JP4618241B2 - Coaxial probe device - Google Patents
Coaxial probe device Download PDFInfo
- Publication number
- JP4618241B2 JP4618241B2 JP2006335993A JP2006335993A JP4618241B2 JP 4618241 B2 JP4618241 B2 JP 4618241B2 JP 2006335993 A JP2006335993 A JP 2006335993A JP 2006335993 A JP2006335993 A JP 2006335993A JP 4618241 B2 JP4618241 B2 JP 4618241B2
- Authority
- JP
- Japan
- Prior art keywords
- dielectric
- coaxial probe
- inner conductor
- probe device
- outer conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Surgical Instruments (AREA)
Description
本発明は、例えば生体組織内に挿入してマイクロ波により加熱治療を行う際に用いることができる同軸プローブに関するものである。 The present invention relates to a coaxial probe that can be used, for example, when inserted into a living tissue to perform heat treatment using microwaves.
近年、悪性腫瘍等の病気に対する治療方法として電磁波を利用したものが幾つか提案されている。その内の1つにマイクロ波を直接患部に吸収させて、患部の温度を上昇させ凝固させるという凝固療法がある。この方法は、マイクロ波を効率よく放射する同軸プローブを直接患部に射し込み、同軸プローブから放射されるマイクロ波によって患部に発生する誘電熱により患部の組織を凝固壊死させるというものである。 In recent years, several methods using electromagnetic waves have been proposed as treatment methods for diseases such as malignant tumors. One of them is coagulation therapy in which microwaves are directly absorbed into the affected area, and the temperature of the affected area is increased to coagulate. In this method, a coaxial probe that efficiently radiates microwaves is directly projected onto the affected area, and the tissue of the affected area is coagulated and necrosed by dielectric heat generated in the affected area by the microwave radiated from the coaxial probe.
同軸プローブは直径1mm程度又はそれ以下に形成が可能であり、経皮的に患部に挿入する方法や、胸腔鏡または腹腔鏡を利用して患部に挿入する方法がある。同軸プローブを用いることにより切開部分を小さくできる、もしくは切開せずに済み、治療時間も比較的短時間であるため悪性腫瘍等を手術により摘出するのに比較して、患者への負担が小さく特に癌の初期治療として有用である。 The coaxial probe can be formed with a diameter of about 1 mm or less, and there are a method of percutaneously inserting into the affected part and a method of inserting into the affected part using a thoracoscope or a laparoscope. By using a coaxial probe, the incision can be made smaller or no incision can be made, and the treatment time is relatively short, so the burden on the patient is particularly small compared to surgical removal of malignant tumors. Useful as an initial treatment for cancer.
特許文献1には、MRI装置によるモニタリングを行いながらマイクロ波治療を行う際に、MRI装置により患部と同軸プローブの相対位置がモニタリング可能となるように、先端部に磁性体材料からなるマーカー部材を備えた針状モノポーラ電極装置が開示されている。図Xに針状モノポーラ電極装置100の部分断面図を示す。針状モノポーラ電極装置は外部電極103、絶縁体104、中心電極105、中心導体106、およびマーカー部材107からなり、中心電極105はマーカー部材107を介して中心導体106と電気的に一体化されている。 In Patent Document 1, when performing microwave therapy while monitoring with an MRI apparatus, a marker member made of a magnetic material is provided at the distal end so that the relative position of the affected part and the coaxial probe can be monitored by the MRI apparatus. A needle-shaped monopolar electrode device is disclosed. FIG. X shows a partial cross-sectional view of the acicular monopolar electrode device 100. The acicular monopolar electrode device includes an external electrode 103, an insulator 104, a center electrode 105, a center conductor 106, and a marker member 107. The center electrode 105 is electrically integrated with the center conductor 106 via the marker member 107. Yes.
特許文献2には、生体組織にマイクロ波を効率よく吸収させる構造を有する同軸プローブが開示されている。この同軸プローブは先端を内導体から外導体にかけて円錐状にして内導体、外導体および内導体と外導体の間に介在する誘電体を露出させた形状を有し、生体組織に対して利用するマイクロ波の反射係数が最も小さくなる形状条件と誘電体の比誘電率の条件が開示されている。
特許文献1記載の針状モノポーラ電極装置では、その先端部において同軸ケーブル部とマイクロ波の放射部がインピーダンス的に不整合となりがちで、伝送されてきた電力の内、数%〜数十%の電力がこの部分で反射される。また、中心電極105と生体組織との間においても電力の反射が起こり、電力が生体組織で効率よく消費されない。 In the needle-shaped monopolar electrode device described in Patent Document 1, the coaxial cable portion and the microwave radiating portion tend to be mismatched in impedance at the tip portion, and the transmitted power is several% to several tens%. Power is reflected at this part. Further, power is also reflected between the center electrode 105 and the living tissue, and the power is not efficiently consumed by the living tissue.
特許文献2記載の同軸プローブでは、内導体と外導体の間に介在する誘電体をアルミナとし、先端の形状を所定の形状とすることにより生体組織と同軸プローブとの間での電力反射を非常に小さくすることができる。この同軸プローブの特性インピーダンスは約23Ωである。一般の信号発生器、電力増幅アンプ、同軸伝送ケーブルは通常特性インピーダンスが50Ωとされており、前記同軸プローブと同軸伝送ケーブルを直接接合するとインピーダンスが不整合となり、大部分の電力が反射されることとなる。 In the coaxial probe described in Patent Document 2, the dielectric interposed between the inner conductor and the outer conductor is alumina, and the shape of the tip is set to a predetermined shape, so that power reflection between the living tissue and the coaxial probe is extremely low. Can be made smaller. The characteristic impedance of this coaxial probe is about 23Ω. General signal generators, power amplification amplifiers, and coaxial transmission cables usually have a characteristic impedance of 50Ω. When the coaxial probe and coaxial transmission cable are directly joined, the impedance becomes mismatched and most of the power is reflected. It becomes.
一般にマイクロ波凝固療法に用いられる周波数は2.4〜2.45GHzであり、この周波数を増幅できる高周波増幅器は非常に高価である。また出力する電力の大きさによって価格は高くなる。同軸プローブからの電力の反射が大きければ、その分増幅器から大きな電力を供給する必要があり、増幅器の価格がさらに高くなってしまう。また、大きな反射電力を増幅器に直接戻さないために、高電力のアイソレータが必要となり、全体の設備自体の価格が高くなってしまうという問題点があった。 Generally, the frequency used for microwave coagulation therapy is 2.4 to 2.45 GHz, and a high-frequency amplifier capable of amplifying this frequency is very expensive. In addition, the price increases depending on the magnitude of the output power. If the reflection of power from the coaxial probe is large, it is necessary to supply a large amount of power from the amplifier, and the price of the amplifier is further increased. In addition, since high reflected power is not returned directly to the amplifier, a high-power isolator is required, and there is a problem that the price of the entire equipment itself is increased.
更に、同軸プローブと同軸伝送ケーブルのインピーダンスが不整合において反射波が発生し、この反射波と入射波が干渉して無視できない大きさの定在波が存在することとなる。この定在波の電力はインピーダンス不整合による反射係数の2乗に比例して大きくなり、線路上で不要な発熱を伴い、正常な組織まで壊死させるという問題があった。 Further, when the impedances of the coaxial probe and the coaxial transmission cable are mismatched, a reflected wave is generated, and the reflected wave and the incident wave interfere with each other, and a standing wave having a magnitude that cannot be ignored exists. The power of this standing wave increases in proportion to the square of the reflection coefficient due to impedance mismatching, causing unnecessary heat generation on the line, and causing a problem of necrosis to a normal tissue.
上記問題点を解決するために請求項1記載の発明は、外導体と内導体との間に誘電体を介在させた構造を有する同軸プローブ装置であって、前記同軸プローブ装置は、比誘電率がε1である第1の誘電体と前記外導体および前記内導体を有する伝送線路部と、比誘電率がε2である第2の誘電体と前記外導体および前記内導体を有するプローブ部と、単層又は複数層で構成され平均の比誘電率がε3である第3の誘電体と前記外導体および前記内導体を有するインピーダンス整合部とからなり、前記それぞれの比誘電率は下記の数1の関係を満たし、前記伝送線路部と、前記インピーダンス整合部と、前記プローブ部とは、この順で外導体同士と内導体同士がそれぞれ電気的に接合され、かつ、前記第1の誘電体と前記第3の誘電体、および前記第3の誘電体と前記第2の誘電体は隙間無く接合されており、前記プローブ部は、外部に電力を放射する放射部を有していることを特徴とする。 In order to solve the above problem, the invention according to claim 1 is a coaxial probe device having a structure in which a dielectric is interposed between an outer conductor and an inner conductor, wherein the coaxial probe device has a relative dielectric constant. A first dielectric having ε 1 , a transmission line portion having the outer conductor and the inner conductor, and a second dielectric having a relative dielectric constant ε 2 , the probe portion having the outer conductor and the inner conductor And a third dielectric having an average relative dielectric constant of ε 3 and an impedance matching portion having the outer conductor and the inner conductor, each of which has the following relative dielectric constant: The transmission line section, the impedance matching section, and the probe section are electrically connected to each other between the outer conductor and the inner conductor in this order, and the first A dielectric, the third dielectric, and the It said third dielectric second dielectric is no gap junction, the probe unit is characterized by having a radiating portion for radiating the power to the external.
請求項3に記載の発明は、請求項1から2のいずれかに記載の同軸プローブ装置において、3つの異なる比誘電率の誘電体が連続する任意の部分において、中間層となる誘電体の比誘電率をεm、両側の誘電体の比誘電率をそれぞれεa、εbとしたとき、εmが下記の数2を満足することを特徴とする。 According to a third aspect of the present invention, in the coaxial probe device according to any one of the first to second aspects, the ratio of the dielectric material serving as the intermediate layer in any portion where the dielectric materials having three different relative dielectric constants are continuous. When the dielectric constant is ε m and the relative dielectric constants of the dielectrics on both sides are ε a and ε b , respectively, ε m satisfies the following formula 2.
請求項5に記載の発明は、請求項1から4のいずれか1項に記載の同軸プローブ装置において、前記凸部は比誘電率の低い側の誘電体に設けられていることを特徴とする。 According to a fifth aspect of the present invention, in the coaxial probe device according to any one of the first to fourth aspects, the convex portion is provided on a dielectric having a low relative dielectric constant. .
請求項6に記載の発明は、請求項1から5のいずれか1項に記載の同軸プローブ装置において、前記第2の誘電体はアルミナであることを特徴とする。 According to a sixth aspect of the present invention, in the coaxial probe device according to any one of the first to fifth aspects, the second dielectric is alumina.
請求項7に記載の発明は、請求項1から6のいずれか1項に記載の同軸プローブ装置において、前記第1の誘電体はポリテトラフルオロエチレンであることを特徴とする。 A seventh aspect of the present invention is the coaxial probe device according to any one of the first to sixth aspects, wherein the first dielectric is polytetrafluoroethylene.
請求項8に記載の発明は、請求項1から7のいずれか1項に記載の同軸プローブ装置において、前記第3の誘電体はポリフェニレンサルファイドからなることを特徴とする。 According to an eighth aspect of the invention, in the coaxial probe device according to any one of the first to seventh aspects, the third dielectric is made of polyphenylene sulfide.
請求項9に記載の発明は、請求項1から8のいずれか1項に記載の同軸プローブ装置において、前記伝送線路部は特性インピーダンスが50Ωであることを特徴とする。 According to a ninth aspect of the present invention, in the coaxial probe device according to any one of the first to eighth aspects, the transmission line section has a characteristic impedance of 50Ω.
この発明によれば、マイクロ波凝固療法に用いられる同軸プローブ装置に供給する電力を反射させることなく、効率よく生体組織に吸収させることができる。これにより、増幅器の出力を必要以上に大きくする必要がないため、装置自体を安価にすることができる。インピーダンス不整合部からの反射波と入射波の干渉により発生する定在波が無視できるため不要な発熱による正常組織の破壊を回避できる。 According to the present invention, the power supplied to the coaxial probe device used for the microwave coagulation therapy can be efficiently absorbed into the living tissue without reflecting. Thereby, since it is not necessary to make the output of the amplifier larger than necessary, the device itself can be made inexpensive. Since the standing wave generated by the interference between the reflected wave from the impedance mismatching part and the incident wave can be ignored, the destruction of the normal tissue due to unnecessary heat generation can be avoided.
第1の実施例を図1に基づいて説明する。図1は同軸プローブ装置1の部分断面図である。同軸プローブ装置1は外導体3、内導体2、および外導体3と内導体2の間に挿入された誘電体からなる。第1の誘電体4は比誘電率が約2.1のポリテトラフルオロエチレン(テフロン:登録商標)で構成されており、第1の誘電体4が存在する部分は伝送線路部として機能する。内導体2の外径は0.48mm、外導体3の内径は1.6mmで、伝送線路部における特性インピーダンスは50Ωとされている。 A first embodiment will be described with reference to FIG. FIG. 1 is a partial cross-sectional view of the coaxial probe device 1. The coaxial probe device 1 includes an outer conductor 3, an inner conductor 2, and a dielectric inserted between the outer conductor 3 and the inner conductor 2. The first dielectric 4 is made of polytetrafluoroethylene (Teflon: registered trademark) having a relative dielectric constant of about 2.1, and a portion where the first dielectric 4 exists functions as a transmission line portion. The outer diameter of the inner conductor 2 is 0.48 mm, the inner diameter of the outer conductor 3 is 1.6 mm, and the characteristic impedance in the transmission line portion is 50Ω.
第2の誘電体5は比誘電率が約9.7のアルミナで構成されており、第2の誘電体5が存在する部分はプローブ部として機能する。プローブ部は鋭い先端部Aを有する。先端部Aは内導体の中心を頂点とする円錐形状とされており、第2の誘電体5の一部が外部に露出している。プローブ部は生体組織の患部に射し込まれるため、内導体2の先端および外導体3は人体にとって無毒である金属でめっきされていることが好ましく、金めっきが好適である。また、テフロンなどの薄い樹脂被膜で覆われていてもよい。tを約5.3mmとすれば、プローブ部が生体組織(肝臓)に射し込まれているときに電力の反射が極小となり、反射係数Γ<0.1となる。 The second dielectric 5 is made of alumina having a relative dielectric constant of about 9.7, and the portion where the second dielectric 5 exists functions as a probe portion. The probe portion has a sharp tip A. The tip A has a conical shape with the center of the inner conductor as the apex, and a part of the second dielectric 5 is exposed to the outside. Since the probe part is projected into the affected part of the living tissue, the tip of the inner conductor 2 and the outer conductor 3 are preferably plated with a metal that is non-toxic to the human body, and gold plating is preferred. Further, it may be covered with a thin resin film such as Teflon. If t is about 5.3 mm, the reflection of electric power is minimized when the probe part is projected into the living tissue (liver), and the reflection coefficient Γ <0.1.
第3の誘電体6は比誘電率が約4.5のガラスで構成されている。第3の誘電体6の比誘電率をεm、第1の誘電体4の比誘電率をεa、第2の誘電体5の比誘電率をεbとしたとき、εmは下記の数2を満足している。 The third dielectric 6 is made of glass having a relative dielectric constant of about 4.5. When the relative dielectric constant of the third dielectric 6 is ε m , the relative dielectric constant of the first dielectric 4 is ε a , and the relative dielectric constant of the second dielectric 5 is ε b , ε m is I am satisfied with Equation 2.
第1の誘電体4は第3の誘電体6に向けて錐状の凸部を有しており、この錐状の凸部の高さはL1とされている。一方第3の誘電体6は前記凸部と嵌合する錐状の凹部を有しており、この錐状の凹部の高さはL1とされ、前記凸部と前記凹部は隙間無く組み合わされている。L1は双方の比誘電率により適宜決定される。 The first dielectric 4 has a cone-shaped projection toward the third dielectric 6, and the height of the cone-shaped projection is L1. Whereas third dielectric 6 has a conical recess for mating with the protrusion, the height of the cone-shaped recess is the L1, the concave portion is combined without clearance between the convex portion Yes. L1 is appropriately determined depending on the relative permittivity of both.
上記と同様に第3の誘電体6は第2の誘電体5に向けて錐状の凸部を有しており、この錐状の凸部の高さはL2とされている。一方第2の誘電体5は前記凸部と嵌合する錐状の凹部を有しており、この錐状の凹部の高さはL2とされ、前記凸部と前記凹部は隙間無く組み合わされている。L2は双方の比誘電率により適宜決定される。 Similarly to the above, the third dielectric 6 has a cone-shaped projection toward the second dielectric 5, and the height of the cone-shaped projection is L2. On the other hand, the second dielectric 5 has a conical concave portion that fits into the convex portion, and the height of the conical concave portion is L2, and the convex portion and the concave portion are combined with no gap. Yes. L2 is appropriately determined depending on the relative permittivity of both.
図2、図3、図4、図5はεmをそれぞれ4.0、4.5、5.0、5.5としたときの、L1とL2と同軸プローブ装置1の反射係数の関係を有限要素法を用いてシミュレーションを行った結果を示したものである。プローブ部は肝臓に差し込まれていると仮定し、計算に用いたパラメータは以下の通りで、一部のパラメータはすでに前述したものの再掲である。
解析周波数(F) :2.45GHz
内導体2の外径(r) :0.48mm
外導体3の内径 (R) :1.60mm
先端錐状部の高さ(t) :5.2mm
テフロンの比誘電率(εa) :2.1
テフロンの誘電正接(tanδa):1.0E-04
アルミナの比誘電率(εb) :9.7
アルミナの誘電正接(tanδb):1.0E-04
肝臓の比誘電率(εr) :43.0
肝臓の誘電正接(tanδr) :2.85E-01
図2、図3、図4、図5の各々において横軸はL1の寸法を示し、縦軸はL2の寸法を示している。例えば図3においてL1を5、L2を9とすれば、その時の反射係数Γはおよそ0.05(V.S.W.R=1.10)となる。このとき供給される電力に対し、反射される電力はわずか0.3%程度しかなく、大部分の電力が生体に放射吸収されていることを表している。従って電力増幅器は必要以上に大きな電力を供給する必要が無く、増幅レベルの大きい電力増幅器を必要としないため設備を安価に構成できる。
2, 3, 4, and 5 simulate the relationship between L1 and L2 and the reflection coefficient of the coaxial probe device 1 using the finite element method when εm is 4.0, 4.5, 5.0, and 5.5, respectively. The results are shown. Assuming that the probe unit is inserted into the liver, the parameters used in the calculation are as follows, and some of the parameters have already been described above.
Analysis frequency (F): 2.45GHz
Inner conductor 2 outer diameter (r): 0.48 mm
Inner diameter of outer conductor 3 (R): 1.60mm
Tip cone height (t): 5.2 mm
Teflon dielectric constant (ε a ): 2.1
Teflon dielectric loss tangent (tanδ a ): 1.0E-04
Relative permittivity of alumina (ε b ): 9.7
Dielectric loss tangent of alumina (tanδ b ): 1.0E-04
Liver dielectric constant (ε r ): 43.0
Liver dielectric loss tangent (tanδ r ): 2.85E-01
In each of FIGS. 2, 3, 4, and 5, the horizontal axis indicates the dimension of L1, and the vertical axis indicates the dimension of L2. For example, if L1 is 5 and L2 is 9 in FIG. 3, the reflection coefficient Γ at that time is approximately 0.05 (VSWR = 1.10). The reflected power is only about 0.3% of the power supplied at this time, which means that most of the power is radiated and absorbed by the living body. Therefore, the power amplifier does not need to supply more power than necessary, and does not require a power amplifier with a high amplification level, so that the equipment can be configured at low cost.
図2、図3、図4、図5から、εmのいずれの条件においてもL1、L2を適宜選択すれば、反射係数を小さくできる領域が有ることが分かる。従って、用いる誘電体の比誘電率に合わせてシミュレーションを実施しL1、L2を最適値に設計することで電力反射の小さい同軸プローブ装置を作成することができる。 2, 3, 4, and 5, it can be seen that there is a region where the reflection coefficient can be reduced if L1 and L2 are appropriately selected under any condition of ε m . Therefore, a coaxial probe device with low power reflection can be created by performing simulation in accordance with the relative dielectric constant of the dielectric to be used and designing L1 and L2 to optimum values.
εa=2.1、εb=9.7を[数1]に代入すればεm≒4.5となる。図2〜図5において、特に図4は[数1]を満たした時のシミュレーション結果を表すグラフである。このとき、反射係数を小さくできる領域がεm=4のグラフと比較して広くなり、L1、L2の設計領域が大きくなる。またεm=5のグラフと比較すれば、反射係数を小さくできる領域は幾分小さいものの、L1とL2が小さい領域において寸法による反射係数の変化が小さいため、ばらつきを抑えた設計が可能となる。比誘電率が4.5に近い特性を持つものとして比誘電率が4.6のポリフェニレンサルファイド(PPS)がある。PPSは耐環境性能に優れており、またTanδも0.002程度と非常に小さいため、第3の誘電体として好適である。 Substituting ε a = 2.1 and ε b = 9.7 into [Equation 1] gives ε m ≈4.5. 2 to 5, in particular, FIG. 4 is a graph showing a simulation result when [Equation 1] is satisfied. At this time, the region where the reflection coefficient can be reduced becomes wider compared to the graph of ε m = 4, and the design region of L1 and L2 becomes large. Compared with the graph of ε m = 5, although the area where the reflection coefficient can be reduced is somewhat small, the change in the reflection coefficient due to the dimension is small in the area where L1 and L2 are small, so that design with reduced variation is possible. . Polyphenylene sulfide (PPS) with a relative dielectric constant of 4.6 is a characteristic having a dielectric constant close to 4.5. PPS is excellent in environmental resistance, and Tanδ is very small, about 0.002, and thus is suitable as the third dielectric.
次に第2の実施例を図6に基づいて説明する。図6は図1と同様に同軸プローブ装置1の部分断面図である。図1と同じ部分については同じ番号を付し説明を省略する。第3の誘電体6は、それぞれ誘電率の異なる第1の層6aと第2の層6bを有する2層構造とされている。第1の層6aの誘電率をεma、第2の層6bの誘電率をεmbとすれば、それぞれの誘電率の関係は、 Next, a second embodiment will be described with reference to FIG. FIG. 6 is a partial cross-sectional view of the coaxial probe device 1 as in FIG. The same parts as those in FIG. The third dielectric 6 has a two-layer structure having a first layer 6a and a second layer 6b having different dielectric constants. If the dielectric constant of the first layer 6a is ε ma and the dielectric constant of the second layer 6b is ε mb , the relationship between the respective dielectric constants is
2 内部電極
3 外部電極
4 第1の誘電体
5 第2の誘電体
6 第3の誘電体
6a 第3の誘電体の第1の層
6b 第3の誘電体の第2の層
103 外部電極
104 絶縁体
105 中心電極
106 中心導体
107 マーカー部材
2 internal electrode 3 external electrode 4 first dielectric 5 second dielectric 6 third dielectric 6a third dielectric first layer 6b third dielectric second layer 103 external electrode 104 Insulator 105 Center electrode 106 Center conductor 107 Marker member
Claims (9)
比誘電率がε1である第1の誘電体と前記外導体および前記内導体を有する伝送線路部と、比誘電率がε2である第2の誘電体と前記外導体および前記内導体を有するプローブ部と、単層又は複数層で構成され平均の比誘電率がε3である第3の誘電体と前記外導体および前記内導体を有するインピーダンス整合部とからなり、
前記それぞれの比誘電率は下記の数1の関係を満たし、
前記伝送線路部と、前記インピーダンス整合部と、前記プローブ部とは、この順で外導体同士と内導体同士がそれぞれ電気的に接合され、かつ、前記第1の誘電体と前記第3の誘電体、および前記第3の誘電体と前記第2の誘電体は隙間無く接合されており、
前記プローブ部は、外部に電力を放射する放射部を有していることを特徴とする同軸プローブ装置。
A first dielectric having a relative dielectric constant of ε 1 , a transmission line portion having the outer conductor and the inner conductor, a second dielectric having a relative dielectric constant of ε 2 , the outer conductor, and the inner conductor. A probe portion having a single dielectric layer or a plurality of layers, and a third dielectric having an average relative dielectric constant of ε 3 and an impedance matching portion having the outer conductor and the inner conductor,
Each of the relative dielectric constants satisfies the following formula (1):
The transmission line section, the impedance matching section, and the probe section are such that the outer conductor and the inner conductor are electrically joined in this order, and the first dielectric and the third dielectric Body, and the third dielectric and the second dielectric are joined without gaps,
The coaxial probe device according to claim 1, wherein the probe section includes a radiation section that radiates power to the outside.
前記誘電体の一方は内導体から前記外導体にかけて円錐状の凸部とされ、他方は該凸部に隙間無く嵌合する円錐状の凹部とされていることを特徴とする請求項1から3のいずれか1項に記載の同軸プローブ装置。 In the portion where the dielectrics having different relative dielectric constants are joined,
Said one of the dielectric is a conical projection portion to the outer conductor from the inner conductor and the other of claims 1, characterized in that there is a conical recess without clearance fitted to the convex portion 3 The coaxial probe device according to any one of the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006335993A JP4618241B2 (en) | 2006-12-13 | 2006-12-13 | Coaxial probe device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006335993A JP4618241B2 (en) | 2006-12-13 | 2006-12-13 | Coaxial probe device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008142467A JP2008142467A (en) | 2008-06-26 |
JP4618241B2 true JP4618241B2 (en) | 2011-01-26 |
Family
ID=39603287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006335993A Expired - Fee Related JP4618241B2 (en) | 2006-12-13 | 2006-12-13 | Coaxial probe device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4618241B2 (en) |
Families Citing this family (162)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7197363B2 (en) | 2002-04-16 | 2007-03-27 | Vivant Medical, Inc. | Microwave antenna having a curved configuration |
US7553309B2 (en) | 2004-10-08 | 2009-06-30 | Covidien Ag | Electrosurgical system employing multiple electrodes and method thereof |
US7282049B2 (en) | 2004-10-08 | 2007-10-16 | Sherwood Services Ag | Electrosurgical system employing multiple electrodes and method thereof |
US7776035B2 (en) | 2004-10-08 | 2010-08-17 | Covidien Ag | Cool-tip combined electrode introducer |
US10363092B2 (en) | 2006-03-24 | 2019-07-30 | Neuwave Medical, Inc. | Transmission line with heat transfer ability |
US7846158B2 (en) | 2006-05-05 | 2010-12-07 | Covidien Ag | Apparatus and method for electrode thermosurgery |
US11389235B2 (en) | 2006-07-14 | 2022-07-19 | Neuwave Medical, Inc. | Energy delivery systems and uses thereof |
US10376314B2 (en) | 2006-07-14 | 2019-08-13 | Neuwave Medical, Inc. | Energy delivery systems and uses thereof |
US9375246B2 (en) | 2007-01-19 | 2016-06-28 | Covidien Lp | System and method of using thermal and electrical conductivity of tissue |
US8211099B2 (en) | 2007-01-31 | 2012-07-03 | Tyco Healthcare Group Lp | Thermal feedback systems and methods of using the same |
US7998139B2 (en) | 2007-04-25 | 2011-08-16 | Vivant Medical, Inc. | Cooled helical antenna for microwave ablation |
US7777130B2 (en) | 2007-06-18 | 2010-08-17 | Vivant Medical, Inc. | Microwave cable cooling |
US8181995B2 (en) | 2007-09-07 | 2012-05-22 | Tyco Healthcare Group Lp | Cool tip junction |
US8292880B2 (en) | 2007-11-27 | 2012-10-23 | Vivant Medical, Inc. | Targeted cooling of deployable microwave antenna |
US7713076B2 (en) | 2007-11-27 | 2010-05-11 | Vivant Medical, Inc. | Floating connector for microwave surgical device |
US7642451B2 (en) | 2008-01-23 | 2010-01-05 | Vivant Medical, Inc. | Thermally tuned coaxial cable for microwave antennas |
US8435237B2 (en) | 2008-01-29 | 2013-05-07 | Covidien Lp | Polyp encapsulation system and method |
US8353902B2 (en) | 2008-01-31 | 2013-01-15 | Vivant Medical, Inc. | Articulating ablation device and method |
US8221418B2 (en) | 2008-02-07 | 2012-07-17 | Tyco Healthcare Group Lp | Endoscopic instrument for tissue identification |
US9949794B2 (en) | 2008-03-27 | 2018-04-24 | Covidien Lp | Microwave ablation devices including expandable antennas and methods of use |
US9271796B2 (en) | 2008-06-09 | 2016-03-01 | Covidien Lp | Ablation needle guide |
US8192427B2 (en) | 2008-06-09 | 2012-06-05 | Tyco Healthcare Group Lp | Surface ablation process with electrode cooling methods |
US8343149B2 (en) | 2008-06-26 | 2013-01-01 | Vivant Medical, Inc. | Deployable microwave antenna for treating tissue |
AU2015215971B2 (en) * | 2008-08-25 | 2016-11-03 | Covidien Lp | Microwave antenna assembly having a dielectric body portion with radial partitions of dielectric material |
US8211098B2 (en) | 2008-08-25 | 2012-07-03 | Vivant Medical, Inc. | Microwave antenna assembly having a dielectric body portion with radial partitions of dielectric material |
US8251987B2 (en) | 2008-08-28 | 2012-08-28 | Vivant Medical, Inc. | Microwave antenna |
US8197473B2 (en) | 2009-02-20 | 2012-06-12 | Vivant Medical, Inc. | Leaky-wave antennas for medical applications |
US8118808B2 (en) | 2009-03-10 | 2012-02-21 | Vivant Medical, Inc. | Cooled dielectrically buffered microwave dipole antenna |
US9277969B2 (en) | 2009-04-01 | 2016-03-08 | Covidien Lp | Microwave ablation system with user-controlled ablation size and method of use |
US8246615B2 (en) | 2009-05-19 | 2012-08-21 | Vivant Medical, Inc. | Tissue impedance measurement using a secondary frequency |
US8292881B2 (en) | 2009-05-27 | 2012-10-23 | Vivant Medical, Inc. | Narrow gauge high strength choked wet tip microwave ablation antenna |
US8552915B2 (en) | 2009-06-19 | 2013-10-08 | Covidien Lp | Microwave ablation antenna radiation detector |
US8323275B2 (en) | 2009-06-19 | 2012-12-04 | Vivant Medical, Inc. | Laparoscopic port with microwave rectifier |
WO2011017168A2 (en) | 2009-07-28 | 2011-02-10 | Neuwave Medical, Inc. | Energy delivery systems and uses thereof |
US8328800B2 (en) | 2009-08-05 | 2012-12-11 | Vivant Medical, Inc. | Directive window ablation antenna with dielectric loading |
US8328799B2 (en) | 2009-08-05 | 2012-12-11 | Vivant Medical, Inc. | Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure |
US8328801B2 (en) | 2009-08-17 | 2012-12-11 | Vivant Medical, Inc. | Surface ablation antenna with dielectric loading |
US8069553B2 (en) | 2009-09-09 | 2011-12-06 | Vivant Medical, Inc. | Method for constructing a dipole antenna |
US8355803B2 (en) | 2009-09-16 | 2013-01-15 | Vivant Medical, Inc. | Perfused core dielectrically loaded dipole microwave antenna probe |
US8394087B2 (en) | 2009-09-24 | 2013-03-12 | Vivant Medical, Inc. | Optical detection of interrupted fluid flow to ablation probe |
US9024237B2 (en) | 2009-09-29 | 2015-05-05 | Covidien Lp | Material fusing apparatus, system and method of use |
US8038693B2 (en) | 2009-10-21 | 2011-10-18 | Tyco Healthcare Group Ip | Methods for ultrasonic tissue sensing and feedback |
US8382750B2 (en) | 2009-10-28 | 2013-02-26 | Vivant Medical, Inc. | System and method for monitoring ablation size |
US8430871B2 (en) | 2009-10-28 | 2013-04-30 | Covidien Lp | System and method for monitoring ablation size |
US8469953B2 (en) | 2009-11-16 | 2013-06-25 | Covidien Lp | Twin sealing chamber hub |
US8394092B2 (en) | 2009-11-17 | 2013-03-12 | Vivant Medical, Inc. | Electromagnetic energy delivery devices including an energy applicator array and electrosurgical systems including same |
US8882759B2 (en) | 2009-12-18 | 2014-11-11 | Covidien Lp | Microwave ablation system with dielectric temperature probe |
US8764744B2 (en) | 2010-01-25 | 2014-07-01 | Covidien Lp | System for monitoring ablation size |
US8313486B2 (en) | 2010-01-29 | 2012-11-20 | Vivant Medical, Inc. | System and method for performing an electrosurgical procedure using an ablation device with an integrated imaging device |
US9113927B2 (en) | 2010-01-29 | 2015-08-25 | Covidien Lp | Apparatus and methods of use for treating blood vessels |
US8491579B2 (en) | 2010-02-05 | 2013-07-23 | Covidien Lp | Electrosurgical devices with choke shorted to biological tissue |
US8568404B2 (en) | 2010-02-19 | 2013-10-29 | Covidien Lp | Bipolar electrode probe for ablation monitoring |
US8968288B2 (en) | 2010-02-19 | 2015-03-03 | Covidien Lp | Ablation devices with dual operating frequencies, systems including same, and methods of adjusting ablation volume using same |
US8617153B2 (en) | 2010-02-26 | 2013-12-31 | Covidien Lp | Tunable microwave ablation probe |
US20110213353A1 (en) | 2010-02-26 | 2011-09-01 | Lee Anthony C | Tissue Ablation System With Internal And External Radiation Sources |
US8777939B2 (en) | 2010-02-26 | 2014-07-15 | Covidien Lp | Self-tuning microwave ablation probe |
US8728067B2 (en) | 2010-03-08 | 2014-05-20 | Covidien Lp | Microwave antenna probe having a deployable ground plane |
US8672923B2 (en) | 2010-03-11 | 2014-03-18 | Covidien Lp | Automated probe placement device |
US9028474B2 (en) | 2010-03-25 | 2015-05-12 | Covidien Lp | Microwave surface coagulator with retractable blade |
US10039601B2 (en) | 2010-03-26 | 2018-08-07 | Covidien Lp | Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same |
US8409188B2 (en) | 2010-03-26 | 2013-04-02 | Covidien Lp | Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same |
WO2011140087A2 (en) | 2010-05-03 | 2011-11-10 | Neuwave Medical, Inc. | Energy delivery systems and uses thereof |
US9867664B2 (en) | 2010-05-03 | 2018-01-16 | Covidien Lp | System and method of deploying an antenna assembly |
US9561076B2 (en) | 2010-05-11 | 2017-02-07 | Covidien Lp | Electrosurgical devices with balun structure for air exposure of antenna radiating section and method of directing energy to tissue using same |
US9192436B2 (en) | 2010-05-25 | 2015-11-24 | Covidien Lp | Flow rate verification monitor for fluid-cooled microwave ablation probe |
US8652127B2 (en) | 2010-05-26 | 2014-02-18 | Covidien Lp | System and method for chemically cooling an ablation antenna |
US9377367B2 (en) | 2010-06-03 | 2016-06-28 | Covidien Lp | Specific absorption rate measurement and energy-delivery device characterization using thermal phantom and image analysis |
US8188435B2 (en) | 2010-06-03 | 2012-05-29 | Tyco Healthcare Group Lp | Specific absorption rate measurement and energy-delivery device characterization using thermal phantom and image analysis |
US9468492B2 (en) | 2010-06-03 | 2016-10-18 | Covidien Lp | Specific absorption rate measurement and energy-delivery device characterization using image analysis |
US9241762B2 (en) | 2010-06-03 | 2016-01-26 | Covidien Lp | Specific absorption rate measurement and energy-delivery device characterization using image analysis |
US20110319880A1 (en) * | 2010-06-25 | 2011-12-29 | Vivant Medical, Inc | Microwave Ground Plane Antenna Probe |
US8672933B2 (en) | 2010-06-30 | 2014-03-18 | Covidien Lp | Microwave antenna having a reactively-loaded loop configuration |
US8740893B2 (en) | 2010-06-30 | 2014-06-03 | Covidien Lp | Adjustable tuning of a dielectrically loaded loop antenna |
US8974449B2 (en) | 2010-07-16 | 2015-03-10 | Covidien Lp | Dual antenna assembly with user-controlled phase shifting |
US10588684B2 (en) | 2010-07-19 | 2020-03-17 | Covidien Lp | Hydraulic conductivity monitoring to initiate tissue division |
US9119647B2 (en) | 2010-11-12 | 2015-09-01 | Covidien Lp | Apparatus, system and method for performing an electrosurgical procedure |
US9028484B2 (en) | 2010-11-16 | 2015-05-12 | Covidien Lp | Fingertip electrosurgical instruments for use in hand-assisted surgery and systems including same |
US9055957B2 (en) | 2010-12-23 | 2015-06-16 | Covidien Lp | Microwave field-detecting needle assemblies, methods of manufacturing same, methods of adjusting an ablation field radiating into tissue using same, and systems including same |
US9770294B2 (en) | 2011-01-05 | 2017-09-26 | Covidien Lp | Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same |
US9011421B2 (en) | 2011-01-05 | 2015-04-21 | Covidien Lp | Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same |
US9017319B2 (en) | 2011-01-05 | 2015-04-28 | Covidien Lp | Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same |
US8932281B2 (en) | 2011-01-05 | 2015-01-13 | Covidien Lp | Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same |
US9028476B2 (en) | 2011-02-03 | 2015-05-12 | Covidien Lp | Dual antenna microwave resection and ablation device, system and method of use |
US8974450B2 (en) | 2011-02-03 | 2015-03-10 | Covidien Lp | System and method for ablation procedure monitoring using electrodes |
US9492190B2 (en) | 2011-02-09 | 2016-11-15 | Covidien Lp | Tissue dissectors |
US8317703B2 (en) | 2011-02-17 | 2012-11-27 | Vivant Medical, Inc. | Energy-delivery device including ultrasound transducer array and phased antenna array, and methods of adjusting an ablation field radiating into tissue using same |
US8376948B2 (en) | 2011-02-17 | 2013-02-19 | Vivant Medical, Inc. | Energy-delivery device including ultrasound transducer array and phased antenna array |
US10335230B2 (en) | 2011-03-09 | 2019-07-02 | Covidien Lp | Systems for thermal-feedback-controlled rate of fluid flow to fluid-cooled antenna assembly and methods of directing energy to tissue using same |
US9381059B2 (en) | 2011-04-05 | 2016-07-05 | Covidien Lp | Electrically-insulative hinge for electrosurgical jaw assembly, bipolar forceps including same, and methods of jaw-assembly alignment using fastened electrically-insulative hinge |
US9579150B2 (en) | 2011-04-08 | 2017-02-28 | Covidien Lp | Microwave ablation instrument with interchangeable antenna probe |
US9198724B2 (en) | 2011-04-08 | 2015-12-01 | Covidien Lp | Microwave tissue dissection and coagulation |
US9358066B2 (en) | 2011-04-08 | 2016-06-07 | Covidien Lp | Flexible microwave catheters for natural or artificial lumens |
US8992413B2 (en) | 2011-05-31 | 2015-03-31 | Covidien Lp | Modified wet tip antenna design |
US8888771B2 (en) | 2011-07-15 | 2014-11-18 | Covidien Lp | Clip-over disposable assembly for use with hemostat-style surgical instrument and methods of manufacturing same |
US8968297B2 (en) | 2011-07-19 | 2015-03-03 | Covidien Lp | Microwave and RF ablation system and related method for dynamic impedance matching |
US9192422B2 (en) | 2011-07-19 | 2015-11-24 | Covidien Lp | System and method of matching impedances of an electrosurgical generator and/or a microwave generator |
US9028482B2 (en) | 2011-07-19 | 2015-05-12 | Covidien Lp | Microwave and RF ablation system and related method for dynamic impedance matching |
US8870860B2 (en) | 2011-08-09 | 2014-10-28 | Covidien Lp | Microwave antenna having a coaxial cable with an adjustable outer conductor configuration |
US10842564B2 (en) | 2011-08-10 | 2020-11-24 | National University Corporation Shiga University Of Medical Science | Microwave surgical instrument |
US9039692B2 (en) | 2011-09-20 | 2015-05-26 | Covidien Lp | Handheld medical devices including microwave amplifier unit at device handle |
US8745846B2 (en) | 2011-09-20 | 2014-06-10 | Covidien Lp | Method of manufacturing handheld medical devices including microwave amplifier unit |
US9023025B2 (en) | 2011-09-20 | 2015-05-05 | Covidien Lp | Handheld medical devices including microwave amplifier unit at device handle |
US9033970B2 (en) | 2011-09-20 | 2015-05-19 | Covidien Lp | Handheld medical devices including microwave amplifier unit at device handle |
US9039693B2 (en) | 2011-09-20 | 2015-05-26 | Covidien Lp | Handheld medical devices including microwave amplifier unit at device handle |
CN104220020B (en) | 2011-12-21 | 2017-08-08 | 纽华沃医药公司 | One kind ablation antenna assembly |
US9375274B2 (en) | 2012-01-05 | 2016-06-28 | Covidien Lp | Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment |
US9113930B2 (en) | 2012-01-05 | 2015-08-25 | Covidien Lp | Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment |
US9113931B2 (en) | 2012-01-06 | 2015-08-25 | Covidien Lp | System and method for treating tissue using an expandable antenna |
US9119648B2 (en) | 2012-01-06 | 2015-09-01 | Covidien Lp | System and method for treating tissue using an expandable antenna |
USD680220S1 (en) | 2012-01-12 | 2013-04-16 | Coviden IP | Slider handle for laparoscopic device |
US10076383B2 (en) | 2012-01-25 | 2018-09-18 | Covidien Lp | Electrosurgical device having a multiplexer |
US9192308B2 (en) | 2012-03-27 | 2015-11-24 | Covidien Lp | Microwave-shielded tissue sensor probe |
US8945113B2 (en) | 2012-04-05 | 2015-02-03 | Covidien Lp | Electrosurgical tissue ablation systems capable of detecting excessive bending of a probe and alerting a user |
US10130416B2 (en) | 2012-04-30 | 2018-11-20 | Covidien Lp | Limited reuse ablation needles and ablation devices for use therewith |
US9943359B2 (en) | 2012-04-30 | 2018-04-17 | Covidien Lp | Limited reuse ablation needles and ablation devices for use therewith |
US9364278B2 (en) | 2012-04-30 | 2016-06-14 | Covidien Lp | Limited reuse ablation needles and ablation devices for use therewith |
US8920410B2 (en) | 2012-05-04 | 2014-12-30 | Covidien Lp | Peripheral switching device for microwave energy platforms |
US8906008B2 (en) | 2012-05-22 | 2014-12-09 | Covidien Lp | Electrosurgical instrument |
US9168178B2 (en) | 2012-05-22 | 2015-10-27 | Covidien Lp | Energy-delivery system and method for controlling blood loss from wounds |
US20130324910A1 (en) | 2012-05-31 | 2013-12-05 | Covidien Lp | Ablation device with drug delivery component and biopsy tissue-sampling component |
AU2013278080B2 (en) | 2012-06-22 | 2017-05-11 | Covidien Lp | Microwave thermometry for microwave ablation systems |
US9192426B2 (en) | 2012-06-26 | 2015-11-24 | Covidien Lp | Ablation device having an expandable chamber for anchoring the ablation device to tissue |
US9066681B2 (en) | 2012-06-26 | 2015-06-30 | Covidien Lp | Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue |
US9332959B2 (en) | 2012-06-26 | 2016-05-10 | Covidien Lp | Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue |
US9192439B2 (en) | 2012-06-29 | 2015-11-24 | Covidien Lp | Method of manufacturing a surgical instrument |
US9901398B2 (en) | 2012-06-29 | 2018-02-27 | Covidien Lp | Microwave antenna probes |
US9439712B2 (en) | 2012-07-12 | 2016-09-13 | Covidien Lp | Heat-distribution indicators, thermal zone indicators, electrosurgical systems including same and methods of directing energy to tissue using same |
US9375252B2 (en) | 2012-08-02 | 2016-06-28 | Covidien Lp | Adjustable length and/or exposure electrodes |
US9370398B2 (en) | 2012-08-07 | 2016-06-21 | Covidien Lp | Microwave ablation catheter and method of utilizing the same |
US9370392B2 (en) | 2012-10-02 | 2016-06-21 | Covidien Lp | Heat-sensitive optical probes |
US9993283B2 (en) | 2012-10-02 | 2018-06-12 | Covidien Lp | Selectively deformable ablation device |
US9743975B2 (en) | 2012-10-02 | 2017-08-29 | Covidien Lp | Thermal ablation probe for a medical device |
US9662165B2 (en) | 2012-10-02 | 2017-05-30 | Covidien Lp | Device and method for heat-sensitive agent application |
US9522033B2 (en) | 2012-10-02 | 2016-12-20 | Covidien Lp | Devices and methods for optical detection of tissue contact |
US9668802B2 (en) | 2012-10-02 | 2017-06-06 | Covidien Lp | Devices and methods for optical detection of tissue contact |
US9901399B2 (en) | 2012-12-17 | 2018-02-27 | Covidien Lp | Ablation probe with tissue sensing configuration |
AU2014240941B2 (en) | 2013-03-29 | 2018-07-19 | Covidien Lp | Step-down coaxial microwave ablation applicators and methods for manufacturing same |
US9814844B2 (en) | 2013-08-27 | 2017-11-14 | Covidien Lp | Drug-delivery cannula assembly |
CN108937827B (en) | 2013-09-06 | 2021-09-10 | 柯惠有限合伙公司 | Handle (CN) |
US10201265B2 (en) | 2013-09-06 | 2019-02-12 | Covidien Lp | Microwave ablation catheter, handle, and system |
US10631914B2 (en) | 2013-09-30 | 2020-04-28 | Covidien Lp | Bipolar electrosurgical instrument with movable electrode and related systems and methods |
US10765477B2 (en) * | 2014-03-10 | 2020-09-08 | Wisconsin Alumni Research Foundation | Microwave ablation antenna system |
US10624697B2 (en) | 2014-08-26 | 2020-04-21 | Covidien Lp | Microwave ablation system |
US10813691B2 (en) | 2014-10-01 | 2020-10-27 | Covidien Lp | Miniaturized microwave ablation assembly |
US10080600B2 (en) | 2015-01-21 | 2018-09-25 | Covidien Lp | Monopolar electrode with suction ability for CABG surgery |
GB2539494A (en) * | 2015-06-19 | 2016-12-21 | Creo Medical Ltd | Electrosurgical Instrument |
CN113367788B (en) | 2015-10-26 | 2024-09-06 | 纽韦弗医疗设备公司 | Energy delivery system and use thereof |
GB2545465A (en) * | 2015-12-17 | 2017-06-21 | Creo Medical Ltd | Electrosurgical probe for delivering microwave energy |
US10813692B2 (en) | 2016-02-29 | 2020-10-27 | Covidien Lp | 90-degree interlocking geometry for introducer for facilitating deployment of microwave radiating catheter |
EP3442456B1 (en) | 2016-04-15 | 2020-12-09 | Neuwave Medical, Inc. | System for energy delivery |
US11065053B2 (en) | 2016-08-02 | 2021-07-20 | Covidien Lp | Ablation cable assemblies and a method of manufacturing the same |
US10376309B2 (en) | 2016-08-02 | 2019-08-13 | Covidien Lp | Ablation cable assemblies and a method of manufacturing the same |
US11000332B2 (en) | 2016-08-02 | 2021-05-11 | Covidien Lp | Ablation cable assemblies having a large diameter coaxial feed cable reduced to a small diameter at intended site |
US11197715B2 (en) | 2016-08-02 | 2021-12-14 | Covidien Lp | Ablation cable assemblies and a method of manufacturing the same |
US10814128B2 (en) | 2016-11-21 | 2020-10-27 | Covidien Lp | Electroporation catheter |
US10716619B2 (en) | 2017-06-19 | 2020-07-21 | Covidien Lp | Microwave and radiofrequency energy-transmitting tissue ablation systems |
US11147621B2 (en) | 2017-11-02 | 2021-10-19 | Covidien Lp | Systems and methods for ablating tissue |
US11123094B2 (en) | 2017-12-13 | 2021-09-21 | Covidien Lp | Ultrasonic surgical instruments and methods for sealing and/or cutting tissue |
US10707581B2 (en) | 2018-01-03 | 2020-07-07 | Wisconsin Alumni Research Foundation | Dipole antenna for microwave ablation |
US11672596B2 (en) | 2018-02-26 | 2023-06-13 | Neuwave Medical, Inc. | Energy delivery devices with flexible and adjustable tips |
US11160600B2 (en) | 2018-03-01 | 2021-11-02 | Covidien Lp | Monopolar return electrode grasper with return electrode monitoring |
US11832879B2 (en) | 2019-03-08 | 2023-12-05 | Neuwave Medical, Inc. | Systems and methods for energy delivery |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004311334A (en) * | 2003-04-10 | 2004-11-04 | Murata Mfg Co Ltd | Coaxial cable and antenna device |
WO2004112628A1 (en) * | 2003-06-23 | 2004-12-29 | Microsulis Limited | Radiation applicator for microwave medical treatment |
-
2006
- 2006-12-13 JP JP2006335993A patent/JP4618241B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004311334A (en) * | 2003-04-10 | 2004-11-04 | Murata Mfg Co Ltd | Coaxial cable and antenna device |
WO2004112628A1 (en) * | 2003-06-23 | 2004-12-29 | Microsulis Limited | Radiation applicator for microwave medical treatment |
Also Published As
Publication number | Publication date |
---|---|
JP2008142467A (en) | 2008-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4618241B2 (en) | Coaxial probe device | |
US6706040B2 (en) | Invasive therapeutic probe | |
US9301804B2 (en) | Dual antenna microwave resection and ablation device, system and method of use | |
EP2120763B1 (en) | Tissue measurement and ablation antenna | |
US9713497B2 (en) | System and method for performing an electrosurgical procedure using an ablation device with an integrated imaging device | |
US6527768B2 (en) | End-firing microwave ablation instrument with horn reflection device | |
US20060189973A1 (en) | Segmented catheter for tissue ablation | |
US8282632B2 (en) | Feedpoint optimization for microwave ablation dipole antenna with integrated tip | |
EP2353645B1 (en) | Electrosurgical devices with choke shorted to biological tissue | |
EP2008604B1 (en) | Broadband microwave applicator | |
US11058487B2 (en) | Microwave ablation antenna system with reflector and slot | |
JP5688814B2 (en) | Surgical antenna and electrosurgical system using the same | |
US20130261616A1 (en) | Patient isolation in a microwave-radio frequency generator | |
US10492860B2 (en) | Microwave ablation antenna system with tapered slot balun | |
JP2010505570A (en) | Apparatus and antenna calibration system and method for processing tissue using microwave radiation | |
JP7168227B2 (en) | Microwave energy transmission components for electrosurgical devices | |
US20170231696A1 (en) | Microwave ablation antenna assemblies | |
BR112017025884B1 (en) | ELECTROSURGICAL INSTRUMENT, MANUFACTURING METHOD AND ELECTROSURGICAL SYSTEM | |
US11799206B2 (en) | Helical antenna structure | |
CN112654321B (en) | Electrosurgical instrument | |
US20050027335A1 (en) | Coaxial probe | |
US20150366613A1 (en) | Ablation probe with metalized ceramic component | |
US20190175271A1 (en) | Microwave instrument | |
JP4438338B2 (en) | Coaxial probe | |
CN112996452A (en) | Electrosurgical ablation instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090303 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100223 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100408 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100608 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100803 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100928 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101011 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131105 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4618241 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |