method for producing the same
JP5988000B1 (en) * 2015-03-27 2016-09-07 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
WO2016147550A1 (en) * 2015-03-13 2016-09-22 Jfeスチール株式会社 High-strength cold-rolled steel sheet and method for manufacturing same
WO2016157257A1 (en) * 2015-03-27 2016-10-06 Jfeスチール株式会社 High-strength steel sheet and production method therefor
US9534270B2 (en) 2010-09-30 2017-01-03 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
WO2017169870A1 (en) * 2016-03-31 2017-10-05 Jfeスチール株式会社 Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, heat-treated plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method
WO2018199328A1 (en) * 2017-04-28 2018-11-01 新日鐵住金株式会社 High strength steel sheet and method for manufacturing same
US20190010596A1 (en) * 2013-03-26 2019-01-10 Nisshin Steel Co., Ltd. High-strength plated steel plate for welded structural member, and method for producing the same
EP2432910B1 (en) 2009-04-23 2019-02-13 ThyssenKrupp Steel Europe AG Method for hot-dip coating a flat steel product containing 2-35 wt% mn and flat steel product
WO2019092526A1 (en) 2017-11-08 2019-05-16 Arcelormittal A hot-dip coated steel sheet
WO2019092467A1 (en) 2017-11-08 2019-05-16 Arcelormittal A galvannealed steel sheet
CN112840047A (en) * 2019-02-06 2021-05-25 日本制铁株式会社 Hot-dip galvanized steel sheet and method for producing same
CN114032457A (en) * 2021-10-18 2022-02-11 首钢集团有限公司 Continuous hot-dip galvanized high-strength steel plate and manufacturing method thereof
JP7524354B2 (en) 2020-05-27 2024-07-29 宝山鋼鉄股▲分▼有限公司 Zinc electroplated ultra-high strength dual-phase steel with delayed fracture resistance and method of manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277902A (en) * 2002-03-19 2003-10-02 Jfe Steel Kk Method for producing high strength galvanized steel sheet excellent in plated adhesion
JP2005097744A (en) * 1998-11-20 2005-04-14 Jfe Steel Kk High strength hot-dip galvanized steel sheet and method for producing high strength alloyed hot-dip galvanized steel sheet
JP2005220430A (en) * 2004-02-09 2005-08-18 Jfe Steel Kk High strength hot dip galvanized steel sheet having excellent surface quality
JP2006070328A (en) * 2004-09-02 2006-03-16 Sumitomo Metal Ind Ltd High-strength thin steel sheet and manufacturing method therefor
JP2006083403A (en) * 2004-09-14 2006-03-30 Jfe Steel Kk High-strength cold rolled steel sheet with excellent ductility and chemical conversion treatability, and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097744A (en) * 1998-11-20 2005-04-14 Jfe Steel Kk High strength hot-dip galvanized steel sheet and method for producing high strength alloyed hot-dip galvanized steel sheet
JP2003277902A (en) * 2002-03-19 2003-10-02 Jfe Steel Kk Method for producing high strength galvanized steel sheet excellent in plated adhesion
JP2005220430A (en) * 2004-02-09 2005-08-18 Jfe Steel Kk High strength hot dip galvanized steel sheet having excellent surface quality
JP2006070328A (en) * 2004-09-02 2006-03-16 Sumitomo Metal Ind Ltd High-strength thin steel sheet and manufacturing method therefor
JP2006083403A (en) * 2004-09-14 2006-03-30 Jfe Steel Kk High-strength cold rolled steel sheet with excellent ductility and chemical conversion treatability, and its manufacturing method

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222674A (en) * 2009-03-25 2010-10-07 Sumitomo Metal Ind Ltd Hot dip galvannealed steel sheet and method for producing the same
US9315887B2 (en) 2009-03-31 2016-04-19 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing same
JP2010255108A (en) * 2009-03-31 2010-11-11 Jfe Steel Corp High-strength hot-dip galvanized steel plate and method for producing the same
EP2415896A4 (en) * 2009-03-31 2014-08-06 Jfe Steel Corp High-strength hot-dip galvanized steel plate and method for producing same
EP2415896A1 (en) * 2009-03-31 2012-02-08 JFE Steel Corporation High-strength hot-dip galvanized steel plate and method for producing same
EP2407572A1 (en) * 2009-03-31 2012-01-18 JFE Steel Corporation High-strength hot-dip galvanized steel plate and method for producing same
JP2010255111A (en) * 2009-03-31 2010-11-11 Jfe Steel Corp High-strength hot-dip galvanized steel plate and method for producing the same
JP2010255109A (en) * 2009-03-31 2010-11-11 Jfe Steel Corp High strength hot dip galvanized steel sheet and method for producing the same
US9309586B2 (en) 2009-03-31 2016-04-12 Jfe Steel Corporation High-strength galvanized steel sheet and method for manufacturing the same
EP2407572A4 (en) * 2009-03-31 2014-07-23 Jfe Steel Corp High-strength hot-dip galvanized steel plate and method for producing same
JP2010255110A (en) * 2009-03-31 2010-11-11 Jfe Steel Corp High-strength hot-dip galvanized steel plate and method for producing the same
JP2010255107A (en) * 2009-03-31 2010-11-11 Jfe Steel Corp High-strength hot-dip galvanized steel plate and method for producing the same
JP2010255106A (en) * 2009-03-31 2010-11-11 Jfe Steel Corp High-strength hot dip galvanized steel plate and method for producing the same
EP2432910B2 (en) 2009-04-23 2022-08-03 ThyssenKrupp Steel Europe AG Method for hot-dip coating a flat steel product containing 2-35 wt% mn and flat steel product
EP2432910B1 (en) 2009-04-23 2019-02-13 ThyssenKrupp Steel Europe AG Method for hot-dip coating a flat steel product containing 2-35 wt% mn and flat steel product
EP2426230A1 (en) * 2009-04-28 2012-03-07 JFE Steel Corporation High-strength hot-dip zinc-coated steel sheet having excellent workability, weldability and fatigue properties, and process for production thereof
EP2426230A4 (en) * 2009-04-28 2013-05-29 Jfe Steel Corp High-strength hot-dip zinc-coated steel sheet having excellent workability, weldability and fatigue properties, and process for production thereof
US8828557B2 (en) 2009-04-28 2014-09-09 Jfe Steel Corporation High strength galvanized steel sheet having excellent formability, weldability, and fatigue properties and method for manufacturing the same
US8888933B2 (en) 2009-05-27 2014-11-18 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet, hot-dipped steel sheet, and alloy hot-dipped steel sheet that have excellent fatigue, elongation, and collision characteristics, and manufacturing method for said steel sheets
JP2011038155A (en) * 2009-08-12 2011-02-24 Jfe Steel Corp High tension steel for automobile undercarriage component excellent in formability and torsional fatigue resistance, and manufacturing method therefor
JP2011132602A (en) * 2009-11-30 2011-07-07 Nippon Steel Corp High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet
JP2011111670A (en) * 2009-11-30 2011-06-09 Nippon Steel Corp HIGH STRENGTH STEEL SHEET EXCELLENT IN DUCTILITY AND BENDABILITY AND HAVING MAXIMUM TENSILE STRENGTH OF >=900 MPa, METHOD FOR PRODUCING HIGH STRENGTH COLD ROLLED STEEL SHEET, AND METHOD FOR PRODUCING HIGH STRENGTH GALVANIZED STEEL SHEET
US20130032253A1 (en) * 2010-04-22 2013-02-07 Jfe Steel Corporation High-strength galvanized steel sheet having excellent formability and method for manufacturing the same
CN102859022A (en) * 2010-04-22 2013-01-02 杰富意钢铁株式会社 High strength hot-dip galvanized steel sheet with superior workability and production method therefor
JP2011225955A (en) * 2010-04-22 2011-11-10 Jfe Steel Corp High strength hot-dip galvanized steel sheet excellent in workability, and method for manufacturing the same
EP2562286A4 (en) * 2010-04-22 2017-05-03 JFE Steel Corporation High strength hot-dip galvanized steel sheet with superior workability and production method therefor
KR101287288B1 (en) 2010-04-22 2013-07-17 제이에프이 스틸 가부시키가이샤 High strength hot-dip galvanized steel sheet with superior workability and production method therefor
EP2562286A1 (en) * 2010-04-22 2013-02-27 JFE Steel Corporation High strength hot-dip galvanized steel sheet with superior workability and production method therefor
WO2011132763A1 (en) * 2010-04-22 2011-10-27 Jfeスチール株式会社 High strength hot-dip galvanized steel sheet with superior workability and production method therefor
US9598743B2 (en) 2010-09-29 2017-03-21 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
WO2012043776A1 (en) * 2010-09-29 2012-04-05 Jfeスチール株式会社 High-strength steel sheet and manufacturing method therefor
US9534270B2 (en) 2010-09-30 2017-01-03 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
KR101278004B1 (en) 2011-06-28 2013-06-27 현대제철 주식회사 High strength steel plate and method of manufacturing the steel plate
US9605329B2 (en) * 2012-01-13 2017-03-28 Nippon Steel & Sumitomo Metal Corporation Cold rolled steel sheet and manufacturing method thereof
US9725782B2 (en) 2012-01-13 2017-08-08 Nippon Steel & Sumitomo Metal Corporation Hot stamped steel and method for producing the same
US20150050519A1 (en) * 2012-01-13 2015-02-19 Nippon Steel & Sumitomo Metal Corporation Hot stamped steel and method for producing the same
US20140370329A1 (en) * 2012-01-13 2014-12-18 Nippon Steel Sumitomo Metal Corporation Cold rolled steel sheet and manufacturing method thereof
WO2013180180A1 (en) 2012-05-31 2013-12-05 株式会社神戸製鋼所 High strength cold-rolled steel plate and manufacturing method therefor
CN104364403A (en) * 2012-05-31 2015-02-18 株式会社神户制钢所 High strength cold-rolled steel plate and manufacturing method therefor
EP3187614A1 (en) 2012-05-31 2017-07-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength cold-rolled steel sheet and manufacturing method therefor
US9708697B2 (en) 2012-05-31 2017-07-18 Kobe Steel, Ltd. High strength cold-rolled steel sheet and manufacturing method therefor
JP2014005514A (en) * 2012-06-26 2014-01-16 Jfe Steel Corp High-strength hot-dip galvanized steel sheet having excellent fatigue characteristic and ductility, and small in-plane anisotropy of ductility, and manufacturing method of the same
US20190010596A1 (en) * 2013-03-26 2019-01-10 Nisshin Steel Co., Ltd. High-strength plated steel plate for welded structural member, and method for producing the same
KR101320222B1 (en) 2013-04-30 2013-10-21 현대제철 주식회사 High strength steel plate and method of manufacturing the steel plate
JP2014237887A (en) * 2013-05-08 2014-12-18 株式会社神戸製鋼所 HOT DIP GALVANIZED STEEL SHEET OR HOT DIP GALVANNEALED STEEL SHEET HAVING TENSILE STRENGTH OF 1,180 MPa OR HIGHER AND EXCELLENT IN BALANCE OF STRENGTH-BENDABILITY
JP6037087B1 (en) * 2015-03-13 2016-11-30 Jfeスチール株式会社 High-strength cold-rolled steel sheet and manufacturing method thereof
US10655201B2 (en) 2015-03-13 2020-05-19 Jfe Steel Corporation High-strength cold-rolled steel sheet and method for manufacturing the same
CN107406939A (en) * 2015-03-13 2017-11-28 杰富意钢铁株式会社 High strength cold rolled steel plate and its manufacture method
EP3269836A4 (en) * 2015-03-13 2018-01-17 JFE Steel Corporation High-strength cold-rolled steel sheet and method for manufacturing same
WO2016147550A1 (en) * 2015-03-13 2016-09-22 Jfeスチール株式会社 High-strength cold-rolled steel sheet and method for manufacturing same
JP5988000B1 (en) * 2015-03-27 2016-09-07 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
US11001906B2 (en) 2015-03-27 2021-05-11 Jfe Steel Corporation High-strength steel sheet and production method therefor
WO2016157257A1 (en) * 2015-03-27 2016-10-06 Jfeスチール株式会社 High-strength steel sheet and production method therefor
WO2017169870A1 (en) * 2016-03-31 2017-10-05 Jfeスチール株式会社 Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, heat-treated plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method
JPWO2017169870A1 (en) * 2016-03-31 2018-04-05 Jfeスチール株式会社 Thin steel plate and plated steel plate, method for producing thin steel plate, and method for producing plated steel plate
JP2018031077A (en) * 2016-03-31 2018-03-01 Jfeスチール株式会社 Hot rolled steel plate production method, cold rolled full hard steel plate production method and heat-treated plate production method
JP6292353B2 (en) * 2016-03-31 2018-03-14 Jfeスチール株式会社 Thin steel plate and plated steel plate, method for producing thin steel plate, and method for producing plated steel plate
CN108884538A (en) * 2016-03-31 2018-11-23 杰富意钢铁株式会社 The manufacturing method of sheet metal and coated steel sheet and hot rolled steel plate, manufacturing method, the manufacturing method of heat treatment plate, the manufacturing method of the manufacturing method of sheet metal and coated steel sheet of cold rolling is fully hard steel plate
US10920294B2 (en) 2016-03-31 2021-02-16 Jfe Steel Corporation Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing full-hard cold-rolled steel sheet, method for producing heat-treated sheet, method for producing steel sheet, and method for producing coated steel sheet
WO2018199328A1 (en) * 2017-04-28 2018-11-01 新日鐵住金株式会社 High strength steel sheet and method for manufacturing same
JP6477988B1 (en) * 2017-04-28 2019-03-06 新日鐵住金株式会社 High strength steel plate and manufacturing method thereof
WO2019092527A1 (en) 2017-11-08 2019-05-16 Arcelormittal A galvannealed steel sheet
WO2019092468A1 (en) 2017-11-08 2019-05-16 Arcelormittal A hot-dip coated steel sheet
WO2019092467A1 (en) 2017-11-08 2019-05-16 Arcelormittal A galvannealed steel sheet
WO2019092526A1 (en) 2017-11-08 2019-05-16 Arcelormittal A hot-dip coated steel sheet
US11590734B2 (en) 2017-11-08 2023-02-28 Arcelormittal Hot-dip coated steel sheet
US11884987B2 (en) 2017-11-08 2024-01-30 Arcelormittal Galvannealed steel sheet
US12011902B2 (en) 2017-11-08 2024-06-18 Arcelormittal Hot-dip coated steel sheet
CN112840047A (en) * 2019-02-06 2021-05-25 日本制铁株式会社 Hot-dip galvanized steel sheet and method for producing same
JP7524354B2 (en) 2020-05-27 2024-07-29 宝山鋼鉄股▲分▼有限公司 Zinc electroplated ultra-high strength dual-phase steel with delayed fracture resistance and method of manufacturing same
CN114032457A (en) * 2021-10-18 2022-02-11 首钢集团有限公司 Continuous hot-dip galvanized high-strength steel plate and manufacturing method thereof

Also Published As

Publication number Publication date
JP5082432B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5082432B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP6428970B1 (en) Hot-pressed member and manufacturing method thereof
JP5194878B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same
JP6844627B2 (en) Steel plate and its manufacturing method
JP6536294B2 (en) Hot dip galvanized steel sheet, alloyed hot dip galvanized steel sheet, and method for producing them
US8840834B2 (en) High-strength steel sheet and method for manufacturing the same
JP4924730B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability, weldability and fatigue characteristics and method for producing the same
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
JP5239562B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5126399B2 (en) High-strength cold-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
JP2007302918A (en) High strength steel sheet with excellent bore expandability and formability, and its manufacturing method
JPWO2009119751A1 (en) High-strength cold-rolled steel sheet excellent in formability and weldability, high-strength galvanized steel sheet, high-strength galvannealed steel sheet, and methods for producing them
JP4501699B2 (en) High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JP5167865B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same
JP5315954B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JPWO2019151017A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and methods for producing them
KR102177591B1 (en) High-strength steel sheet and its manufacturing method
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
CN108456832B (en) Ultra-high strength cold rolled steel sheet having excellent bending workability and method for manufacturing same
CN111868282A (en) Steel plate
JP4306497B2 (en) High-strength cold-rolled steel sheet with excellent workability and post-coating corrosion resistance and method for producing the same
JPH10168544A (en) Cold rolled steel sheet excellent in blanking property and its production
JP5434375B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5375001B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP2005206920A (en) High-tensile-strength hot-dip galvanized hot-rolled steel sheet with low yield ratio and composite structure superior in extension flange, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R150 Certificate of patent or registration of utility model

Ref document number: 5082432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250