[go: nahoru, domu]

JP2018077134A - Thermistor drive circuit - Google Patents

Thermistor drive circuit Download PDF

Info

Publication number
JP2018077134A
JP2018077134A JP2016218944A JP2016218944A JP2018077134A JP 2018077134 A JP2018077134 A JP 2018077134A JP 2016218944 A JP2016218944 A JP 2016218944A JP 2016218944 A JP2016218944 A JP 2016218944A JP 2018077134 A JP2018077134 A JP 2018077134A
Authority
JP
Japan
Prior art keywords
thermistor
resistors
voltage
drive circuit
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016218944A
Other languages
Japanese (ja)
Other versions
JP6583216B2 (en
Inventor
昇吾 彦坂
Shogo Hikosaka
昇吾 彦坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016218944A priority Critical patent/JP6583216B2/en
Priority to PCT/JP2017/030925 priority patent/WO2018087991A1/en
Publication of JP2018077134A publication Critical patent/JP2018077134A/en
Priority to US16/387,649 priority patent/US20190242759A1/en
Application granted granted Critical
Publication of JP6583216B2 publication Critical patent/JP6583216B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/24Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
    • G01K7/25Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit for modifying the output characteristic, e.g. linearising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/14Arrangements for modifying the output characteristic, e.g. linearising
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0035Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using continuously variable impedance elements
    • H03G1/0041Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using continuously variable impedance elements using thermistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/18Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0088Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using discontinuously variable devices, e.g. switch-operated
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/18Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging
    • H03M1/181Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging in feedback mode, i.e. by determining the range to be selected from one or more previous digital output values

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermistor drive circuit capable of controlling fluctuation of a power source voltage which occurs when switching a driving resistance.SOLUTION: The thermistor drive circuit is configured to selectively connect current correcting resistances Rd1 and Rd2 between the power source and the ground. When switching the connection state of driving resistances R1_LT, R1_RT, R1_HT, a control unit 4 also switches the connection state of the current correcting resistances Rd1 and Rd2 to reduce the resistance value so as to increase the resistance value of the thermistor TH depending on the terminal voltage. With this, the fluctuation of the power source current before and after connection switching of the plural driving resistances is reduced.SELECTED DRAWING: Figure 1

Description

本発明は、サーミスタに電源電流を流して駆動する駆動回路に関する。   The present invention relates to a drive circuit that is driven by supplying a power source current to a thermistor.

サーミスタにより温度を検出する際には、温度特性が低い駆動用の抵抗をサーミスタに直列に接続し、電源電圧を分圧した出力を得ている。一般にサーミスタは、検出している温度に応じて端子電圧が指数関数的に変化するため直線性が悪く、出力電圧の範囲も広くなる。そこで、例えば特許文献1,2に開示されているように、温度に応じて駆動用抵抗を切替えることで直線性を改善したり、出力電圧範囲を制限する構成を採用するものがある。   When the temperature is detected by the thermistor, a driving resistor having a low temperature characteristic is connected in series to the thermistor to obtain an output obtained by dividing the power supply voltage. In general, the thermistor has a poor linearity because the terminal voltage changes exponentially according to the detected temperature, and the output voltage range is wide. Therefore, for example, as disclosed in Patent Documents 1 and 2, there are some that adopt a configuration in which linearity is improved by switching a driving resistor in accordance with temperature or an output voltage range is limited.

特開平7−272155号公報JP 7-272155 A 特許第5045259号公報Japanese Patent No. 5045259

しかしながら、上記のように駆動用抵抗を切替えると電源電流量が変化するため、それに伴い電源電圧が大きく変動するという問題がある。
本発明は上記事情に鑑みてなされたものであり、その目的は、駆動用抵抗を切替える際に発生する電源電圧の変動を抑制できるサーミスタ駆動回路を提供することにある。
However, when the driving resistance is switched as described above, the amount of power supply current changes, and accordingly, there is a problem that the power supply voltage fluctuates greatly.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thermistor drive circuit capable of suppressing fluctuations in power supply voltage that occur when switching a drive resistor.

請求項1記載のサーミスタ駆動回路によれば、電源,グランド間に1つ以上の電流補正用抵抗を選択的に接続可能に構成する。そして、制御部は、サーミスタの端子電圧に応じて複数の駆動用抵抗の接続状態を切替える際に、電流補正用抵抗の接続状態を併せて切替えることで、複数の駆動用抵抗の接続切替えの前後における電源電流の変動を低減する。したがって、電源電圧の変動を抑制することが可能になる。   According to the thermistor driving circuit of the first aspect, one or more current correction resistors can be selectively connected between the power source and the ground. Then, when switching the connection state of the plurality of driving resistors according to the terminal voltage of the thermistor, the control unit also switches the connection state of the current correction resistors before and after switching the connection of the plurality of driving resistors. To reduce fluctuations in power supply current. Therefore, it is possible to suppress fluctuations in the power supply voltage.

具体的には、請求項2記載のサーミスタ駆動回路のように、制御部は、抵抗値を増加させるように駆動用抵抗の接続状態を切替える際には、抵抗値を減少させるように電流補正用抵抗の接続状態を切替える。これにより、駆動用抵抗の接続切替えの前後における電源電流の変動を低減する。   Specifically, as in the thermistor driving circuit according to claim 2, when the connection state of the driving resistor is switched so as to increase the resistance value, the control unit is configured to reduce the resistance value. Switches the connection status of resistors. As a result, fluctuations in the power supply current before and after connection switching of the driving resistor is reduced.

第1実施形態であり、サーミスタ駆動回路の構成を示す図The figure which is 1st Embodiment and shows the structure of a thermistor drive circuit サーミスタが検出する温度の高低に応じて、測定モードを切り替える状態を説明する図The figure explaining the state which switches a measurement mode according to the level of the temperature which a thermistor detects サーミスタ抵抗値の温度特性を示す図Figure showing the temperature characteristics of thermistor resistance 測定モードの切り替えに伴う電源電流の変化を示す図Diagram showing changes in power supply current with measurement mode switching サーミスタが検出する温度に応じた出力電圧の変化を示す図The figure which shows the change of the output voltage according to the temperature which the thermistor detects 駆動用抵抗と、電流補正用抵抗との具体数値例を示す図The figure which shows the concrete numerical example of the resistance for drive and the resistance for current correction 第2実施形態であり、サーミスタ駆動回路の構成を示す図The figure which is 2nd Embodiment and shows the structure of a thermistor drive circuit サーミスタが検出する温度の高低に応じて、測定モードを切り替える状態を説明する図The figure explaining the state which switches a measurement mode according to the level of the temperature which a thermistor detects 第3実施形態であり、サーミスタ駆動回路の構成を示す図The figure which is 3rd Embodiment and shows the structure of a thermistor drive circuit 電圧測定部に内蔵されるマルチプレクサの構成を示す図The figure which shows the structure of the multiplexer built in the voltage measurement part マルチプレクサの内部で発生するオフリーク電流を説明する図Diagram explaining off-leakage current generated inside multiplexer 第4実施形態であり、サーミスタ駆動回路の構成を示す図The figure which is 4th Embodiment and shows the structure of a thermistor drive circuit

(第1実施形態)
図1に示すように、サーミスタTHの端子GNDはグランドに接続されている。電源とサーミスタTHの端子Vinとの間には、3つのスイッチSWL,SWR,SWHと、それぞれに対応する駆動用抵抗R1_LT,R1_RT,R1_HTとの直列回路が並列に接続されている。これら3つの直列回路は、直線性補正部1を構成している。また、電源とグランドとの間には、2つのスイッチSWL_C,SWR_Cと、それぞれに対応する電流補正用抵抗Rd1,Rd2との直列回路が並列に接続されている。これら2つの直列回路は、電流補正部2を構成している。
(First embodiment)
As shown in FIG. 1, the terminal GND of the thermistor TH is connected to the ground. Between the power supply and the terminal Vin of the thermistor TH, a series circuit of three switches SWL, SWR, SWH and corresponding driving resistors R1_LT, R1_RT, R1_HT are connected in parallel. These three series circuits constitute a linearity correction unit 1. A series circuit of two switches SWL_C and SWR_C and corresponding current correction resistors Rd1 and Rd2 are connected in parallel between the power supply and the ground. These two series circuits constitute a current correction unit 2.

サーミスタTHの端子Vinは、電圧測定部3の入力端子に接続されている。電圧測定部3は、例えばA/D変換器やサンプルホールド回路等であり、測定したサーミスタTHの端子電圧を外部に出力すると共に制御部4に入力する。制御部4は、例えばマイクロコンピュータやハードウェアロジックで構成され、電圧測定部3より入力される電圧データに応じて直線性補正部1及び電流補正部2の各スイッチを切替える。   The terminal Vin of the thermistor TH is connected to the input terminal of the voltage measuring unit 3. The voltage measurement unit 3 is, for example, an A / D converter or a sample hold circuit, and outputs the measured terminal voltage of the thermistor TH to the outside and inputs it to the control unit 4. The control unit 4 is configured by, for example, a microcomputer or hardware logic, and switches the switches of the linearity correction unit 1 and the current correction unit 2 in accordance with voltage data input from the voltage measurement unit 3.

次に、本実施形態の作用について説明する。図3に示すように、サーミスタTHの抵抗値は、検出する温度が上昇するのに応じて指数関数的に減少する負の温度特性を示す。この温度特性に基づく出力電圧の直線性を改善するため、制御部4は、サーミスタTHが検出する温度帯に応じて、サーミスタTHに接続する抵抗R1_LT,R1_RT,R1_HTを選択的に切り替える。例えば、
−5°C以下 :低温域LT
−5°Cより大で且つ65°C以下:中温域RT
65°Cより大 :高温域HT
のように3つの温度帯域に分ける。
Next, the operation of this embodiment will be described. As shown in FIG. 3, the resistance value of the thermistor TH exhibits a negative temperature characteristic that decreases exponentially as the temperature to be detected increases. In order to improve the linearity of the output voltage based on this temperature characteristic, the control unit 4 selectively switches the resistors R1_LT, R1_RT, R1_HT connected to the thermistor TH in accordance with the temperature zone detected by the thermistor TH. For example,
-5 ° C or less: Low temperature range LT
Greater than -5 ° C and less than 65 ° C: Medium temperature range RT
Greater than 65 ° C: High temperature range HT
As shown in FIG.

そして、低温域LTではスイッチSWLのみを閉じて抵抗R1_LTをサーミスタTHに接続し、中温域RTではスイッチSWRのみを閉じて抵抗R1_RTをサーミスタTHに接続する。高温域HTではスイッチSWHのみを閉じて抵抗R1_HTをサーミスタTHに接続する。   In the low temperature region LT, only the switch SWL is closed and the resistor R1_LT is connected to the thermistor TH. In the intermediate temperature region RT, only the switch SWR is closed and the resistor R1_RT is connected to the thermistor TH. In the high temperature region HT, only the switch SWH is closed and the resistor R1_HT is connected to the thermistor TH.

このように、直線性補正部1の抵抗R1_LT,R1_RT,R1_HTを切り替えると、図4に破線で示すように、それに伴いサーミスタTHに通電される電源電流量が大きく変動するため、電源電圧も大きく変動する。そこで、本実施形態では、上記の接続切替えに伴う電源電流の変動量を抑制するため、電流補正部2における抵抗Rd1,Rd2の接続状態も併せて切替える。   As described above, when the resistors R1_LT, R1_RT, and R1_HT of the linearity correction unit 1 are switched, the amount of power supply current supplied to the thermistor TH varies greatly as shown by the broken line in FIG. fluctuate. Therefore, in the present embodiment, the connection state of the resistors Rd1 and Rd2 in the current correction unit 2 is also switched in order to suppress the fluctuation amount of the power supply current due to the connection switching.

図2に示すように、HTモードでは、上述したようにスイッチSWHのみを閉じるが、RTモードでは、スイッチSWRを閉じると共に電流補正部2のスイッチSWR_Cを閉じて、電源,グランド間に抵抗Rd2を接続する。これにより、HTモードからRTモードへの切替えの前後における電源電流の変動を抑制する。また、LTモードでは、スイッチSWLを閉じると共に電流補正部2のスイッチSWL_Cを閉じて、電源,グランド間に抵抗Rd1を接続することで、同様にRTモードからLTモードへの切替えの前後における電源電流の変動を抑制する。   As shown in FIG. 2, in the HT mode, only the switch SWH is closed as described above, but in the RT mode, the switch SWR is closed and the switch SWR_C of the current correction unit 2 is closed, and the resistor Rd2 is connected between the power source and the ground. Connecting. This suppresses fluctuations in the power supply current before and after switching from the HT mode to the RT mode. Further, in the LT mode, the switch SWL is closed and the switch SWL_C of the current correction unit 2 is closed, and the resistor Rd1 is connected between the power supply and the ground, so that the power supply current before and after switching from the RT mode to the LT mode is also similar. To suppress fluctuations.

これらは、検出温度が低温域から高温域に移行する際についても同様であり、LTモードからRTモードへの切替え,RTモードからHTモードへの切替えの前後についても電源電流の変動を抑制する作用となる。すなわち、スイッチSWL_Cの開閉は、RT/LTモード間の切替えにおいて行われ、スイッチSWR_Cの開閉は、HT/RTモード間の切替えにおいて行われる。このように、電流補正部2における抵抗Rd1,Rd2の接続状態を切替えても、図5に示すように、サーミスタTHの端子電圧に特段の影響を及ぼすことはない。   The same applies to the case where the detected temperature shifts from the low temperature range to the high temperature range, and suppresses fluctuations in the power supply current before and after switching from the LT mode to the RT mode and from the RT mode to the HT mode. It becomes. That is, opening / closing of the switch SWL_C is performed in switching between the RT / LT modes, and opening / closing of the switch SWR_C is performed in switching between the HT / RT modes. Thus, even if the connection state of the resistors Rd1 and Rd2 in the current correction unit 2 is switched, the terminal voltage of the thermistor TH is not particularly affected as shown in FIG.

図6は、各抵抗値の具体数値例である。電源電圧5V,RTモードにおけるサーミスタTHの基幹抵抗が10kΩである場合、駆動用抵抗R1_LT=15kΩ,R1_RT=1kΩ,R1_HT=0.1kΩに対して、電流補正用抵抗Rd1=0.8kΩ,Rd2=0.85kΩに設定する。   FIG. 6 is a specific numerical example of each resistance value. When the main resistance of the thermistor TH in the RT mode is 10 kΩ in the power supply voltage 5V, the current correction resistors Rd1 = 0.8 kΩ, Rd2 = for the driving resistors R1_LT = 15 kΩ, R1_RT = 1 kΩ, R1_HT = 0.1 kΩ. Set to 0.85 kΩ.

以上のように本実施形態によれば、電源,グランド間に電流補正用抵抗Rd1,Rd2を選択的に接続可能に構成する。そして、制御部4は、サーミスタTHの端子電圧に応じて抵抗値を増加させるように駆動用抵抗R1_LT,R1_RT,R1_HTの接続状態を切替える際に、抵抗値を減少させるように電流補正用抵抗Rd1,Rd2の接続状態を併せて切替えることで、複数の駆動用抵抗の接続切替えの前後における電源電流の変動を低減する。したがって、電源電圧の変動を抑制することが可能になる。   As described above, according to the present embodiment, the current correction resistors Rd1 and Rd2 can be selectively connected between the power supply and the ground. Then, the control unit 4 switches the connection state of the driving resistors R1_LT, R1_RT, R1_HT so as to increase the resistance value according to the terminal voltage of the thermistor TH, and the current correction resistor Rd1 so as to decrease the resistance value. , Rd2 are switched together to reduce fluctuations in the power supply current before and after connection switching of a plurality of driving resistors. Therefore, it is possible to suppress fluctuations in the power supply voltage.

(第2実施形態)
以下、第1実施形態と同一部分には同一符号を附して説明を省略し、異なる部分について説明する。図7に示すように、第2実施形態では、直線性補正部11がHT,RT,LTの各モードに対応して電源,グランド間の直列抵抗値を変化させるため、それぞれ3組のスイッチ及び抵抗の直列回路を下記のように備えている。
・HTモード スイッチSWH1〜3及び抵抗R1_H1〜3
・RTモード スイッチSWR1〜3及び抵抗R1_R1〜3
・LTモード スイッチSWL1〜3及び抵抗R1_L1〜3
そして、抵抗R1_H1〜3,R1_R1〜3,R1_L1〜3の並列抵抗値は、それぞれ第1実施形態の抵抗R1_HT,R1_RT,R1_LTに等しく設定されている。
(Second Embodiment)
Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof will be omitted, and different parts will be described. As shown in FIG. 7, in the second embodiment, the linearity correction unit 11 changes the series resistance value between the power source and the ground corresponding to each mode of HT, RT, and LT. A series circuit of resistors is provided as follows.
HT mode switches SWH1 to 3 and resistors R1_H1 to 3
RT mode switches SWR1 to 3 and resistors R1_R1 to 3
-LT mode switches SWL1 to 3 and resistors R1_L1 to 3
And the parallel resistance value of resistance R1_H1-3, R1_R1-3, R1_L1-3 is set equal to resistance R1_HT, R1_RT, R1_LT of 1st Embodiment, respectively.

また、電流補正部12も直線性補正部11の構成に対応して、HT/RTモード,RT/LTモード間の切替え時に使用するスイッチ及び抵抗の直列回路を、下記のようにそれぞれ3組備えている。
・HT/RTモード間 スイッチSWR1_C〜3_C及び抵抗Rd4〜Rd6
・RT/LTモード間 スイッチSWL1_C〜3_C及び抵抗Rd1〜Rd3
そして、抵抗Rd4〜Rd6,抵抗Rd1〜Rd3の並列抵抗値は、それぞれ第1実施形態の抵抗Rd2,Rd1に等しく設定されている。直線性補正部11及び電流補正部12におけるスイッチ切替えは、制御部13によって行われる。
The current correction unit 12 also includes three sets of switches and resistor series circuits used for switching between the HT / RT mode and the RT / LT mode, as described below, corresponding to the configuration of the linearity correction unit 11. ing.
HT / RT mode switch SWR1_C to 3_C and resistors Rd4 to Rd6
RT / LT mode switch SWL1_C to 3_C and resistors Rd1 to Rd3
The parallel resistance values of the resistors Rd4 to Rd6 and resistors Rd1 to Rd3 are set equal to the resistors Rd2 and Rd1 of the first embodiment, respectively. Switch switching in the linearity correction unit 11 and the current correction unit 12 is performed by the control unit 13.

次に、第2実施形態の作用について説明する。図8に示すように、制御部13は、HTモードにおいてはスイッチSWH1〜3のみを閉じている。そして、HTモードからRTモードに移行する際,つまり図8に示す遷移期間においてはスイッチSWH1,SWH2,SWH3を順次開くが、それらを開くタイミングに合わせて、スイッチSWR1,SWR2,SWR3を順次閉じる。また、それらを順次閉じるタイミングに合わせてスイッチSWR1_C,SWR2_C,SWR3_Cを順次閉じる。このように制御することで、HTモードからRTモードに移行する際の電源電流変動をより小さくして、電源電圧の変動を抑制する。   Next, the operation of the second embodiment will be described. As shown in FIG. 8, the control unit 13 closes only the switches SWH1 to 3 in the HT mode. Then, when shifting from the HT mode to the RT mode, that is, in the transition period shown in FIG. 8, the switches SWH1, SWH2, and SWH3 are sequentially opened, but the switches SWR1, SWR2, and SWR3 are sequentially closed in accordance with the opening timing. Further, the switches SWR1_C, SWR2_C, and SWR3_C are sequentially closed in accordance with the timing of sequentially closing them. By controlling in this way, fluctuations in the power supply current when shifting from the HT mode to the RT mode are further reduced, and fluctuations in the power supply voltage are suppressed.

RTモードからLTモードに移行する際も同様に、閉じているスイッチSWR1,SWR2,SWR3を順次開くが、それらを開くタイミングに合わせてスイッチSWL1,SWL2,SWL3を順次閉じる。また、それらを順次閉じるタイミングに合わせてスイッチSWL1_C,SWL2_C,SWL3_Cを順次閉じるようにする。   Similarly, when shifting from the RT mode to the LT mode, the closed switches SWR1, SWR2, and SWR3 are sequentially opened, but the switches SWL1, SWL2, and SWL3 are sequentially closed in accordance with the opening timing. Further, the switches SWL1_C, SWL2_C, and SWL3_C are sequentially closed in accordance with the timing of sequentially closing them.

以上のように第2実施形態によれば、制御部13は、測定モードをHT,RT,LT間で切替える際に、電流補正用抵抗の接続を複数回段階的に切替えるようにした。これにより、測定モードを移行する際の電源電流変動をより小さくして、電源電圧の変動を更に抑制することができる。   As described above, according to the second embodiment, when the measurement mode is switched between HT, RT, and LT, the control unit 13 switches the connection of the current correction resistor in a plurality of stages. Thereby, the fluctuation | variation of the power supply current at the time of shifting to a measurement mode can be made smaller, and the fluctuation | variation of a power supply voltage can further be suppressed.

(第3実施形態)
図9に示すように、第3実施形態の直線性補正部21では、第1実施形態の直線性補正部1における抵抗R1_LT,R1_RT,R1_HTと、サーミスタTHの上端との間にそれぞれレベルシフト用抵抗R2_LT,R2_RT,R2_HTが挿入されている。そして、抵抗R1及びR2_LT,R1及びR2_RT,R1及びR2_HTの各共通接続点は、電圧測定部22の各入力端子にそれぞれ接続されている。前記各共通接続点の電圧を、それぞれVin3,Vin2,Vin1とする。
(Third embodiment)
As shown in FIG. 9, in the linearity correction unit 21 of the third embodiment, a level shift is provided between the resistors R1_LT, R1_RT, R1_HT in the linearity correction unit 1 of the first embodiment and the upper end of the thermistor TH. Resistors R2_LT, R2_RT, and R2_HT are inserted. The common connection points of the resistors R1 and R2_LT, R1 and R2_RT, R1 and R2_HT are connected to the input terminals of the voltage measuring unit 22, respectively. The voltages at the common connection points are Vin3, Vin2, and Vin1, respectively.

電圧測定部22は、図10に示すようにサンプルホールド回路を構成しており、各入力電圧Vin1〜Vin3は、それぞれに対応する入力スイッチが閉じられた際にサンプルホールドされる。図11は、入力電圧Vin1をサンプルホールドする際の各スイッチのオン状態を示すが、これは第1実施形態の電圧測定部3がサンプルホールド回路を構成している場合と同様である。   The voltage measuring unit 22 forms a sample and hold circuit as shown in FIG. 10, and each input voltage Vin1 to Vin3 is sampled and held when the corresponding input switch is closed. FIG. 11 shows the ON state of each switch when the input voltage Vin1 is sampled and held, which is the same as when the voltage measurement unit 3 of the first embodiment constitutes a sample and hold circuit.

ここで、第3実施形態において、レベルシフト用抵抗R2を設ける意義について説明する。サーミスタTHが検出している温度が高温になると、抵抗値が低下して消費電流が増加する。消費電流の増加を抑制するため駆動用抵抗R1の抵抗値を大きくすると、入力電圧Vinがグランドレベルに近付くことになる。   Here, the significance of providing the level shift resistor R2 in the third embodiment will be described. When the temperature detected by the thermistor TH becomes high, the resistance value decreases and the current consumption increases. If the resistance value of the driving resistor R1 is increased to suppress an increase in current consumption, the input voltage Vin approaches the ground level.

サンプルホールド回路を構成するオペアンプの非反転入力端子には、参照電圧Vrefが与えられているが、入力電圧Vinがグランドレベルに近付くと参照電圧Vrefとの電位差が大きくなる。すると、オペアンプの非反転入力端子側から反転入力端子側にリーク電流が流れてしまう。そこで、第3実施形態のようにレベルシフト用抵抗R2を挿入することで、高温時における入力電圧Vinと参照電圧Vrefとの電位差を縮小し、リーク電流の発生を防止する。一般にスイッチはMOSFETなどにより構成されるので、レベルシフトを行うことで基板バイアス効果により閾値を制御して、リーク電流を防止できる。尚、測定制御は、制御部23によって行われる。   The reference voltage Vref is applied to the non-inverting input terminal of the operational amplifier constituting the sample hold circuit. However, when the input voltage Vin approaches the ground level, the potential difference from the reference voltage Vref increases. Then, a leakage current flows from the non-inverting input terminal side of the operational amplifier to the inverting input terminal side. Therefore, by inserting the level shift resistor R2 as in the third embodiment, the potential difference between the input voltage Vin and the reference voltage Vref at a high temperature is reduced, and the occurrence of a leakage current is prevented. In general, since the switch is configured by a MOSFET or the like, the threshold value is controlled by the substrate bias effect by performing the level shift, thereby preventing the leakage current. Measurement control is performed by the control unit 23.

以上のように第3実施形態によれば、駆動用抵抗R1_LT,R1_RT,R1_HTのそれぞれに直列に接続されるレベルシフト用抵抗R2_LT,R2_RT,R2_HT
を備え、電圧測定部22は、駆動用抵抗R1とレベルシフト用抵抗R2との共通接続点の電圧を測定する。このように構成すれば、前記共通接続点の電位がレベルシフト用抵抗R2によりレベルシフトされる結果、前記共通接続点の電位と、サンプルホールド回路内部の参照電圧Vrefとのとの電位差が縮小される。したがって、サンプルホールド回路内部におけるリーク電流を減少させることができ、入力信号の精度が悪化することを防止できる。
As described above, according to the third embodiment, the level shift resistors R2_LT, R2_RT, R2_HT connected in series to the driving resistors R1_LT, R1_RT, R1_HT, respectively.
The voltage measuring unit 22 measures the voltage at the common connection point between the driving resistor R1 and the level shift resistor R2. With this configuration, as a result of the level shift of the potential at the common connection point by the level shift resistor R2, the potential difference between the potential at the common connection point and the reference voltage Vref inside the sample hold circuit is reduced. The Therefore, the leakage current in the sample and hold circuit can be reduced, and the accuracy of the input signal can be prevented from deteriorating.

(第4実施形態)
図12に示す第4実施形態では、第3実施形態の電圧測定部22を電圧測定部31に置き換えた構成であり、電圧測定部31は、マルチプレクサ32,アンプ33及びA/Dコンバータ34で構成されている。マルチプレクサ32は、制御部35による選択切替えにより各共通接続点の電圧Vin3,Vin2,Vin1を選択すると、次段のアンプ33に入力する。アンプ33は、入力された電圧信号を増幅してA/Dコンバータ34に入力する。A/Dコンバータ34は、入力されたアナログ電圧をデジタルデータに変換して、外部及び制御部35に出力する。
(Fourth embodiment)
In the fourth embodiment shown in FIG. 12, the voltage measurement unit 22 of the third embodiment is replaced with a voltage measurement unit 31, and the voltage measurement unit 31 includes a multiplexer 32, an amplifier 33, and an A / D converter 34. Has been. When the multiplexer 32 selects the voltages Vin3, Vin2, and Vin1 at the common connection points by the selection switching by the control unit 35, the multiplexer 32 inputs the selected voltage to the amplifier 33 at the next stage. The amplifier 33 amplifies the input voltage signal and inputs it to the A / D converter 34. The A / D converter 34 converts the input analog voltage into digital data and outputs the digital data to the outside and the control unit 35.

以上のように構成される第4実施形態によれば、マルチプレクサ32における入力端子間の電位差に応じて、第3実施形態と同様のリーク電流が発生するおそれがある。この場合、入力選択用のスイッチがオフの状態でオフリーク電流が発生する。これに対して第3実施形態と同様の構成を適用することで、入力端子間の電位差を縮小してオフリーク電流を低減できる。   According to the fourth embodiment configured as described above, a leakage current similar to that of the third embodiment may occur depending on the potential difference between the input terminals of the multiplexer 32. In this case, an off-leakage current is generated when the input selection switch is off. On the other hand, by applying the same configuration as in the third embodiment, the potential difference between the input terminals can be reduced to reduce the off-leak current.

(その他の実施形態)
温度帯域は「3」に分ける必要はなく、「2」又は「4」以上に分けても良い。
一端が電源に接続されるサーミスタに適用しても良い。
正の温度特性を有するサーミスタに適用しても良い。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
(Other embodiments)
The temperature band need not be divided into “3”, and may be divided into “2” or “4” or more.
You may apply to the thermistor by which one end is connected to a power supply.
You may apply to the thermistor which has a positive temperature characteristic.
Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

図面中、1は直線性補正部、2は電流補正部、3は電圧測定部、4は制御部、THはサーミスタ、R1_LT,R1_RT,R1_HTは駆動用抵抗、Rd1,Rd2は電流補正用抵抗を示す。   In the drawings, 1 is a linearity correction unit, 2 is a current correction unit, 3 is a voltage measurement unit, 4 is a control unit, TH is a thermistor, R1_LT, R1_RT and R1_HT are driving resistors, and Rd1 and Rd2 are current correction resistors. Show.

Claims (5)

検出している温度に応じて抵抗値が変化するサーミスタ(TH)の特性を補正するため、前記サーミスタに選択的に接続される複数の駆動用抵抗(R1_LT,R1_RT,R1_HT)と、
電源,グランド間に選択的に接続される1つ以上の電流補正用抵抗(Rd1,Rd2)と、
前記サーミスタの端子電圧を測定する電圧測定部(3,22,31)と、
前記端子電圧に応じて前記複数の駆動用抵抗の接続状態を切替える際に、前記電流補正用抵抗の接続状態を併せて切替えることで、前記複数の駆動用抵抗の接続切替えの前後における電源電流の変動を低減する制御部(4,13,23,35)とを備えるサーミスタ駆動回路。
A plurality of driving resistors (R1_LT, R1_RT, R1_HT) selectively connected to the thermistor to correct the characteristics of the thermistor (TH) whose resistance value changes according to the detected temperature;
One or more current correction resistors (Rd1, Rd2) selectively connected between the power supply and the ground;
A voltage measuring unit (3, 22, 31) for measuring the terminal voltage of the thermistor;
When switching the connection state of the plurality of driving resistors according to the terminal voltage, by switching the connection state of the current correction resistors together, the power supply current before and after the switching of the plurality of driving resistors is switched. A thermistor drive circuit comprising a control unit (4, 13, 23, 35) for reducing fluctuations.
前記制御部は、抵抗値を増加させるように前記駆動用抵抗の接続状態を切替える際には、抵抗値を減少させるように前記電流補正用抵抗の接続状態を切替える請求項1記載のサーミスタ駆動回路。   The thermistor drive circuit according to claim 1, wherein when the connection state of the driving resistor is switched so as to increase a resistance value, the control unit switches the connection state of the current correction resistor so as to decrease the resistance value. . 前記制御部(13)は、前記複数の駆動用抵抗の接続を切替える際に、前記電流補正用抵抗の接続を複数回段階的に切替える請求項1又は2記載のサーミスタ駆動回路。   3. The thermistor drive circuit according to claim 1, wherein, when the connection of the plurality of drive resistors is switched, the control unit (13) switches the connection of the current correction resistors in a plurality of stages. 4. 前記複数の駆動用抵抗のそれぞれに直列に接続される、レベルシフト用抵抗(R2_LT,R2_RT,R2_HT)を備え、
前記電圧測定部(22,31)は、前記駆動用抵抗と前記レベルシフト用抵抗との共通接続点の電圧を測定する請求項1から3の何れか一項に記載のサーミスタ駆動回路。
Level shift resistors (R2_LT, R2_RT, R2_HT) connected in series to each of the plurality of drive resistors,
The thermistor drive circuit according to any one of claims 1 to 3, wherein the voltage measurement unit (22, 31) measures a voltage at a common connection point between the drive resistor and the level shift resistor.
前記電圧測定部(31)は、複数の入力端子が前記複数の共通接続点に接続されるマルチプレクサ(32)と、
このマルチプレクサを介して入力される信号を増幅するアンプ(33)と、
このアンプより入力される信号をA/D変換するA/Dコンバータ(34)とを備える請求項4記載のサーミスタ駆動回路。
The voltage measuring unit (31) includes a multiplexer (32) having a plurality of input terminals connected to the plurality of common connection points;
An amplifier (33) for amplifying a signal input via the multiplexer;
The thermistor drive circuit of Claim 4 provided with the A / D converter (34) which A / D-converts the signal input from this amplifier.
JP2016218944A 2016-11-09 2016-11-09 Thermistor drive circuit Expired - Fee Related JP6583216B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016218944A JP6583216B2 (en) 2016-11-09 2016-11-09 Thermistor drive circuit
PCT/JP2017/030925 WO2018087991A1 (en) 2016-11-09 2017-08-29 Thermistor drive circuit
US16/387,649 US20190242759A1 (en) 2016-11-09 2019-04-18 Thermistor drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016218944A JP6583216B2 (en) 2016-11-09 2016-11-09 Thermistor drive circuit

Publications (2)

Publication Number Publication Date
JP2018077134A true JP2018077134A (en) 2018-05-17
JP6583216B2 JP6583216B2 (en) 2019-10-02

Family

ID=62110229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016218944A Expired - Fee Related JP6583216B2 (en) 2016-11-09 2016-11-09 Thermistor drive circuit

Country Status (3)

Country Link
US (1) US20190242759A1 (en)
JP (1) JP6583216B2 (en)
WO (1) WO2018087991A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022106378A (en) * 2021-01-07 2022-07-20 ミツミ電機株式会社 Temperature measuring circuit and temperature measuring device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6733508B2 (en) * 2016-11-09 2020-08-05 株式会社デンソー Voltage measurement system
WO2020237486A1 (en) * 2019-05-27 2020-12-03 Oppo广东移动通信有限公司 Temperature measurement method and apparatus, and storage medium
CN111121999B (en) * 2019-11-13 2021-06-22 江苏弘历电气有限公司 Temperature measuring circuit of PT100 resistance core with constant current source
US12013293B2 (en) * 2022-03-24 2024-06-18 Semiconductor Components Industries, Llc Systems and methods for temperature measurements

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2990569B2 (en) * 1994-03-28 1999-12-13 松下電工株式会社 Differential heat detector
JP4613643B2 (en) * 2005-03-04 2011-01-19 パナソニック電工株式会社 Temperature measuring device
JP4845512B2 (en) * 2006-01-04 2011-12-28 パナソニック株式会社 Temperature detection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022106378A (en) * 2021-01-07 2022-07-20 ミツミ電機株式会社 Temperature measuring circuit and temperature measuring device
US12025509B2 (en) 2021-01-07 2024-07-02 Mitsumi Electric Co., Ltd. Temperature measurement circuit and temperature measurement device

Also Published As

Publication number Publication date
WO2018087991A1 (en) 2018-05-17
US20190242759A1 (en) 2019-08-08
JP6583216B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
JP6583216B2 (en) Thermistor drive circuit
CN101615049B (en) Reference buffer circuit
US10107698B2 (en) Semiconductor device, and resistance measuring system and pressure instrumentation device each including the semiconductor device
US9515671B1 (en) Apparatus for gain selection with compensation for parasitic elements and associated methods
US7551113B2 (en) Cyclic digital to analog converter in pipeline structure
US9941852B1 (en) Operation amplifiers with offset cancellation
WO2010137088A1 (en) Interface circuit
JP2009134698A (en) Voltage regulator
JP5482961B2 (en) Semiconductor integrated circuit and semiconductor physical quantity sensor device
JP6733508B2 (en) Voltage measurement system
JP2018129627A (en) comparator
US20100289683A1 (en) Reference voltage generation circuit, a/d converter and d/a converter
JP2008102060A (en) Timing calibration circuit and timing calibration method of semiconductor testing device
TWI703331B (en) Voltage difference measuring circuit and associated voltage difference measuring method
JP4117976B2 (en) Sample hold circuit
CN114518486A (en) Method and circuit for measuring input offset voltage
JP2009005178A (en) Chopper type comparator
CN105960757A (en) Comparison circuit
JP5799462B2 (en) Low distortion variable gain amplifier (VGA)
JP4453605B2 (en) Buffer circuit
JP2016176781A (en) Current detection circuit
TWI384443B (en) Circuit for generating drive voltage
JP5536508B2 (en) Power circuit
JP2009253312A (en) Constant voltage generation circuit and a/d conversion circuit
JP4764752B2 (en) Hysteresis inverter circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190819

R151 Written notification of patent or utility model registration

Ref document number: 6583216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees