[go: nahoru, domu]

JP3242244B2 - Oxidation treatment apparatus and oxidation treatment method - Google Patents

Oxidation treatment apparatus and oxidation treatment method

Info

Publication number
JP3242244B2
JP3242244B2 JP31435693A JP31435693A JP3242244B2 JP 3242244 B2 JP3242244 B2 JP 3242244B2 JP 31435693 A JP31435693 A JP 31435693A JP 31435693 A JP31435693 A JP 31435693A JP 3242244 B2 JP3242244 B2 JP 3242244B2
Authority
JP
Japan
Prior art keywords
pressure
steam
oxidation treatment
processing furnace
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31435693A
Other languages
Japanese (ja)
Other versions
JPH07142460A (en
Inventor
謙治 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP31435693A priority Critical patent/JP3242244B2/en
Priority to US08/341,052 priority patent/US5777300A/en
Priority to KR1019940030484A priority patent/KR100374065B1/en
Priority to TW083110868A priority patent/TW269723B/zh
Publication of JPH07142460A publication Critical patent/JPH07142460A/en
Application granted granted Critical
Publication of JP3242244B2 publication Critical patent/JP3242244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸化処理装置及び酸化
処理方法に関する。
The present invention relates to an oxidation treatment apparatus and an oxidation treatment method.

【0002】[0002]

【従来の技術】例えば、半導体デバイスの製造において
は、半導体ウエハの表面に酸化膜を形成する酸化処理工
程があり、その酸化処理の一つの方法として、処理炉内
において半導体ウエハを高温下で水蒸気と接触させて酸
化(ウエット酸化)させる方法がある。そして、このよ
うな酸化処理を行うために、例えば特公昭63−605
28号公報、特開昭63−210501号公報などに示
されているように、水素ガスと酸素ガスを反応(燃焼)
させて水蒸気を発生させる燃焼装置を処理炉の外部に独
立させて設け、この燃焼装置により発生する水蒸気を水
蒸気供給管路を介して処理炉に供給する方法が知られて
いる。
2. Description of the Related Art In the manufacture of semiconductor devices, for example, there is an oxidation treatment step of forming an oxide film on the surface of a semiconductor wafer. As one method of the oxidation treatment, a semiconductor wafer is steamed at a high temperature in a processing furnace. And oxidizing (wet oxidizing) by contacting with a gas. In order to perform such an oxidation treatment, for example, Japanese Patent Publication No. 63-605
No. 28, JP-A-63-210501, etc., react hydrogen gas with oxygen gas (combustion).
There is known a method in which a combustion device for generating steam is provided outside the processing furnace independently, and steam generated by the combustion device is supplied to the processing furnace through a steam supply pipe.

【0003】この方法によれば、処理炉内で水素ガスと
酸素ガスを燃焼させて水蒸気を発生させる方法と異な
り、処理炉における加熱状態を、燃焼装置の動作状態と
分離して制御することができるので、処理炉での半導体
ウエハに対する酸化処理を高い信頼性、安全性及び再現
性を持って実施することが可能になる。
According to this method, unlike the method in which hydrogen gas and oxygen gas are burned in a processing furnace to generate steam, the heating state in the processing furnace can be controlled separately from the operating state of the combustion device. Therefore, it is possible to perform the oxidation treatment on the semiconductor wafer in the processing furnace with high reliability, safety and reproducibility.

【0004】[0004]

【発明が解決しようとする課題】ところで、このような
酸化処理においては、酸化膜の膜質を如何に向上させる
かが重要な課題となり、燃焼装置の燃焼条件、処理炉の
温度条件等の選定により膜質の向上が図られている。し
かしながら、現状の酸化処理装置の構成では、選定すべ
き条件が限られており、膜質の向上を図る上である程度
限界に近いものがある。そこで、減圧CVDが減圧下で
の成膜処理によって膜質の向上に成果を収めていること
に着目し、これと同様の発想により前記酸化処理を減圧
下で行う発案がなされている。
In such an oxidation treatment, how to improve the quality of the oxide film is an important issue, and it is necessary to select combustion conditions of a combustion apparatus, temperature conditions of a processing furnace, and the like. The film quality has been improved. However, in the current configuration of the oxidation treatment apparatus, the conditions to be selected are limited, and there are some which are close to the limit in improving the film quality. Therefore, attention has been paid to the fact that low-pressure CVD has been successful in improving the film quality by a film forming process under reduced pressure, and a similar idea has been proposed in which the oxidation process is performed under reduced pressure.

【0005】しかしながら、前記処理炉における酸化処
理を減圧下で行おうとすると、燃焼装置における水素ガ
スと酸素ガスの反応(燃焼)が不安定になり、水蒸気を
安定して供給することが困難になるばかりでなく、水素
ガスによる爆発の危険性が増大する問題があり、減圧下
でのウエット酸化処理を実現することが困難であった。
[0005] However, if the oxidation treatment in the processing furnace is performed under reduced pressure, the reaction (combustion) between hydrogen gas and oxygen gas in the combustion device becomes unstable, and it becomes difficult to supply steam stably. In addition, there is a problem that the danger of explosion due to hydrogen gas is increased, and it has been difficult to realize wet oxidation treatment under reduced pressure.

【0006】本発明は、このような事情を考慮してなさ
れたもので、減圧下でのウエット酸化処理を可能にした
酸化処理装置及び酸化処理方法を提供することを目的と
する。
[0006] The present invention has been made in view of such circumstances, and has as its object to provide an oxidation treatment apparatus and an oxidation treatment method that enable wet oxidation treatment under reduced pressure.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に請求項1の発明に係る酸化処理装置は、被処理体を高
温下で酸化処理する処理炉と、この処理炉を減圧する減
圧手段と、前記処理炉外に設けられ水素ガスと酸素ガス
を燃焼させて水蒸気を発生させる燃焼装置と、この燃焼
装置と前記処理炉を接続する水蒸気供給管路と、この水
蒸気供給管路に設けられ燃焼装置側と処理炉側に圧力差
を生じさせる絞り部とを備えたことを特徴とする。
According to a first aspect of the present invention, there is provided an oxidation treatment apparatus for oxidizing an object to be processed at a high temperature, and a decompression means for depressurizing the treatment furnace. A combustion device provided outside the processing furnace for burning hydrogen gas and oxygen gas to generate steam, a steam supply line connecting the combustion device to the processing furnace, and a steam supply line connected to the steam supply line. It is characterized in that a throttle portion for generating a pressure difference between the combustion device side and the processing furnace side is provided.

【0008】また、請求項2の発明に係る酸化処理装置
は、請求項1の発明を前提とし、前記絞り部が前記水蒸
気供給管路に沿って多段に設けられていることを特徴と
する。
Further, the oxidation treatment apparatus according to the second aspect of the present invention is based on the premise of the first aspect, wherein the throttle portion is provided in multiple stages along the steam supply pipe.

【0009】更に、請求項3の発明に係る酸化処理装置
は、請求項1又は2の発明を前提とし、前記水蒸気供給
管路に前記絞り部の通過直後の水蒸気を加熱するための
加熱部が設けられていることを特徴とする。
Further, the oxidation treatment apparatus according to a third aspect of the present invention is based on the premise of the first or second aspect, wherein a heating section for heating the steam immediately after passing through the throttle section is provided in the steam supply pipe line. It is characterized by being provided.

【0010】また、請求項4の発明に係る酸化処理方法
は、水素ガスと酸素ガスを反応させて水蒸気を発生させ
る工程と、前記水蒸気を減圧された処理炉内にその減圧
が前記反応に直接作用しないように圧力的に遮断して供
給する工程と、前記減圧された処理炉内で被処理体を加
熱しながら前記水蒸気と接触させて酸化処理する工程と
を備えたことを特徴とする。
Further, in the oxidation treatment method according to the present invention, preferably, a step of reacting hydrogen gas and oxygen gas to generate steam, and the reduced pressure is directly applied to the reaction in a processing furnace in which the steam is reduced in pressure. The method is characterized by comprising a step of supplying in a pressure-blocked state so as not to act, and a step of oxidizing by bringing the object into contact with the steam while heating the object in the depressurized processing furnace.

【0011】[0011]

【作用】請求項1の発明によれば、燃焼装置と処理炉を
接続している水蒸気供給管路に燃焼装置側と処理炉側に
圧力差を生じさせる絞り部を設けているため、処理炉を
減圧することにより燃焼装置に与える減圧の影響が低減
ないし解消され、燃焼装置における安定した燃焼が可能
となる。これにより水蒸気の供給の安定化及び安全性の
向上が図れるため、減圧下でのウエット酸化処理が可能
となり、酸化膜の膜質の向上が図れる。
According to the first aspect of the present invention, since the steam supply pipe connecting the combustion device and the processing furnace is provided with the throttle portion for generating a pressure difference between the combustion device side and the processing furnace side, the processing furnace By reducing the pressure, the effect of the reduced pressure on the combustion device is reduced or eliminated, and stable combustion in the combustion device becomes possible. As a result, the supply of water vapor can be stabilized and the safety can be improved. Therefore, wet oxidation can be performed under reduced pressure, and the quality of the oxide film can be improved.

【0012】請求項2の発明によれば、多段の絞り部に
よって燃焼装置側を常圧に近い圧力に且つ処理炉側を十
分に低い圧力にすべく大きな圧力差を急激な圧力変化を
伴わずに生じさせることが可能となり、燃焼の一層の安
定化及び膜質の一層の向上が図れる。
According to the second aspect of the present invention, a large pressure difference is caused by a multistage throttle portion so that the pressure on the combustion device side is close to normal pressure and the pressure on the processing furnace side is sufficiently low without a sudden pressure change. And further stabilization of combustion and further improvement of film quality can be achieved.

【0013】請求項3の発明によれば、絞り部の通過直
後の水蒸気が加熱部により加熱されるため、圧力変化に
伴う水蒸気の結露が防止され、膜質のより一層の向上が
図れる。
According to the third aspect of the present invention, since the steam immediately after passing through the throttle section is heated by the heating section, dew condensation of the steam due to the pressure change is prevented, and the film quality can be further improved.

【0014】請求項4の発明によれば、被処理体のウエ
ット酸化処理が減圧下でなされるため、酸化速度が遅く
なって被処理体に成膜される酸化膜の膜厚の制御が容易
になり、膜質の向上及び極薄膜の成膜が可能となる。
According to the fourth aspect of the present invention, since the wet oxidation of the object to be processed is performed under reduced pressure, the oxidation rate is reduced and the thickness of the oxide film formed on the object to be processed can be easily controlled. And the film quality can be improved and an extremely thin film can be formed.

【0015】[0015]

【実施例】以下に、本発明の一実施例を添付図面に基づ
いて詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0016】酸化処理装置の全体構成を示す図1におい
て、1は被処理体である半導体ウエハWを例えば850
℃程度の高温下で酸化処理する縦型の処理炉で、この処
理炉1は下端が開放した縦長円筒状の耐熱性を有する例
えば石英製の反応管2を備えている。この反応管2は下
端開口部が蓋体3で閉塞されることにより気密性の高い
容器となる。前記反応管2の下方にはその下端開口部を
開閉する蓋体3が配置され、この蓋体3上には多数枚の
半導体ウエハWを水平状態で上下方向に間隔をおいて多
段(例えば150枚程度)に支持するウエハボート4が
保温筒5を介して支持されている。
In FIG. 1 showing the overall structure of an oxidation treatment apparatus, reference numeral 1 denotes a semiconductor wafer W to be processed, for example, 850.
This processing furnace 1 is a vertical processing furnace for performing an oxidation treatment at a high temperature of about ° C. The processing furnace 1 includes a vertically long cylindrical heat-resistant, for example, quartz-made reaction tube 2 having an open lower end. The reaction tube 2 becomes a highly airtight container when the lower end opening is closed by the lid 3. A lid 3 for opening and closing the lower end opening is disposed below the reaction tube 2. On the lid 3, a large number of semiconductor wafers W are vertically spaced in multiple stages (for example, 150). The wafer boat 4 is supported via a heat retaining cylinder 5.

【0017】前記蓋体3は反応管2内への前記ウエハボ
ート4の搬入及び搬出を行うと共に蓋体3の開閉を行う
昇降機構6に連結されている。また、前記反応管2の周
囲には内部を所望温度例えば800〜1000℃程度に
加熱するヒータ7が配設され、その更に外周には断熱材
8を介してアウターシェル9が設けられている。
The lid 3 is connected to an elevating mechanism 6 for carrying the wafer boat 4 in and out of the reaction tube 2 and opening and closing the lid 3. A heater 7 for heating the inside of the reaction tube 2 to a desired temperature, for example, about 800 to 1000 ° C., is provided around the reaction tube 2, and an outer shell 9 is further provided on the outer periphery thereof through a heat insulating material 8.

【0018】前記反応管2の一側部(下方側壁部)には
水蒸気導入管10が一体に設けられ、この水蒸気導入管
10の基部側は反応管2の管壁と一体となって上方に導
かれてから、反応管2内の上端部に凹状に形成された水
蒸気導入ポート11に臨んで開口されている。また、反
応管2の他側部(下方側壁部)には排気管12が一体に
設けられ、この排気管12には反応管2内を減圧する減
圧手段としての減圧ポンプ13を備えた減圧管14が二
重のOリング15を介設したフランジ継手16を介して
気密に接続されている。
A steam introduction pipe 10 is integrally provided on one side (lower side wall) of the reaction tube 2, and the base side of the steam introduction pipe 10 is integrally formed with the tube wall of the reaction tube 2 to rise upward. After being guided, it is opened toward the water vapor introduction port 11 formed in a concave shape at the upper end portion in the reaction tube 2. An exhaust pipe 12 is integrally provided on the other side (lower side wall) of the reaction tube 2, and the exhaust pipe 12 is provided with a pressure reducing pump 13 as a pressure reducing means for reducing the pressure inside the reaction tube 2. 14 is airtightly connected via a flange joint 16 provided with a double O-ring 15.

【0019】この減圧管14には例えばアングル弁から
なる開閉弁17が介設されると共にこの開閉弁17をバ
イパスするバイパス管18が接続され、バイパス管18
には例えばエアオペレートバルブからなる開閉弁19と
例えばピエゾバルブからなる圧力制御弁20が介設され
ている。前記反応管2内を所定の圧力例えば300〜5
00Torr程度に減圧する場合、減圧管14に設けら
れた圧力センサ21で圧力を検出しつつ先ず減圧管14
の開閉弁17を開にして所定の圧力まで減圧し、以後は
減圧管14の開閉弁17を閉に且つバイパス管18の開
閉弁19を開にして圧力制御弁20で所定の圧力を維持
するようコントローラ22によって制御されるようにな
っている。なお、減圧管14の下流は図示しない工場排
気ダクトに接続されている。
An opening / closing valve 17 composed of, for example, an angle valve is interposed in the pressure reducing pipe 14 and a bypass pipe 18 for bypassing the opening / closing valve 17 is connected.
An opening / closing valve 19 composed of, for example, an air operated valve and a pressure control valve 20 composed of, for example, a piezo valve are interposed therebetween. A predetermined pressure, for example, 300 to 5
When the pressure is reduced to about 00 Torr, the pressure is first detected by a pressure sensor 21 provided in
The on-off valve 17 is opened to reduce the pressure to a predetermined pressure. Thereafter, the on-off valve 17 of the pressure reducing pipe 14 is closed and the on-off valve 19 of the bypass pipe 18 is opened to maintain the predetermined pressure by the pressure control valve 20. To be controlled by the controller 22. The downstream side of the pressure reducing pipe 14 is connected to a factory exhaust duct (not shown).

【0020】一方、前記反応管2の水蒸気導入管10に
は水素ガスと酸素ガスを燃焼(反応)させて水蒸気を発
生させる燃焼(反応)装置23が水蒸気供給管路24を
介して接続されている。この燃焼装置23は、図3に示
すように縦長円筒状の耐熱性を有する例えば石英製の燃
焼容器25を備え、この燃焼容器25の底部にはこれよ
り下方に一体に延出した石英製のガス導入管26が設け
られている。このガス導入管26は二重管構造のもの
で、中央の水素ガス導入管27と、この外周の酸素ガス
導入管28とを有している。中央の水素ガス導入管27
は外周の酸素ガス導入管28の閉塞した下端部を貫通し
て下方に突出した接続口27aを有し、外周の酸素ガス
導入管28は下側部から一側外方に突出した接続口28
aを有している。
On the other hand, a combustion (reaction) device 23 for burning (reacting) hydrogen gas and oxygen gas to generate steam is connected to a steam introduction tube 10 of the reaction tube 2 via a steam supply line 24. I have. As shown in FIG. 3, the combustion device 23 includes a vertically long cylindrical heat-resistant combustion vessel 25 made of, for example, quartz, and the bottom of the combustion vessel 25 is made of quartz that extends integrally below the combustion vessel 25. A gas introduction pipe 26 is provided. The gas introduction pipe 26 has a double pipe structure, and has a hydrogen gas introduction pipe 27 at the center and an oxygen gas introduction pipe 28 at the outer periphery. Central hydrogen gas inlet pipe 27
Has a connection port 27a projecting downward through the closed lower end portion of the outer oxygen gas introduction pipe 28, and the outer oxygen gas introduction pipe 28 has a connection port 28 projecting outward from one side from the lower side.
a.

【0021】前記水素ガス導入管27の接続口27aに
は図1に示すように切替えバルブ29と流量制御機構3
0を介して水素ガス源31が接続されると共に、切替え
バルブ29より分岐した配管及び流量制御機構32を介
して窒素ガス源33が接続されている。また、前記酸素
ガス導入管28の接続口28aには流量制御機構34を
介して酸素ガス源35が接続されている。
As shown in FIG. 1, a switching valve 29 and a flow control mechanism 3 are connected to a connection port 27a of the hydrogen gas introduction pipe 27.
In addition, a hydrogen gas source 31 is connected via a valve 0 and a nitrogen gas source 33 is connected via a pipe branched from a switching valve 29 and a flow control mechanism 32. An oxygen gas source 35 is connected to a connection port 28 a of the oxygen gas introduction pipe 28 via a flow rate control mechanism 34.

【0022】図3に示すように前記燃焼容器25内の底
部中央には平面円形の凹部36が一体成形され、この凹
部36の底部に前記酸素ガス導入管28の上端部が連設
されている。また、前記凹部36の深さ方向略中間には
水平の仕切壁のように適当幅で環状をなす石英製の拡散
板37が一体成形され、この拡散板37の内周縁に前記
水素ガス導入管27の上端部が連設されている。
As shown in FIG. 3, a flat circular recess 36 is integrally formed at the center of the bottom in the combustion vessel 25, and the upper end of the oxygen gas introducing pipe 28 is connected to the bottom of the recess 36. . A quartz diffusion plate 37 of an appropriate width and an annular shape is formed integrally with the recess 36 at a substantially middle portion in the depth direction like a horizontal partition wall. The upper end of 27 is provided continuously.

【0023】前記水素ガス導入管27の拡散板37より
少し下方に下がった位置には小口径に絞った酸素ガス逆
流防止兼用の水素ガス噴出ノズル38が一体成形されて
いる。前記凹部36内の拡散板37より下方に形成され
た環状空間39と前記酸素ガス導入管28が連通し、こ
の環状空間39より酸素ガスが燃焼容器25内に拡散し
て吹き出すように前記拡散板37には小口径の複数の酸
素ガス噴出ノズル40が広く分散して穿設されている。
At a position slightly lower than the diffusion plate 37 of the hydrogen gas introduction pipe 27, a hydrogen gas ejection nozzle 38 having a small diameter and also serving to prevent backflow of oxygen gas is integrally formed. An annular space 39 formed below the diffusion plate 37 in the recess 36 communicates with the oxygen gas introduction pipe 28, and the oxygen gas is diffused from the annular space 39 into the combustion vessel 25 and blows out. 37 is provided with a plurality of small-diameter oxygen gas ejection nozzles 40 that are widely dispersed.

【0024】前記二重管構造のガス導入管26の周囲に
はガス加熱用ヒータ41が配設されている。このガス加
熱用ヒータ41により前記水素ガス導入管27及び酸素
ガス導入管28に導通される水素ガス及び酸素ガスが自
然着火温度以上に加熱され、加熱された水素ガスと酸素
ガスが水素ガス噴出ノズル38と酸素ガス噴出ノズル4
0より燃焼容器25内に噴出して混合することで炎Fを
上げて燃焼するようになっている。この燃焼によって水
蒸気が発生する。前記ガス加熱用ヒータ41と燃焼容器
25の底部との間には断熱材42が介設され、燃焼容器
25の周囲にはこれを例えば500℃程度に冷却する例
えば水冷ジャケットからなる冷却機構43が配設されて
いる。また、前記燃焼容器25の頂部には石英製の水蒸
気供給管路24が一体に突出成形され、この水蒸気供給
管路24が図1に示すように前記反応管2の水蒸気導入
管10に二重のOリング44を介設したフランジ継手4
5を介して気密に接続されている。
A gas heater 41 is provided around the gas inlet pipe 26 having the double pipe structure. The gas heating heater 41 heats the hydrogen gas and the oxygen gas that are conducted to the hydrogen gas introduction pipe 27 and the oxygen gas introduction pipe 28 to a temperature equal to or higher than the auto-ignition temperature, and the heated hydrogen gas and the oxygen gas are supplied to the hydrogen gas ejection nozzle. 38 and oxygen gas jet nozzle 4
By spraying from 0 into the combustion vessel 25 and mixing, the flame F is raised and burned. This combustion produces steam. A heat insulating material 42 is interposed between the gas heating heater 41 and the bottom of the combustion vessel 25, and a cooling mechanism 43 composed of, for example, a water-cooled jacket for cooling this to about 500 ° C. is provided around the combustion vessel 25. It is arranged. At the top of the combustion vessel 25, a steam supply pipe 24 made of quartz is integrally formed so as to protrude, and this steam supply pipe 24 is connected to the steam introduction pipe 10 of the reaction tube 2 as shown in FIG. Joint 4 with O-ring 44 interposed
5 is hermetically connected.

【0025】そして、前記水蒸気供給管路24内には、
図2に示すように燃焼装置23側と処理炉1側に圧力差
(P1−P2)を生じさせる絞り部例えば石英製のオリフ
ィス46が一体に設けられている。このオリフィス46
の水蒸気供給管路24の内径に対する口径の大きさ及び
厚さ等の選定によって、例えば処理炉1側の圧力P2が
300〜500Torr程度に対して燃焼装置23側の
圧力P1が600Torr程度になるように構成され
る。また、前記水蒸気供給管路24の周囲には図1に示
すようにオリフィス46の通過直後の水蒸気を例えば2
00℃程度に加熱する加熱部である水蒸気加熱ヒータ4
7が配設され、オリフィス46の通過に伴う圧力変化
(断熱膨張)によって生じる水蒸気の結露を防止するよ
うに構成されている。
In the steam supply line 24,
As shown in FIG. 2, an orifice 46, for example, a quartz orifice 46 for producing a pressure difference (P1-P2) is integrally provided between the combustion device 23 and the processing furnace 1 side. This orifice 46
By selecting the size and thickness of the bore with respect to the inner diameter of the steam supply pipe 24, for example, the pressure P2 on the processing furnace 1 side is about 300 to 500 Torr and the pressure P1 on the combustion apparatus 23 side is about 600 Torr. It is composed of As shown in FIG. 1, the steam immediately after passing through the orifice 46 is, for example, 2
Steam heater 4 which is a heating unit for heating to about 00 ° C.
7 is provided to prevent the dew condensation of water vapor caused by a pressure change (adiabatic expansion) accompanying the passage of the orifice 46.

【0026】次に、以上の構成からなる酸化処理装置の
作用を説明する。先ず、窒素ガス源33から燃焼容器2
5及び水蒸気供給管路24を介して窒素ガスを処理炉1
の反応管2内に供給しつつ反応管2内を減圧管14及び
減圧ポンプ13を介して排気することにより反応管2内
を窒素ガスにより置換してから、蓋体3を開けて半導体
ウエハWを支持したウエハボート4を保温筒5と共に反
応管2内に装入する。次いで、窒素ガスの供給を続けた
状態でコントローラ22による圧力制御により反応管2
内を所定の圧力例えば400Torrに減圧した後、こ
の圧力を維持しつつ窒素ガス源33から酸素ガス源35
に徐々に切替えて反応管2内を酸素ガスにより置換す
る。
Next, the operation of the oxidation treatment apparatus having the above configuration will be described. First, the combustion vessel 2 is supplied from the nitrogen gas source 33.
5 and the processing furnace 1 through a steam supply line 24.
The inside of the reaction tube 2 is replaced with nitrogen gas by evacuating the inside of the reaction tube 2 through the decompression tube 14 and the decompression pump 13 while supplying the semiconductor wafer W to the semiconductor wafer W. Is loaded into the reaction tube 2 together with the heat retaining tube 5. Next, the reaction tube 2 is controlled by the pressure control by the controller 22 while the supply of the nitrogen gas is continued.
After the pressure in the inside is reduced to a predetermined pressure, for example, 400 Torr, the nitrogen gas source 33 is switched to the oxygen gas source 35 while maintaining this pressure.
And the inside of the reaction tube 2 is replaced with oxygen gas.

【0027】次いで、前記圧力を維持しつつ水素ガス源
31から水素ガスを酸素ガスとの流量比が例えば1対1
になるようにして供給し、これら水素ガスと酸素ガスを
ガス加熱用ヒータ41で例えば850℃程度に加熱しつ
つ燃焼容器25内で燃焼させることにより水蒸気を発生
させ、この水蒸気を所定の圧力例えば400Torrの
減圧及び所定の温度例えば850℃の高温に維持された
反応管2内に供給することにより半導体ウエハWに対す
る所要のウエット酸化処理が施される。なお、燃焼容器
25内に供給された水素ガスと酸素ガスは、化学量論に
従って約2対1の割合で燃焼する。従って、酸素ガスは
少し過剰供給となるが、この過剰の酸素ガスが水蒸気の
キャリアガスとして作用すると共に、反応管2内での酸
化処理に寄与することとなる。
Next, while maintaining the pressure, the flow rate ratio of hydrogen gas to hydrogen gas from the hydrogen gas source 31 is, for example, 1: 1.
The hydrogen gas and the oxygen gas are heated by, for example, about 850 ° C. by the gas heating heater 41 and burned in the combustion vessel 25 to generate steam. The semiconductor wafer W is subjected to a required wet oxidation treatment by supplying it into the reaction tube 2 maintained at a reduced pressure of 400 Torr and at a predetermined temperature of, for example, 850 ° C. The hydrogen gas and the oxygen gas supplied into the combustion vessel 25 burn at a ratio of about 2 to 1 according to the stoichiometry. Therefore, although the oxygen gas is slightly excessively supplied, the excess oxygen gas acts as a carrier gas for water vapor and contributes to the oxidation treatment in the reaction tube 2.

【0028】ところで、減圧下でウエット酸化処理を行
おうとする場合、減圧状態に維持された反応管2から水
蒸気供給管路24を介して燃焼装置23に減圧が作用
し、燃焼装置23における安定した燃焼を阻害する恐れ
がある。そこで、燃焼装置23と処理炉1の反応管2を
接続している水蒸気供給管路24に燃焼装置23側と処
理炉1側に圧力差を生じさせるオリフィス46が設けら
れているので、反応管2から水蒸気供給管路24を介し
て燃焼装置23に直接作用しようとする減圧がオリフィ
ス46によって緩衝ないし遮断され、燃焼装置23にお
ける安定した燃焼が保障されることになる。これにより
水蒸気の供給の安定化及び安全性の向上が図れるため、
減圧下でのウエット酸化処理が可能となり、酸化膜の膜
質の向上が図れる。
When the wet oxidation treatment is to be performed under reduced pressure, a reduced pressure acts on the combustion device 23 from the reaction tube 2 maintained at a reduced pressure via the steam supply line 24, and the stable combustion in the combustion device 23 is performed. Combustion may be hindered. Therefore, an orifice 46 for generating a pressure difference between the combustion device 23 and the processing furnace 1 is provided in the steam supply line 24 connecting the combustion device 23 and the reaction tube 2 of the processing furnace 1. The orifice 46 buffers or cuts off the reduced pressure that is going to act directly on the combustion device 23 from the second through the steam supply line 24, so that stable combustion in the combustion device 23 is ensured. As a result, the supply of steam can be stabilized and safety can be improved.
Wet oxidation treatment under reduced pressure is possible, and the quality of the oxide film can be improved.

【0029】すなわち、この酸化処理方法としては、水
素ガスと酸素ガスを反応させて水蒸気を発生させる工程
と、前記水蒸気を減圧された処理炉1の反応管2内にそ
の減圧が前記反応に直接作用しないように圧力的に遮断
して供給する工程と、前記減圧された処理炉1の反応管
2内で被処理体である半導体ウエハWを加熱しながら前
記水蒸気と接触させて酸化処理する工程とを備えてい
る。
That is, as this oxidation treatment method, a step of reacting hydrogen gas and oxygen gas to generate steam, and the step of reducing the steam directly into the reaction tube 2 of the processing furnace 1 in which the steam is reduced, are directly applied to the reaction. Supplying the semiconductor wafer W as an object to be processed in the reaction tube 2 of the decompressed processing furnace 1 while heating the semiconductor wafer W in contact with the water vapor so as to perform an oxidation treatment And

【0030】従って、半導体ウエハWのウエット酸化処
理が減圧下でなされるため、酸化速度が遅くなって半導
体ウエハWに成膜される酸化膜の膜厚の制御が容易にな
り、膜質の向上が図れると共に極薄膜(例えば50オン
グストローム程度)の成膜が容易になる。更に、オリフ
ィス46の通過直後の水蒸気が水蒸気加熱ヒータ47に
より加熱されるため、圧力変化に伴う水蒸気の結露が防
止され、膜質のより一層の向上が図れる。
Therefore, since the wet oxidation treatment of the semiconductor wafer W is performed under reduced pressure, the oxidation rate is slowed down, the control of the thickness of the oxide film formed on the semiconductor wafer W becomes easy, and the film quality is improved. In addition, it becomes easy to form an extremely thin film (for example, about 50 Å). Further, since the steam immediately after passing through the orifice 46 is heated by the steam heater 47, dew condensation of the steam due to the pressure change is prevented, and the film quality can be further improved.

【0031】更に、燃焼装置23においては、酸素ガス
噴出ノズル40が中央の水素ガス噴出ノズル38の先端
よりも上方に突出していると共に周囲に遠く放れて広く
分散しているので、酸素ガスが水素ガスの周囲の広い範
囲に拡散して噴出するようになり、燃焼容器25内で炎
Fが半径方向に太く且つ高さ方向に短くなって効率よく
燃焼するようになる。このため、仮に燃焼容器25内に
水蒸気供給管路24を介して減圧が多少作用したとして
も、炎Fが細長くなって燃焼が不安定になるようなこと
はない。
Further, in the combustion device 23, the oxygen gas ejecting nozzle 40 projects above the tip of the central hydrogen gas ejecting nozzle 38 and is released far away to the periphery and is widely dispersed. The gas is diffused and ejected in a wide range around the gas, and the flame F becomes thicker in the radial direction and shorter in the height direction in the combustion vessel 25, so that the gas is efficiently burned. Therefore, even if the pressure is somewhat reduced in the combustion vessel 25 through the steam supply pipe 24, the flame F is not elongated and the combustion is not unstable.

【0032】このようにして酸化処理が終了した後は、
前記とは逆の手順で水素ガスの供給の停止、処理炉内の
酸素ガスによる置換及び窒素ガスによる置換を順次行
い、減圧ポンプ13を停止して反応管2内を常圧に戻
し、処理済み半導体ウエハWをウエハボート4及び保温
筒5と共に昇降機構6により反応管2内から下方へ搬出
すればよい。
After the oxidation treatment is completed in this way,
In the reverse procedure, the supply of hydrogen gas was stopped, the replacement with oxygen gas in the processing furnace and the replacement with nitrogen gas were sequentially performed, and the decompression pump 13 was stopped to return the inside of the reaction tube 2 to normal pressure. The semiconductor wafer W may be unloaded from the inside of the reaction tube 2 by the elevating mechanism 6 together with the wafer boat 4 and the heat retaining cylinder 5.

【0033】図4は水蒸気供給管路24に設けられる絞
り部の変形例を示している。水蒸気供給管路内24には
その長手方向に沿って適宜間隔で石英製のオリフィス4
6が多段(図示例では4段)に且つ一体に設けられ、こ
れらオリフィス46全体を覆うように水蒸気供給管路2
4の周囲に水蒸気加熱ヒータ47が配設されている。こ
の多段のオリフィス46によれば、水蒸気供給管路24
の内径に対する各オリフィス46の口径の大きさ、厚さ
及びオリフィス46間の距離等の選定によって燃焼装置
23側を常圧に近い圧力P1に且つ処理炉1側を十分に
低い圧力P2にすべく大きな圧力差(P1−P2)を急激
な圧力変化を伴わずに生じさせることが可能となり、燃
焼の一層の安定化及び膜質の一層の向上が図れる。
FIG. 4 shows a modification of the throttle provided in the steam supply line 24. A quartz orifice 4 is provided at an appropriate interval along the longitudinal direction of the steam supply pipe 24.
6 are provided in multiple stages (four stages in the illustrated example) and integrally, and the steam supply line 2 is provided so as to cover the entire orifice 46.
4, a steam heater 47 is provided. According to the multi-stage orifice 46, the steam supply pipe 24
By selecting the size and thickness of each orifice 46 with respect to the inner diameter of the orifice 46, the distance between the orifices 46, and the like, the combustion device 23 side is set to a pressure P1 close to normal pressure and the processing furnace 1 side is set to a sufficiently low pressure P2. A large pressure difference (P1-P2) can be generated without a sudden change in pressure, so that combustion can be further stabilized and film quality can be further improved.

【0034】また、図5は水蒸気供給管路24に設けら
れる絞り部の別の変形例を示している。水蒸気供給管路
24内には絞り部として石英製の先細末広ノズル48が
一体に設けられ、この先細末広ノズル48全体を覆うよ
うに水蒸気供給管路24の周囲には水蒸気加熱ヒータ4
7が配設されている。この先細末広ノズル48によれ
ば、水蒸気供給管路24の内径に対する先細末広ノズル
48の口径の大きさ及び長さ等の選定によって前記多段
オリフィス46と同様に燃焼装置23側を常圧に近い圧
力P1に且つ処理炉1側を十分に低い圧力P2にすべく大
きな圧力差(P1−P2)を急激な圧力変化を伴わずに生
じさせることが可能となり、燃焼の一層の安定化及び膜
質の一層の向上が図れる。
FIG. 5 shows another modification of the throttle provided in the steam supply pipe 24. A convergent divergent nozzle 48 made of quartz is integrally provided as a throttle in the steam supply pipe 24, and a steam heater 4 is provided around the steam supply pipe 24 so as to cover the entire convergent divergent nozzle 48.
7 are provided. According to this tapered divergent nozzle 48, the pressure of the combustion device 23 side is close to the normal pressure similarly to the multistage orifice 46 by selecting the size and length of the diameter of the tapered divergent nozzle 48 with respect to the inner diameter of the steam supply pipe 24. A large pressure difference (P1−P2) can be generated without causing a rapid pressure change so as to set P1 and the processing furnace 1 side to a sufficiently low pressure P2, further stabilizing combustion and further improving film quality. Can be improved.

【0035】本発明は、前記実施例に限定されるもので
はなく、本発明の要旨の範囲内で種々の変形実施が可能
である。例えば、図2及び図4の実施例の絞り部として
は、いわゆる管内オリフィスが例示されているが、いわ
ゆる管内ノズルであってもよい。また、絞り部は水蒸気
供給管路24の全体に渡って形成されていてもよく、す
なわち水蒸気供給管路24を細管により構成してもよ
く、この場合には管内オリフィスや管内ノズルは不要と
なる。
The present invention is not limited to the above embodiment, and various modifications can be made within the scope of the present invention. For example, a so-called in-pipe orifice is illustrated as the throttle section in the embodiment of FIGS. 2 and 4, but a so-called in-pipe nozzle may be used. Further, the constricted portion may be formed over the entirety of the steam supply line 24, that is, the steam supply line 24 may be formed of a thin tube. In this case, an in-pipe orifice and an in-pipe nozzle become unnecessary. .

【0036】処理炉1としては、縦型炉が例示されてい
るが、横型炉であってもよい。また、被処理体として
は、半導体ウエハWが例示されているが、例えばLCD
等であってもよい。更に、実施例の酸化処理装置は、高
温の処理炉1及び減圧手段(減圧ポンプ13)を有して
いるため、燃焼装置23の代りに処理ガス供給源を接続
することにより減圧CVD装置として使用することも可
能である。
The processing furnace 1 is exemplified by a vertical furnace, but may be a horizontal furnace. As the object to be processed, a semiconductor wafer W is exemplified, but for example, an LCD
And so on. Further, since the oxidation treatment apparatus of the embodiment has the high-temperature treatment furnace 1 and the decompression means (decompression pump 13), it is used as a decompression CVD apparatus by connecting a treatment gas supply source instead of the combustion device 23. It is also possible.

【0037】[0037]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果が得られる。
In summary, according to the present invention, the following excellent effects can be obtained.

【0038】(1)請求項1の発明によれば、燃焼装置
と処理炉を接続している水蒸気供給管路に燃焼装置側と
処理炉側に圧力差を生じさせる絞り部を設けているた
め、処理炉を減圧することにより燃焼装置に与える減圧
の影響が低減ないし解消され、燃焼装置における安定し
た燃焼が可能となる。これにより水蒸気の供給の安定化
及び安全性の向上が図れるため、減圧下でのウエット酸
化処理が可能となり、酸化膜の膜質の向上が図れる。
(1) According to the first aspect of the present invention, since the steam supply pipe connecting the combustion device and the processing furnace is provided with the throttle portion for generating a pressure difference between the combustion device and the processing furnace. By reducing the pressure in the processing furnace, the effect of the reduced pressure on the combustion device is reduced or eliminated, and stable combustion in the combustion device becomes possible. As a result, the supply of water vapor can be stabilized and the safety can be improved. Therefore, wet oxidation can be performed under reduced pressure, and the quality of the oxide film can be improved.

【0039】(2)請求項2の発明によれば、多段の絞
り部によって燃焼装置側を常圧に近い圧力に且つ処理炉
側を十分に低い圧力にすべく大きな圧力差を急激な圧力
変化を伴わずに生じさせることが可能となり、燃焼の一
層の安定化及び膜質の一層の向上が図れる。
(2) According to the second aspect of the present invention, a large pressure difference is caused by a rapid pressure change so that the combustion device side is brought to a pressure close to normal pressure and the processing furnace side is brought to a sufficiently low pressure by the multistage throttle portion. Can be generated without causing the combustion, and the combustion can be further stabilized and the film quality can be further improved.

【0040】(3)請求項3の発明によれば、絞り部の
通過直後の水蒸気が加熱部により加熱されるため、圧力
変化に伴う水蒸気の結露が防止され、膜質のより一層の
向上が図れる。
(3) According to the third aspect of the present invention, since the steam immediately after passing through the narrowing section is heated by the heating section, dew condensation of the steam due to the pressure change is prevented, and the film quality can be further improved. .

【0041】(4)請求項4の発明によれば、被処理体
のウエット酸化処理が減圧下でなされるため、酸化速度
が遅くなって被処理体に成膜される酸化膜の膜厚の制御
が容易になり、膜質の向上及び極薄膜の成膜が可能とな
る。
(4) According to the fourth aspect of the present invention, since the wet oxidation of the object to be processed is performed under reduced pressure, the oxidation rate is reduced and the thickness of the oxide film formed on the object to be processed is reduced. Control becomes easy, and film quality can be improved and an extremely thin film can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す酸化処理装置の全体構
成図である。
FIG. 1 is an overall configuration diagram of an oxidation treatment apparatus showing one embodiment of the present invention.

【図2】絞り部の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a throttle unit.

【図3】燃焼装置の拡大断面図である。FIG. 3 is an enlarged sectional view of the combustion device.

【図4】絞り部の変形例を示す断面図である。FIG. 4 is a cross-sectional view illustrating a modified example of a throttle unit.

【図5】絞り部の別の変形例を示す断面図である。FIG. 5 is a cross-sectional view showing another modification of the throttle unit.

【符号の説明】[Explanation of symbols]

W 半導体ウエハ(被処理体) 1 処理炉 2 反応管 13 減圧ポンプ(減圧手段) 14 減圧管 23 燃焼装置 24 水蒸気供給管路 46 オリフィス(絞り部) 47 水蒸気加熱ヒータ(加熱部) 48 先細末広ノズル(絞り部) W Semiconductor wafer (object to be processed) 1 Processing furnace 2 Reaction tube 13 Decompression pump (decompression means) 14 Decompression tube 23 Combustion device 24 Steam supply line 46 Orifice (throttle portion) 47 Steam heater (heating portion) 48 Tapered divergent nozzle (Aperture section)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被処理体を高温下で酸化処理する処理炉
と、この処理炉を減圧する減圧手段と、前記処理炉外に
設けられ水素ガスと酸素ガスを燃焼させて水蒸気を発生
させる燃焼装置と、この燃焼装置と前記処理炉を接続す
る水蒸気供給管路と、この水蒸気供給管路に設けられ燃
焼装置側と処理炉側に圧力差を生じさせる絞り部とを備
えたことを特徴とする酸化処理装置。
1. A processing furnace for oxidizing an object to be processed at a high temperature, a pressure reducing means for reducing the pressure of the processing furnace, and a combustion provided outside the processing furnace for burning hydrogen gas and oxygen gas to generate steam. An apparatus, a steam supply pipe connecting the combustion apparatus and the processing furnace, and a throttle provided in the steam supply pipe to generate a pressure difference between the combustion apparatus side and the processing furnace side. Oxidation treatment equipment.
【請求項2】 前記絞り部が前記水蒸気供給管路に沿っ
て多段に設けられていることを特徴とする請求項1記載
の酸化処理装置。
2. The oxidation treatment apparatus according to claim 1, wherein the throttle portion is provided in multiple stages along the steam supply pipe.
【請求項3】 前記水蒸気供給管路の周囲に前記絞り部
の通過直後の水蒸気を加熱するための加熱部が設けられ
ていることを特徴とする請求項1又は2記載の酸化処理
装置。
3. The oxidation treatment apparatus according to claim 1, wherein a heating section for heating steam immediately after passing through the throttle section is provided around the steam supply pipe.
【請求項4】 水素ガスと酸素ガスを反応させて水蒸気
を発生させる工程と、前記水蒸気を減圧された処理炉内
にその減圧が前記反応に直接作用しないように圧力的に
遮断して供給する工程と、前記減圧された処理炉内で被
処理体を加熱しながら前記水蒸気と接触させて酸化処理
する工程とを備えたことを特徴とする酸化処理方法。
4. A step of reacting a hydrogen gas and an oxygen gas to generate steam, and supplying the steam into a reduced-pressure processing furnace in a pressure-blocked manner so that the reduced pressure does not directly affect the reaction. An oxidation treatment method, comprising: a step of heating an object to be processed in a reduced-pressure processing furnace and contacting the object with the steam to perform an oxidation treatment.
JP31435693A 1993-11-19 1993-11-19 Oxidation treatment apparatus and oxidation treatment method Expired - Fee Related JP3242244B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP31435693A JP3242244B2 (en) 1993-11-19 1993-11-19 Oxidation treatment apparatus and oxidation treatment method
US08/341,052 US5777300A (en) 1993-11-19 1994-11-16 Processing furnace for oxidizing objects
KR1019940030484A KR100374065B1 (en) 1993-11-19 1994-11-19 Oxidation treatment apparatus and oxidation treatment method
TW083110868A TW269723B (en) 1993-11-19 1994-11-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31435693A JP3242244B2 (en) 1993-11-19 1993-11-19 Oxidation treatment apparatus and oxidation treatment method

Publications (2)

Publication Number Publication Date
JPH07142460A JPH07142460A (en) 1995-06-02
JP3242244B2 true JP3242244B2 (en) 2001-12-25

Family

ID=18052350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31435693A Expired - Fee Related JP3242244B2 (en) 1993-11-19 1993-11-19 Oxidation treatment apparatus and oxidation treatment method

Country Status (1)

Country Link
JP (1) JP3242244B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7534730B2 (en) 2003-08-26 2009-05-19 Hitachi Kokusai Electric In. Producing method of semiconductor device and substrate processing apparatus
CN109193340A (en) * 2018-08-22 2019-01-11 深亮智能技术(中山)有限公司 A kind of wet process oxidation technology and device of vertical cavity surface emitting laser

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100149A (en) * 1997-07-01 2000-08-08 Steag Rtp Systems Method for rapid thermal processing (RTP) of silicon substrates
EP1160838B1 (en) * 2000-05-31 2007-12-05 Tokyo Electron Limited Heat treatment system and method
JP4538987B2 (en) * 2001-05-28 2010-09-08 ソニー株式会社 Vertical heat spreader
US8901013B2 (en) 2010-08-05 2014-12-02 Hitachi Kokusai Electric Inc. Substrate processing apparatus, method of processing substrate and method of manufacturing semiconductor device
JP6749954B2 (en) * 2018-02-20 2020-09-02 株式会社Kokusai Electric Substrate processing apparatus, semiconductor device manufacturing method, and program
JP7038770B2 (en) * 2020-08-12 2022-03-18 株式会社Kokusai Electric Substrate processing equipment, semiconductor equipment manufacturing methods, programs

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7534730B2 (en) 2003-08-26 2009-05-19 Hitachi Kokusai Electric In. Producing method of semiconductor device and substrate processing apparatus
CN1762043B (en) * 2003-08-26 2010-05-05 株式会社日立国际电气 Method for manufacturing semiconductor device and substrate processing apparatus
US7871938B2 (en) 2003-08-26 2011-01-18 Hitachi Kokusai Electric Inc. Producing method of semiconductor device and substrate processing apparatus
US8084369B2 (en) 2003-08-26 2011-12-27 Hitachi Kokusai Electric, Inc. Producing method of semiconductor device and substrate processing apparatus
CN109193340A (en) * 2018-08-22 2019-01-11 深亮智能技术(中山)有限公司 A kind of wet process oxidation technology and device of vertical cavity surface emitting laser

Also Published As

Publication number Publication date
JPH07142460A (en) 1995-06-02

Similar Documents

Publication Publication Date Title
KR100374065B1 (en) Oxidation treatment apparatus and oxidation treatment method
KR100785133B1 (en) Heat treatment system
TWI409879B (en) Oxidation method and apparatus for semiconductor process
KR100289136B1 (en) Heat treatment equipment
KR100935260B1 (en) Oxidization method and oxidization apparatus for object to be processed and storage medium
US7452826B2 (en) Oxidation method and oxidation system
KR20010021745A (en) Method and apparatus for in situ vapor generation
JP3242244B2 (en) Oxidation treatment apparatus and oxidation treatment method
JP2003188169A (en) Method and apparatus for insitu vapor generation
EP0922667B1 (en) Method for generating water for semiconductor production
JP2902012B2 (en) Low pressure oxidation equipment
JPH07283164A (en) Device and method for heat treatment
US7129186B2 (en) Oxidation method and oxidation system
JP6151943B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
US5445522A (en) Combustion device
JP3271679B2 (en) Oxidation treatment equipment
JP3126487B2 (en) Oxidation treatment equipment
JP3271680B2 (en) Oxidation treatment equipment
JP3154858B2 (en) Oxidation treatment equipment
JPH1167750A (en) External burning system, external burning, processing system with the external burning system and processing using the external burning system
US20230395368A1 (en) Substrate processing method and substrate processing apparatus
JPH07172802A (en) Fuel reforming system
JPS60186023A (en) Steam treating device
JP4597393B2 (en) Heat treatment equipment
JPH1187329A (en) Steam supply system and oxidation processing equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees