JP3563612B2 - Preparation of fatty acid alkyl esters - Google Patents
Preparation of fatty acid alkyl esters Download PDFInfo
- Publication number
- JP3563612B2 JP3563612B2 JP27136298A JP27136298A JP3563612B2 JP 3563612 B2 JP3563612 B2 JP 3563612B2 JP 27136298 A JP27136298 A JP 27136298A JP 27136298 A JP27136298 A JP 27136298A JP 3563612 B2 JP3563612 B2 JP 3563612B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- fatty acid
- acid alkyl
- water
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Fats And Perfumes (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は脂肪酸アルキルエステルの製法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
脂肪酸メチルエステル等の脂肪酸アルキルエステルは、高級アルコール等を製造する際の出発原料として有用である。この脂肪酸アルキルエステルは、一般的には油脂とアルコールの反応によって得られる。油脂とアルコールとの反応は、(1) 油脂とアルコールからジグリセライドと脂肪酸アルキルエステルを生成する反応、(2) ジグリセライドとアルコールからモノグリセライドと脂肪酸アルキルエステルを生成する反応、及び(3) モノグリセライドとアルコールから脂肪酸アルキルエステルとグリセリンを生成する反応という、3つの素反応で表される。このような反応は平衡反応であり、副生物であるグリセリンは特に反応終期に反応を阻害する要因となる。脂肪酸アルキルエステルと副生グリセリンは容易に層分離を起こすため、グリセリンを分離すれば反応は容易に進行する。そのため一般には、脂肪酸アルキルエステルの製造方法として、特開昭56−65097に開示されているような、エステル交換反応時にできるグリセリンを分離した後で再び反応を行う多段反応が多く用いられる。しかしながら、グリセリンは完全に脂肪酸アルキルエステルと分離するわけではなく、その一部は脂肪酸アルキルエステル層に溶解するため、それらが反応終期に反応を阻害し、その結果、脂肪酸アルキルエステルの収率を十分高くすることができなかった。
【0003】
従って、本発明の課題は、油脂とアルコールとから高収率で高純度の脂肪酸アルキルエステルを製造する方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明は、油脂を原料として触媒とアルコールを用いてエステル交換反応を行い脂肪酸アルキルエステルを製造するに際し、エステル交換反応の途中で水を反応系へ添加し、副生グリセリンを水層へ移行させて、更にエステル交換反応(以下、反応終期のエステル交換反応という)を行い反応率を向上させる、脂肪酸アルキルエステルの製法を提供する。
【0005】
【発明の実施の形態】
本発明で用いる油脂として、天然の植物性油脂や動物性油脂が挙げられ、植物性油脂としては、椰子油、パーム油、パーム核油、大豆油等が、動物性油脂としては、牛脂、豚脂、魚油等が挙げられる。
本発明ではアルコールとして炭素数1〜5の低級アルコールが好ましく用いられ、具体的には、メタノール、エタノール、プロパノール等が挙げられる。工業的にはメタノールが低コストと回収の容易さから更に好ましい。
本発明の触媒としてはアルカリ触媒が好ましく、具体的には、ナトリウム、カリウム等のアルカリ金属の水酸化物、又はこれらのメチラート等がある。工業的には水酸化ナトリウムがコストの面から特に好ましい。これらの触媒は、水やアルコールに任意の割合で溶解させて使用する。
【0006】
本反応では、水が存在する系でアルカリ触媒を用いる場合、トリグリセライド及びジグリセライドは反応しにくくなる。これは、トリグリセライド及びジグリセライドが親水基である−OHを0個もしくは1個しか持たないため、水層側に移動した触媒との接触が困難になるためである。そのため本反応を実施するときには、水を添加する前にトリグリセライド及びジグリセライドの量を極力減らしておく必要がある。また、反応の初期段階で水が存在すると、トリグリセライド及びジグリセライドが多量に存在していること、また、水層を分離した後で反応を行う場合にも、脂肪酸アルキルエステル層に溶解した水が、トリグリセライド及びジグリセライドの反応を阻害したり、石鹸の生成量が増加するために得策ではない。
【0007】
従って、エステル交換反応の途中で、副生グリセリン層を分離した後、反応終期のエステル交換反応を行うことが好ましい。また、副生グリセリン層を分離した後の反応混合物中のトリグリセライド及びジグリセライドの合計量が5重量%以下になった時点(反応終期)で、水を反応系へ添加して、反応終期のエステル交換反応を行うことがより好ましい。また反応終期のエステル交換反応を行うために、後述の方法にて反応系へ触媒が添加される。
【0008】
反応終期における反応系への水の添加量は、脂肪酸アルキルエステル層100 重量部に対して、好ましくは1〜100 重量部、より好ましくは3〜10重量部、さらに好ましくは5〜7重量部である。この範囲内で反応を行うことが、原料中や反応によって生成するグリセリンの除去、及び脂肪酸アルキルエステル層との乳化現象を抑える点で好ましい。また、この水の中には、アルコールやグリセリンが溶解していてもよい。例えば、本工程の水洗工程で出るメタノール、グリセリン、水の混合物でもよい。
【0009】
反応終期以降に添加される触媒の添加量は脂肪酸アルキルエステル層100 重量部に対して、好ましくは0.01〜1重量部、より好ましくは0.02〜0.1 重量部、さらに好ましくは0.04〜0.07重量部である。この範囲内で反応を行うことが、副生物の石鹸の生成を抑え、脂肪酸アルキルエステル層とグリセリン層の乳化を起こさない点、そして触媒のコストの面から好ましい。
【0010】
反応終期以降にアルコールを添加してもよい。アルコールの添加量は、脂肪酸アルキルエステル1モルに対して、好ましくは0.05〜5モル倍、より好ましくは0.5 〜2モル倍である。この範囲での反応は、未反応のアルコールを回収するときのコストの面、及び脂肪酸アルキルエステル層へのグリセリンの溶解を少なくする面で好ましい。
【0011】
反応終期のエステル交換反応は常圧もしくは微加圧下で行われる。この条件は減圧あるいは加圧下での反応に比べて、設備コストを抑えることができるために好ましい。反応温度は通常30〜80℃が好ましく、さらに好ましくは40〜60℃である。30℃以上で適度な反応速度が得られ、また80℃以下で脂肪酸アルキルエステルへのグリセリンや水の溶解度が大きくないので反応が阻害されず、この温度範囲で行うと通常のエステル交換反応時の温度と大差がないのでエネルギーと設備の面で有利であるし、アルコールのロスが抑えられる点でも有利である。
反応終期のエステル交換反応の反応時間は1〜60分が好ましい。あまり反応時間が長くても触媒が石鹸になってしまうと反応が止まってしまうため、この時間が望ましい。
【0012】
本発明のエステル交換反応は、槽型の回分式反応器、あるいは槽型や管型等の連続式反応器のどちらで行っても良いが、反応終期における反応は、連続式反応のほうが製造時間の短縮につながるため、生産性が良い。この場合、水と触媒を反応系へ同時に添加して反応を行う方法(a) と、水を添加して攪拌、分離を行った後、触媒を添加して反応を行う方法(b) とがある。方法(a) は例えば次のように行う。反応終期において、脂肪酸アルキルエステル層100 重量部に対して0.01〜1重量部の触媒と1〜100 重量部の水をポンプを用いて同時に導入し、反応器内の滞留時間が1〜60分になるように一定量ずつ抜き出しながら一定速度で攪拌を行う。この時、反応器は通常エステル交換反応時に使用される温度30〜80℃で一定に加熱する。方法(b) は例えば次のように行う。反応器に脂肪酸アルキルエステルと水とを、脂肪酸アルキルエステル100 重量部に水1〜100 重量部となるように同時に導入し、反応器内の滞留時間が1〜60分になるように一定量ずつ抜き出しながら攪拌を行う。抜き出した混合物を連続式の管型分離器に導入し脂肪酸アルキルエステル層とグリセリン層に分離する。分離した脂肪酸アルキルエステル層を反応器に導入し、同時に触媒を脂肪酸アルキルエステル層100 重量部に対して0.01〜1重量部導入して、滞留時間1〜60分で反応を行う。方法(a) と方法(b) とで品質上の差はないが、設備の面で方法(a) の方がより好ましい。
【0013】
【実施例】
下記に示す実施例の脂肪酸メチルエステル%、モノグリセライド%及びその他成分%は、フロンティア・ラボ社のウルトラアロイUA−1(HT)(長さ15m、内径250μm 、膜厚0.15μm)のカラムを用いたガスクロマトグラフ(GC) によって求めた。また、水酸基価(OHV) はJIS K 0070「基準油脂分析試験法」(日本油化学協会編 (1983))に記された方法によって求めた。また%は特記しない限り重量基準である。
【0014】
実施例1
(a) 内径30cm、高さ30cm、容積20Lの槽型回分反応器を用いて、パーム核油10kgを原料とし、各反応において触媒として水酸化ナトリウムの15%メタノール溶液0.2kg 、メタノール0.8kg を添加して、攪拌下50℃で60分反応させた。反応終了後、攪拌を止めて30分間静置して、生成したグリセリン層(以下GM層という) を分離し、脂肪酸メチルエステル層に同量の触媒を添加して同様の操作を行った。この操作を3回繰り返して得られた脂肪酸メチルエステル層を分析した結果、パーム核油脂肪酸メチルエステル含有量は97.878GC%、モノグリセライド含有量は0.953 GC%、トリグリセライドとジグリセライドの合計含有量は 1.169 GC%であった。
【0015】
(b) 内径80mmΦ、長さ200mm の流通式攪拌反応器に、上記(a) で得た脂肪酸メチルエステル層だけを定量ポンプによって1000cc/hで投入し、触媒として3%の水酸化ナトリウムのメタノール溶液を21.2cc/h、イオン交換水を53.3cc/hで連続的に供給しながら攪拌した。攪拌は東京理科機械株式会社の攪拌機(EYELA M AZELA Z)に、長さ60mm、高さ20mmの半月型の攪拌板を取りつけて、攪拌スピード250rpm一定で行った。反応時間(反応器内の滞留時間) は12分で一定とし、反応温度が50℃になるように反応器を温水によって保温した。反応器内の反応物は、ポンプを用いて(a) で得た脂肪酸メチルエステル層、触媒及び水の供給量と同量抜き出し、反応器内の混合物の量を常に一定(約200cc)に保った。得られた反応物を温度50℃で一定に保たれた、内径20mmΦ、長さ1000mmの流通式の分離器に導入し、脂肪酸メチルエステル層とグリセリンを含んだ水層(以下「GMW 層」という) に分離したのち、脂肪酸メチルエステル層から残存する石鹸等を取り除いた後、TMSI−H(ジーエルサイエンス社) 1mlと反応させ、ガスクロマトグラフにかけて組成の分析を行った。また、脂肪酸メチルエステル層のメタノール濃度、石鹸量、水分量の測定も行った。反応条件及び測定結果を表1に示す。
【0016】
実施例2
実施例1の(b) と同じ反応条件で、まず温度50℃に加熱、保温した反応器に、実施例1の(a) で得た脂肪酸メチルエステル層を定量ポンプによって1000cc/hで供給し、イオン交換水を53.3cc/hで連続的に供給して滞留時間12分で水洗したのち、分離器で脂肪酸メチルエステル層とGMW 層に分離した。分離した脂肪酸メチルエステルを再び反応器に定量ポンプを用いて1000cc/hで連続的に供給し、実施例1(b) と同じ触媒と混合して、反応を行った。反応器及び分離器も実施例1と同じ物を使用した。結果を表1に示す。
【0017】
実施例3
反応時に添加するイオン交換水の量を半分の26.7cc/hにする以外は実施例1の(b) と同じにして反応を行った。結果を表1に示す。
【0018】
比較例1
実施例1の(b) と同じ反応器と分離器を用いて、実施例1の(b) と同じ反応温度と攪拌速度で、水を添加せずに、触媒のみを入れて滞留時間12分で反応させ、分離器で脂肪酸メチルエステル層とGMW 層に分離した。結果を表1に示す。
【0019】
実施例4
実施例1の(a) で得た脂肪酸メチルエステル層700g、触媒として1.65%の水酸化ナトリウムのメタノール溶液を31.5g、イオン交換水43.8gを内径80mmΦ、長さ 200mmの回分反応器に同時に仕込み、実施例1の(b) と同じ温度のもと、反応時間30分で反応を行った。その後30分反応器内に静置して生成したGMW 層と脂肪酸メチルエステル層を分離して、実施例1と同様の分析を行った。結果を表2に示す。
【0020】
実施例5
実施例4と同量の実施例1の(a) で得た脂肪酸メチルエステル層、触媒、イオン交換水を用いて、脂肪酸メチルエステル層にイオン交換水を入れて攪拌した後、水層を分離し、その後触媒を入れて攪拌することで反応を行った。結果を表2に示す。
【0021】
比較例2
実施例4と同量の実施例1(a) で得た脂肪酸メチルエステル層を用いて、水を添加せずに触媒のみを添加して実施例4と同じ条件で反応を行った。結果を表2に示す。
【0022】
【表1】
【0023】
【表2】
【0024】
注)
*1:Naとして
【0025】
【発明の効果】
本発明によれば、油脂とアルコールとから高収率で高純度の脂肪酸アルキルエステルを得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a fatty acid alkyl ester.
[0002]
Problems to be solved by the prior art and the invention
Fatty acid alkyl esters such as fatty acid methyl esters are useful as starting materials for producing higher alcohols and the like. This fatty acid alkyl ester is generally obtained by a reaction between a fat and oil and an alcohol. The reaction between fats and oils and alcohols includes (1) a reaction to produce diglycerides and fatty acid alkyl esters from fats and oils and alcohols, (2) a reaction to produce monoglycerides and fatty acid alkyl esters from diglycerides and alcohols, and (3) a reaction from monoglycerides and alcohols. It is represented by three elementary reactions, ie, a reaction for producing a fatty acid alkyl ester and glycerin. Such a reaction is an equilibrium reaction, and glycerin, a by-product, becomes a factor inhibiting the reaction particularly at the end of the reaction. Since the fatty acid alkyl ester and by-product glycerin easily undergo layer separation, the reaction proceeds easily if glycerin is separated. Therefore, in general, as a method for producing a fatty acid alkyl ester, a multi-stage reaction in which glycerin formed during a transesterification reaction is separated and then reacted again, as disclosed in JP-A-56-65097, is often used. However, glycerin is not completely separated from the fatty acid alkyl ester, and a part of the glycerin dissolves in the fatty acid alkyl ester layer, so that they inhibit the reaction at the end of the reaction, and as a result, the yield of the fatty acid alkyl ester is sufficiently reduced. Could not be higher.
[0003]
Therefore, an object of the present invention is to provide a method for producing a high-purity fatty acid alkyl ester in high yield from fats and oils and alcohols.
[0004]
[Means for Solving the Problems]
In the present invention, when a fatty acid alkyl ester is produced by performing a transesterification reaction using a catalyst and an alcohol with fats and oils as raw materials, water is added to the reaction system during the transesterification reaction, and glycerin by-product is transferred to an aqueous layer. In addition, the present invention provides a method for producing a fatty acid alkyl ester, which further performs a transesterification reaction (hereinafter, referred to as a transesterification reaction at the end of the reaction) to improve the reaction rate.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Examples of the fats and oils used in the present invention include natural vegetable fats and animal fats and oils, such as coconut oil, palm oil, palm kernel oil, and soybean oil. Fat, fish oil and the like.
In the present invention, a lower alcohol having 1 to 5 carbon atoms is preferably used as the alcohol, and specific examples thereof include methanol, ethanol, and propanol. Industrially, methanol is more preferable because of low cost and ease of recovery.
As the catalyst of the present invention, an alkali catalyst is preferable, and specific examples thereof include hydroxides of alkali metals such as sodium and potassium, and methylates thereof. Industrially, sodium hydroxide is particularly preferred in terms of cost. These catalysts are used after being dissolved in water or alcohol at an arbitrary ratio.
[0006]
In this reaction, when an alkali catalyst is used in a system in which water is present, triglyceride and diglyceride hardly react. This is because triglycerides and diglycerides have only 0 or 1 -OH, which is a hydrophilic group, so that contact with the catalyst that has moved to the aqueous layer becomes difficult. Therefore, when performing this reaction, it is necessary to reduce the amount of triglyceride and diglyceride as much as possible before adding water. In addition, when water is present in the initial stage of the reaction, a large amount of triglyceride and diglyceride is present, and also when the reaction is performed after separating the aqueous layer, water dissolved in the fatty acid alkyl ester layer is It is not advisable to inhibit the reaction of triglycerides and diglycerides and increase the amount of soap produced.
[0007]
Therefore, it is preferable to perform a transesterification reaction at the end of the reaction after separating the by-product glycerin layer during the transesterification reaction. When the total amount of triglyceride and diglyceride in the reaction mixture after separating the by-product glycerin layer became 5% by weight or less (end of reaction), water was added to the reaction system, and transesterification at the end of reaction was performed. More preferably, the reaction is performed. In addition, a catalyst is added to the reaction system by a method described below in order to perform the transesterification reaction at the end of the reaction.
[0008]
The amount of water added to the reaction system at the end of the reaction is preferably 1 to 100 parts by weight, more preferably 3 to 10 parts by weight, and still more preferably 5 to 7 parts by weight based on 100 parts by weight of the fatty acid alkyl ester layer. is there. It is preferable to carry out the reaction within this range in terms of removing glycerin generated in the raw material and by the reaction and suppressing the emulsification phenomenon with the fatty acid alkyl ester layer. In this water, alcohol or glycerin may be dissolved. For example, it may be a mixture of methanol, glycerin, and water discharged in the water washing step of this step.
[0009]
The amount of the catalyst added after the end of the reaction is preferably 0.01 to 1 part by weight, more preferably 0.02 to 0.1 part by weight, and further preferably 0 to 100 parts by weight, based on 100 parts by weight of the fatty acid alkyl ester layer. 0.04 to 0.07 parts by weight. Performing the reaction within this range is preferable in terms of suppressing the generation of soap as a by-product, not causing emulsification of the fatty acid alkyl ester layer and the glycerin layer, and reducing the cost of the catalyst.
[0010]
Alcohol may be added after the end of the reaction. The amount of the alcohol to be added is preferably 0.05 to 5 times, more preferably 0.5 to 2 times the mole of the fatty acid alkyl ester. A reaction in this range is preferable in terms of cost when recovering unreacted alcohol and reducing dissolution of glycerin in the fatty acid alkyl ester layer.
[0011]
The transesterification at the end of the reaction is carried out under normal pressure or under slight pressure. This condition is preferable because the equipment cost can be reduced as compared with the reaction under reduced pressure or under pressure. The reaction temperature is usually preferably from 30 to 80 ° C, more preferably from 40 to 60 ° C. An appropriate reaction rate is obtained at 30 ° C. or higher, and the reaction is not hindered at 80 ° C. or lower because the solubility of glycerin and water in the fatty acid alkyl ester is not large. Since there is no great difference from the temperature, it is advantageous in terms of energy and equipment, and also advantageous in that loss of alcohol can be suppressed.
The reaction time of the transesterification at the end of the reaction is preferably 1 to 60 minutes. Even if the reaction time is too long, if the catalyst becomes soap, the reaction stops, so this time is desirable.
[0012]
The transesterification reaction of the present invention may be carried out in either a tank-type batch reactor or a tank-type or tube-type continuous reactor. Productivity is good because it leads to shortening. In this case, a method (a) in which water and a catalyst are simultaneously added to a reaction system to carry out a reaction, and a method (b) in which water is added, followed by stirring and separation, and then a catalyst is added to carry out a reaction. is there. The method (a) is performed, for example, as follows. At the end of the reaction, 0.01 to 1 part by weight of the catalyst and 1 to 100 parts by weight of water are simultaneously introduced using a pump with respect to 100 parts by weight of the fatty acid alkyl ester layer, and the residence time in the reactor is 1 to 60 parts. Stirring is performed at a constant speed while extracting a fixed amount at a time so as to obtain minute amounts. At this time, the reactor is constantly heated at a temperature usually used in the transesterification reaction at 30 to 80 ° C. The method (b) is performed, for example, as follows. The fatty acid alkyl ester and water are simultaneously introduced into the reactor so that 1 to 100 parts by weight of water is added to 100 parts by weight of the fatty acid alkyl ester, and a fixed amount is added so that the residence time in the reactor becomes 1 to 60 minutes. Stir while extracting. The extracted mixture is introduced into a continuous tubular separator and separated into a fatty acid alkyl ester layer and a glycerin layer. The separated fatty acid alkyl ester layer is introduced into the reactor, and at the same time, 0.01 to 1 part by weight of the catalyst is introduced with respect to 100 parts by weight of the fatty acid alkyl ester layer, and the reaction is carried out for a residence time of 1 to 60 minutes. Although there is no difference in quality between the method (a) and the method (b), the method (a) is more preferable in terms of equipment.
[0013]
【Example】
For the fatty acid methyl ester%, monoglyceride% and other component% in the examples shown below, a column of Ultraalloy UA-1 (HT) (15 m in length, 250 μm in inner diameter, 0.15 μm in film thickness) from Frontier Lab. It was determined by gas chromatography (GC). Further, the hydroxyl value (OHV) was determined by the method described in JIS K 0070 “Standard fat and oil analysis test method” (edited by Japan Oil Chemical Association (1983)). The percentages are by weight unless otherwise specified.
[0014]
Example 1
(A) Using a batch type batch reactor having an inner diameter of 30 cm, a height of 30 cm, and a volume of 20 L, 10 kg of palm kernel oil was used as a raw material. In each reaction, 0.2 kg of a 15% methanol solution of sodium hydroxide in methanol and 0.1 ml of methanol were used as catalysts. 8 kg was added and reacted at 50 ° C. for 60 minutes with stirring. After completion of the reaction, the stirring was stopped and the mixture was allowed to stand for 30 minutes to separate a glycerin layer (hereinafter referred to as a GM layer), and the same operation was performed by adding the same amount of catalyst to the fatty acid methyl ester layer. As a result of analyzing the fatty acid methyl ester layer obtained by repeating this operation three times, the content of palm kernel oil fatty acid methyl ester was 97.878 GC%, the content of monoglyceride was 0.953 GC%, and the total content of triglyceride and diglyceride. Was 1.169 GC%.
[0015]
(B) Only the fatty acid methyl ester layer obtained in (a) above was charged into a flow-type stirring reactor having an inner diameter of 80 mmΦ and a length of 200 mm at a rate of 1000 cc / h by a quantitative pump, and 3% methanol of sodium hydroxide was used as a catalyst. The solution was stirred while continuously supplying the solution at 21.2 cc / h and ion-exchanged water at 53.3 cc / h. Stirring was performed at a constant stirring speed of 250 rpm by attaching a half-moon type stirring plate having a length of 60 mm and a height of 20 mm to a stirrer (EYELA M AZELA Z) of Tokyo Rika Kikai Co., Ltd. The reaction time (residence time in the reactor) was constant at 12 minutes, and the reactor was kept warm with hot water so that the reaction temperature became 50 ° C. The reactants in the reactor were withdrawn by pump using the same amount as the fatty acid methyl ester layer, catalyst and water supplied in (a), and the amount of the mixture in the reactor was kept constant (about 200 cc). Was. The obtained reaction product is introduced into a flow-type separator having an inner diameter of 20 mmΦ and a length of 1000 mm maintained at a constant temperature of 50 ° C., and a fatty acid methyl ester layer and an aqueous layer containing glycerin (hereinafter referred to as “GMW layer”). After removing the remaining soap and the like from the fatty acid methyl ester layer, the mixture was reacted with 1 ml of TMSI-H (GL Sciences), and analyzed for composition by gas chromatography. In addition, the methanol concentration, the amount of soap, and the amount of water in the fatty acid methyl ester layer were also measured. Table 1 shows the reaction conditions and measurement results.
[0016]
Example 2
Under the same reaction conditions as in (b) of Example 1, the fatty acid methyl ester layer obtained in (a) of Example 1 was supplied at 1000 cc / h to a reactor heated and kept at a temperature of 50 ° C. by a metering pump. Then, ion-exchanged water was continuously supplied at 53.3 cc / h, washed with water for a residence time of 12 minutes, and then separated into a fatty acid methyl ester layer and a GMW layer by a separator. The separated fatty acid methyl ester was continuously supplied again to the reactor at 1000 cc / h using a metering pump, and mixed with the same catalyst as in Example 1 (b) to carry out the reaction. The same reactor and separator as in Example 1 were used. Table 1 shows the results.
[0017]
Example 3
The reaction was carried out in the same manner as in (b) of Example 1, except that the amount of ion-exchanged water added during the reaction was reduced by half to 26.7 cc / h. Table 1 shows the results.
[0018]
Comparative Example 1
Using the same reactor and separator as in Example 1 (b), at the same reaction temperature and stirring speed as in Example 1 (b), without adding water, adding only the catalyst and holding for 12 minutes. And separated by a separator into a fatty acid methyl ester layer and a GMW layer. Table 1 shows the results.
[0019]
Example 4
Batch reaction of 700 g of the fatty acid methyl ester layer obtained in (a) of Example 1, 31.5 g of a methanol solution of 1.65% sodium hydroxide as a catalyst, and 43.8 g of ion-exchanged water having an inner diameter of 80 mmΦ and a length of 200 mm. The reactor was charged at the same time and reacted at the same temperature as in (b) of Example 1 for a reaction time of 30 minutes. After that, the GMW layer and the fatty acid methyl ester layer formed by allowing to stand in the reactor for 30 minutes were separated, and the same analysis as in Example 1 was performed. Table 2 shows the results.
[0020]
Example 5
Using the same amount of fatty acid methyl ester layer, catalyst and ion exchange water obtained in (a) of Example 1 as in Example 4, ion-exchanged water was added to the fatty acid methyl ester layer, and the aqueous layer was separated. Then, the reaction was performed by adding a catalyst and stirring. Table 2 shows the results.
[0021]
Comparative Example 2
Using the same amount of the fatty acid methyl ester layer obtained in Example 1 (a) as in Example 4, the reaction was carried out under the same conditions as in Example 4 except that only the catalyst was added without adding water. Table 2 shows the results.
[0022]
[Table 1]
[0023]
[Table 2]
[0024]
note)
* 1: As Na
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, a fatty acid alkyl ester of high purity can be obtained with high yield from fats and oils and alcohol.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27136298A JP3563612B2 (en) | 1998-09-25 | 1998-09-25 | Preparation of fatty acid alkyl esters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27136298A JP3563612B2 (en) | 1998-09-25 | 1998-09-25 | Preparation of fatty acid alkyl esters |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000096080A JP2000096080A (en) | 2000-04-04 |
JP3563612B2 true JP3563612B2 (en) | 2004-09-08 |
Family
ID=17499025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27136298A Expired - Fee Related JP3563612B2 (en) | 1998-09-25 | 1998-09-25 | Preparation of fatty acid alkyl esters |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3563612B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5053480B2 (en) * | 2000-11-30 | 2012-10-17 | 株式会社レボインターナショナル | Method for producing fatty acid ester |
JP2002265986A (en) * | 2001-03-15 | 2002-09-18 | Akio Kobayashi | Method for producing fatty acid alkyl ester and glycerin |
JP5058934B2 (en) * | 2008-10-06 | 2012-10-24 | 有限会社 斎明 | Method for regenerating waste cooking oil and cutting oil obtained thereby |
BR112012008608B8 (en) * | 2009-10-12 | 2022-06-14 | Elevance Renewable Sciences | Natural oil refining method |
-
1998
- 1998-09-25 JP JP27136298A patent/JP3563612B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000096080A (en) | 2000-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4297267B2 (en) | Method for producing high-purity fatty acid alkyl ester by single-stage continuous process | |
JP5232139B2 (en) | Method and apparatus for producing fatty acid alkyl ester using fatty acid | |
JP4418432B2 (en) | Production method of biodiesel oil | |
US4164506A (en) | Process for producing lower alcohol esters of fatty acids | |
US4303590A (en) | Method for the preparation of a lower alkyl ester of fatty acids | |
AU726032B2 (en) | Method for preparing fatty acid esters | |
US7888520B2 (en) | Process for the preparation of biodiesel | |
US7652156B2 (en) | Refined method for manufacturing ethyl esters from fatty substances of natural origin | |
JPWO2007088702A1 (en) | Fatty acid alkyl ester production method and fatty acid alkyl ester production apparatus | |
CN1441837A (en) | Transesterification process | |
GB2072167A (en) | Method for manufacturing high quality fatty acid esters | |
JPS6035099A (en) | Manufacture of fatty acid ester of short chain fatty alcohol | |
JPH05500505A (en) | Continuous production method for lower alkyl esters | |
JPH03200743A (en) | Preparation of lower alkylmonoester of fatty acid | |
JP2006508148A (en) | Alkyl ester production method | |
US20080110082A1 (en) | Biodiesel production with enhanced alkanol recovery | |
US2383596A (en) | Method of treating fatty glycerides | |
JP3563612B2 (en) | Preparation of fatty acid alkyl esters | |
US8624073B1 (en) | Homogeneous catalysts for biodiesel production | |
US7560578B2 (en) | Palm-based hydroxy fatty acid | |
JP4963011B2 (en) | Method for producing fatty acid lower alkyl ester | |
JPH0159317B2 (en) | ||
MX2008003425A (en) | Improved method for making ethyl esters from natural fats. | |
CN1020105C (en) | Sythetic method for sucrose fatty acid ester | |
JP2004018389A (en) | Production method for glyceryl (meth)acrylate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040601 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040603 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080611 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090611 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100611 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100611 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110611 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110611 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120611 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120611 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130611 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |