JP4000373B2 - Synthesis method of zinc sulfide in zinc oxide crystals by co-implantation of ions - Google Patents
Synthesis method of zinc sulfide in zinc oxide crystals by co-implantation of ions Download PDFInfo
- Publication number
- JP4000373B2 JP4000373B2 JP2003336505A JP2003336505A JP4000373B2 JP 4000373 B2 JP4000373 B2 JP 4000373B2 JP 2003336505 A JP2003336505 A JP 2003336505A JP 2003336505 A JP2003336505 A JP 2003336505A JP 4000373 B2 JP4000373 B2 JP 4000373B2
- Authority
- JP
- Japan
- Prior art keywords
- ions
- zinc
- zinc oxide
- implantation
- sulfide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 title claims description 42
- 239000011787 zinc oxide Substances 0.000 title claims description 21
- 239000013078 crystal Substances 0.000 title claims description 19
- 239000005083 Zinc sulfide Substances 0.000 title claims description 12
- 229910052984 zinc sulfide Inorganic materials 0.000 title claims description 12
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 title claims description 12
- 150000002500 ions Chemical class 0.000 title description 16
- 238000002513 implantation Methods 0.000 title description 10
- 238000001308 synthesis method Methods 0.000 title 1
- 238000000034 method Methods 0.000 claims description 15
- 238000002347 injection Methods 0.000 claims description 10
- 239000007924 injection Substances 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 8
- 230000002194 synthesizing effect Effects 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 239000011593 sulfur Substances 0.000 claims description 6
- -1 sulfur ions Chemical class 0.000 claims description 4
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 3
- 238000005468 ion implantation Methods 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 6
- 238000000295 emission spectrum Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- NHXVNEDMKGDNPR-UHFFFAOYSA-N zinc;pentane-2,4-dione Chemical compound [Zn+2].CC(=O)[CH-]C(C)=O.CC(=O)[CH-]C(C)=O NHXVNEDMKGDNPR-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Physical Vapour Deposition (AREA)
Description
本発明は、イオンの共注入による母結晶中での異種化合物の合成方法に関する。 The present invention relates to a method for synthesizing a heterogeneous compound in a mother crystal by co-implantation of ions.
母材の内部に異種物質を合成する方法は様々な手法が存在する。母材の表面から目的の深さに異種物質を合成する方法には表面からの拡散法か、イオン注入法がある。拡散法の場合、表面に生成した物質をエッチング等で除去しなければならず、工程が増えることとなる。再現性の高さを考慮すればイオン注入法が唯一の手法である。 There are various methods for synthesizing different substances inside the base material. Methods for synthesizing different substances from the surface of the base material to a desired depth include a diffusion method from the surface or an ion implantation method. In the case of the diffusion method, the substance generated on the surface must be removed by etching or the like, which increases the number of processes. Considering high reproducibility, the ion implantation method is the only method.
これまで、イオン注入法を用いて結晶内に異種物質を合成するには、大量にイオン注入
(1×10l7ions/cm2程度)することが行われてきた。この場合、1種類のイオン注入により、注入元素だけのナノサイズ結晶を合成することが行われ、蛍光特性の評価が行われている(例えば、非特許文献1)。
Until now, in order to synthesize dissimilar substances in crystals using ion implantation method, a large amount of ion implantation
(About 1 × 10 17 ions / cm 2 ) has been performed. In this case, nano-sized crystals of only the implanted element are synthesized by one type of ion implantation, and the fluorescence characteristics are evaluated (for example, Non-Patent Document 1).
現在、硫化亜鉛は最も期待されている蛍光体の1つであり広く研究されている材料である。しかしながら、応用に関しては劣化問題の解決が大きな課題とされ、これを防ぐために硫化物表面を酸化亜鉛やイットリアで被覆することが検討されている(例えば、非特許文献2)。しかし、表面を完全に被覆すること、表面からの硫黄の蒸発を抑制することは難しい。
大量のイオン注入は母結晶に大量の注入損傷をも同時に導入することが知られ、この損傷の存在が特性劣化を引き起こす原因としてしばしば問題となってきた。酸化亜鉛結晶に硫黄をイオン注入し、結晶内部に硫黄を閉じ込めても、熱処理中に亜鉛と反応して硫化亜鉛を生成すること無く、表面から硫黄が蒸発することが知られている。 It is known that a large amount of ion implantation introduces a large amount of implantation damage into the mother crystal at the same time, and the presence of this damage has often been a cause of deterioration of characteristics. It is known that even if sulfur is ion-implanted into a zinc oxide crystal and the inside of the crystal is confined, the sulfur evaporates from the surface without reacting with zinc during heat treatment to produce zinc sulfide.
本発明者は、イオンの共注入法により、酸化物結晶内に大量のイオン注入でもたらされる照射損傷を抑えた異種化合物を合成する手法を見出した。イオン注入による実験結果の再現性の高さを利用し、少ないイオン注入量で異種結晶(化合物を含む)を合成することができる。この方法により、発光素子、具体的には、母結晶内に異種蛍光体の合成を行うことができる。 The present inventor has found a method of synthesizing a heterogeneous compound that suppresses irradiation damage caused by a large amount of ion implantation into an oxide crystal by an ion co-implantation method. By utilizing the high reproducibility of experimental results by ion implantation, it is possible to synthesize different types of crystals (including compounds) with a small amount of ion implantation. By this method, it is possible to synthesize a heterogeneous phosphor in a light emitting element, specifically, a mother crystal.
すなわち、本発明は、酸化亜鉛結晶内に亜鉛イオンと硫黄イオンを注入量(ドーズ)が同じ濃度になるように共注入し、共注入後に酸化亜鉛を空気中で800℃の温度で、1〜30分保持する熱処理を行い酸化亜鉛結晶中に硫化亜鉛を合成することを特徴とする硫化亜鉛の合成方法、である。
That is, the present invention co-injects zinc ions and sulfur ions into the zinc oxide crystal so that the injection amount (dose) has the same concentration, and after the co-injection, the zinc oxide is in the air at a temperature of 800 ° C. A method for synthesizing zinc sulfide, characterized in that zinc sulfide is synthesized in a zinc oxide crystal by performing a heat treatment for 30 minutes .
酸化物結晶としては、酸化亜鉛、酸化チタン、ペロブスカイト系酸化物などを例示できる。異種化合物としては、硫化亜鉛、それに対するマンガン添加物、ZnSiO4、GaNなどを例示できる。共注入する濃度は、 注入量で,1x1015ions/cm2以上とすることが望ましい。共注入後の熱処理温度は750℃から950℃の範囲が好ましい。 Examples of oxide crystals include zinc oxide, titanium oxide, and perovskite oxides. Examples of the heterogeneous compound include zinc sulfide, manganese additive thereto, ZnSiO 4 , GaN, and the like. The co-implantation concentration is preferably 1 × 10 15 ions / cm 2 or more in terms of the implantation amount. The heat treatment temperature after co-injection is preferably in the range of 750 ° C to 950 ° C.
本発明の方法により、酸化物結晶内に大量のイオン注入でもたらされる照射損傷を抑えた異種化合物を合成することが可能となった。さらに、これまで注入量で1x1017ions/cm2程度で行われていた実験を1x1015ions/cm2の低濃度から実現可能である。 According to the method of the present invention, it has become possible to synthesize a heterogeneous compound that suppresses irradiation damage caused by a large amount of ion implantation into an oxide crystal. Furthermore, experiments conducted so far with an implantation amount of about 1 × 10 17 ions / cm 2 can be realized from a low concentration of 1 × 10 15 ions / cm 2 .
実施例として、酸化亜鉛中に硫化亜鉛を合成し、硫化亜鉛特有の発光特性を見出した例を示す。 As an example, an example in which zinc sulfide is synthesized in zinc oxide and emission characteristics peculiar to zinc sulfide have been found will be shown.
基板上に酸化亜鉛薄膜をCVD法で合成した。CVD装置は亜鉛ソースとして亜鉛アセチルアセトナートをアルゴン気流中(1sccm)、85℃で蒸発させた。そして、リングインジェクターから基板表面に向け噴射した。これと同時にECR源から低エネルギー酸素イオンを照射し、基板表面で反応させ膜厚200-400nmの酸化亜鉛薄膜を得た。合成時の基板温度は6O0℃で、時間は8時間合成した。得られた薄膜はC−軸配向膜である。 A zinc oxide thin film was synthesized on the substrate by CVD. In the CVD apparatus, zinc acetylacetonate as a zinc source was evaporated at 85 ° C. in an argon stream (1 sccm). And it injected toward the board | substrate surface from the ring injector. At the same time, low energy oxygen ions were irradiated from the ECR source and reacted on the substrate surface to obtain a zinc oxide thin film having a thickness of 200-400 nm. The substrate temperature at the time of synthesis was 60 ° C., and the time was synthesized for 8 hours. The obtained thin film is a C-axis alignment film.
上記の酸化亜鉛基板に亜鉛イオンを約10分と硫黄イオンを約1時間共注入した。注入は注入量(ドーズ)が同じ濃度になるように両イオンとも3×1015ions/cm2をイオン注入した。注入は両方とも室温で行った。この試料を熱処理の前後で蛍光特性を評価した。熱処理は空気中で 8O0℃の温度で、処理時間を変化させた。 The zinc oxide substrate was co-implanted with zinc ions for about 10 minutes and sulfur ions for about 1 hour. For implantation, 3 × 10 15 ions / cm 2 of both ions were implanted so that the implantation amount (dose) was the same concentration. Both injections were performed at room temperature. This sample was evaluated for fluorescence characteristics before and after heat treatment. In the heat treatment, the treatment time was changed at a temperature of 80 ° C in air.
図1は、イオン共注入前と共注入後の発光スペクトルである。スペクトル (a)
はas-deposited ZnO、スペクトル(b)は共注入後の発光スペクトル(as-implanted)である。イオン注入によって発光特性が失われている。これは酸化亜鉛にイオン注入したとき必ず見られる特性でありイオンの照射損傷に起因する。
FIG. 1 shows emission spectra before and after ion co-injection. Spectrum (a)
Is as-deposited ZnO and spectrum (b) is the emission spectrum after co-injection (as-implanted). Luminescent properties are lost due to ion implantation. This is a characteristic that is always observed when ions are implanted into zinc oxide, and is caused by ion irradiation damage.
図2は、共注入した酸化亜鉛試料を8OO℃で、時間を変えて熱処理した試料の発光スペクトルである。図2中に熱処理時間を示した。熱処理時間1分で可視領域での発光特性が現れ、8分でその強度は最大になる。このことは、イオンの照射損傷は短い時間で回復することが分かる。発光スペクトルは2つのピークで構成される。1つは46Onmにピークを持ち、もう1つは514nm付近にピークを持つ。46Onmのピークは無添加の硫化亜鉛で見られる発光ピークであり、もう1つのピークは酸化亜鉛に起因する発光ピークである。 FIG. 2 is an emission spectrum of a sample obtained by heat-treating a co-injected zinc oxide sample at 8OO ° C. for different times. The heat treatment time is shown in FIG. The light emission characteristic in the visible region appears after a heat treatment time of 1 minute, and its intensity becomes maximum at 8 minutes. This indicates that the ion irradiation damage is recovered in a short time. The emission spectrum is composed of two peaks. One has a peak at 46 Onm, and the other has a peak near 514 nm. The 46 Onm peak is the emission peak seen with additive-free zinc sulfide, and the other peak is the emission peak due to zinc oxide.
このことから、酸化亜鉛にイオンを共注入することで酸化亜鉛内に硫化亜鉛が生成されることが明らかとなった。イオンを共注入することで低ドーズでも母結晶と異種の化合物を母結晶内に合成できることが明らかとなった。 From this, it became clear that zinc sulfide was generated in zinc oxide by co-injection of ions into zinc oxide. It has been clarified that by co-implanting ions, a compound different from the mother crystal can be synthesized in the mother crystal even at a low dose.
本発明の方法により、母結晶内に異種蛍光体を合成した発光体などを提供することが可能となる。さらに、従来とは異なり、イオン注入量を減らし、注入損傷を低減できるので合成実験に有用である。 According to the method of the present invention, it is possible to provide a light emitter obtained by synthesizing different phosphors in a mother crystal. Furthermore, unlike the prior art, the ion implantation amount can be reduced and implantation damage can be reduced, which is useful for synthesis experiments.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003336505A JP4000373B2 (en) | 2003-09-26 | 2003-09-26 | Synthesis method of zinc sulfide in zinc oxide crystals by co-implantation of ions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003336505A JP4000373B2 (en) | 2003-09-26 | 2003-09-26 | Synthesis method of zinc sulfide in zinc oxide crystals by co-implantation of ions |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005105297A JP2005105297A (en) | 2005-04-21 |
JP4000373B2 true JP4000373B2 (en) | 2007-10-31 |
Family
ID=34532592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003336505A Expired - Lifetime JP4000373B2 (en) | 2003-09-26 | 2003-09-26 | Synthesis method of zinc sulfide in zinc oxide crystals by co-implantation of ions |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4000373B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9545360B2 (en) | 2009-05-13 | 2017-01-17 | Sio2 Medical Products, Inc. | Saccharide protective coating for pharmaceutical package |
US9554968B2 (en) | 2013-03-11 | 2017-01-31 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging |
US9572526B2 (en) | 2009-05-13 | 2017-02-21 | Sio2 Medical Products, Inc. | Apparatus and method for transporting a vessel to and from a PECVD processing station |
US9662450B2 (en) | 2013-03-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus |
US9664626B2 (en) | 2012-11-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Coating inspection method |
US9764093B2 (en) | 2012-11-30 | 2017-09-19 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US9863042B2 (en) | 2013-03-15 | 2018-01-09 | Sio2 Medical Products, Inc. | PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases |
US9878101B2 (en) | 2010-11-12 | 2018-01-30 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
US9903782B2 (en) | 2012-11-16 | 2018-02-27 | Sio2 Medical Products, Inc. | Method and apparatus for detecting rapid barrier coating integrity characteristics |
US9937099B2 (en) | 2013-03-11 | 2018-04-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging with low oxygen transmission rate |
US10189603B2 (en) | 2011-11-11 | 2019-01-29 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US10201660B2 (en) | 2012-11-30 | 2019-02-12 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like |
US11066745B2 (en) | 2014-03-28 | 2021-07-20 | Sio2 Medical Products, Inc. | Antistatic coatings for plastic vessels |
US11077233B2 (en) | 2015-08-18 | 2021-08-03 | Sio2 Medical Products, Inc. | Pharmaceutical and other packaging with low oxygen transmission rate |
US11116695B2 (en) | 2011-11-11 | 2021-09-14 | Sio2 Medical Products, Inc. | Blood sample collection tube |
US11624115B2 (en) | 2010-05-12 | 2023-04-11 | Sio2 Medical Products, Inc. | Syringe with PECVD lubrication |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105112876A (en) * | 2015-09-08 | 2015-12-02 | 杨雯雯 | Corrosion control method for Nd-Fe-B ferrite |
CN105441895A (en) * | 2015-11-03 | 2016-03-30 | 顾建 | Surface corrosion prevention method for NdFeB ferrite |
-
2003
- 2003-09-26 JP JP2003336505A patent/JP4000373B2/en not_active Expired - Lifetime
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9545360B2 (en) | 2009-05-13 | 2017-01-17 | Sio2 Medical Products, Inc. | Saccharide protective coating for pharmaceutical package |
US9572526B2 (en) | 2009-05-13 | 2017-02-21 | Sio2 Medical Products, Inc. | Apparatus and method for transporting a vessel to and from a PECVD processing station |
US10537273B2 (en) | 2009-05-13 | 2020-01-21 | Sio2 Medical Products, Inc. | Syringe with PECVD lubricity layer |
US10390744B2 (en) | 2009-05-13 | 2019-08-27 | Sio2 Medical Products, Inc. | Syringe with PECVD lubricity layer, apparatus and method for transporting a vessel to and from a PECVD processing station, and double wall plastic vessel |
US11624115B2 (en) | 2010-05-12 | 2023-04-11 | Sio2 Medical Products, Inc. | Syringe with PECVD lubrication |
US9878101B2 (en) | 2010-11-12 | 2018-01-30 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
US11123491B2 (en) | 2010-11-12 | 2021-09-21 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
US11884446B2 (en) | 2011-11-11 | 2024-01-30 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US11724860B2 (en) | 2011-11-11 | 2023-08-15 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US10189603B2 (en) | 2011-11-11 | 2019-01-29 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US11116695B2 (en) | 2011-11-11 | 2021-09-14 | Sio2 Medical Products, Inc. | Blood sample collection tube |
US11148856B2 (en) | 2011-11-11 | 2021-10-19 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US9664626B2 (en) | 2012-11-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Coating inspection method |
US9903782B2 (en) | 2012-11-16 | 2018-02-27 | Sio2 Medical Products, Inc. | Method and apparatus for detecting rapid barrier coating integrity characteristics |
US10201660B2 (en) | 2012-11-30 | 2019-02-12 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like |
US11406765B2 (en) | 2012-11-30 | 2022-08-09 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US10363370B2 (en) | 2012-11-30 | 2019-07-30 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US9764093B2 (en) | 2012-11-30 | 2017-09-19 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US9662450B2 (en) | 2013-03-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus |
US11344473B2 (en) | 2013-03-11 | 2022-05-31 | SiO2Medical Products, Inc. | Coated packaging |
US10912714B2 (en) | 2013-03-11 | 2021-02-09 | Sio2 Medical Products, Inc. | PECVD coated pharmaceutical packaging |
US11298293B2 (en) | 2013-03-11 | 2022-04-12 | Sio2 Medical Products, Inc. | PECVD coated pharmaceutical packaging |
US10537494B2 (en) | 2013-03-11 | 2020-01-21 | Sio2 Medical Products, Inc. | Trilayer coated blood collection tube with low oxygen transmission rate |
US9554968B2 (en) | 2013-03-11 | 2017-01-31 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging |
US11684546B2 (en) | 2013-03-11 | 2023-06-27 | Sio2 Medical Products, Inc. | PECVD coated pharmaceutical packaging |
US10016338B2 (en) | 2013-03-11 | 2018-07-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging |
US9937099B2 (en) | 2013-03-11 | 2018-04-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging with low oxygen transmission rate |
US9863042B2 (en) | 2013-03-15 | 2018-01-09 | Sio2 Medical Products, Inc. | PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases |
US11066745B2 (en) | 2014-03-28 | 2021-07-20 | Sio2 Medical Products, Inc. | Antistatic coatings for plastic vessels |
US11077233B2 (en) | 2015-08-18 | 2021-08-03 | Sio2 Medical Products, Inc. | Pharmaceutical and other packaging with low oxygen transmission rate |
Also Published As
Publication number | Publication date |
---|---|
JP2005105297A (en) | 2005-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4000373B2 (en) | Synthesis method of zinc sulfide in zinc oxide crystals by co-implantation of ions | |
CA2362956C (en) | Gallium nitride doped with rare earth ions and method and structure for achieving visible light emission | |
TWI360180B (en) | Method for forming stressed materials on a substra | |
Zhao et al. | Intense short-wavelength photoluminescence from thermal SiO 2 films co-implanted with Si and C ions | |
JP2005039172A (en) | Zinc oxide semiconductor manufacturing method | |
Dlamini et al. | The effect of different gas atmospheres on the structure, morphology and photoluminescence properties of pulsed laser deposited Y3 (Al, Ga) 5O12: Ce3+ nano thin films | |
Negi et al. | Cobalt ion implantation assisted modifications in luminescence, surface states, structural and morphological properties of MgTiO3 thin films | |
JP2001322814A (en) | P-type oxide semiconductor and its manufacturing method | |
Su et al. | Improving the property of ZnO nanorods using hydrogen peroxide solution | |
JP5793723B2 (en) | Thin film phosphor and method for forming the same | |
JP2006348244A (en) | Zinc oxide ultraviolet emitter, zinc oxide ultraviolet emitter thin film, and method for producing them | |
JP2007526602A (en) | Reactive metal source and deposition method for thioaluminate phosphors | |
JP5519393B2 (en) | ZnO phosphor thin film and method for producing the same | |
Nyenge et al. | The influence of substrate temperature and deposition pressure on pulsed laser deposited thin films of CaS: Eu2+ phosphors | |
Morozova et al. | Optical properties of oxygen-implanted CdS: O layers in terms of band anticrossing theory | |
Turos et al. | Ion beam modification of ZnO epilayers: Sequential processing | |
Sakaguchi et al. | Luminescence in Cu-implanted ZnO thin films | |
JP2014225506A (en) | Method of manufacturing gallium nitride-based semiconductor layer, gallium nitride-based semiconductor layer, and gallium nitride-based semiconductor substrate | |
Bahir et al. | Laser annealing of indium‐implanted Pb0. 8Sn0. 2Te films | |
JP2008214461A (en) | Phosphor film and phosphor film production method | |
Swart et al. | Electron stimulated surface chemical reaction mechanism for phosphor degradation | |
Wakeham et al. | Laser annealing of thin film electroluminescent devices deposited at a high rate using high target utilization sputtering | |
Nyenge et al. | TOF SIMS analysis, structure and photoluminescence properties of pulsed laser deposited CaS: Eu2+ thin films | |
CN108417481A (en) | Processing method, thin film transistor (TFT) and the display device of silicon nitride dielectric layer | |
JP3941126B2 (en) | ELECTROLUMINESCENT DEVICE AND MANUFACTURING METHOD THEREOF |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070508 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070615 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070626 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070717 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4000373 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |