[go: nahoru, domu]

JP4618241B2 - Coaxial probe device - Google Patents

Coaxial probe device Download PDF

Info

Publication number
JP4618241B2
JP4618241B2 JP2006335993A JP2006335993A JP4618241B2 JP 4618241 B2 JP4618241 B2 JP 4618241B2 JP 2006335993 A JP2006335993 A JP 2006335993A JP 2006335993 A JP2006335993 A JP 2006335993A JP 4618241 B2 JP4618241 B2 JP 4618241B2
Authority
JP
Japan
Prior art keywords
dielectric
coaxial probe
inner conductor
probe device
outer conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006335993A
Other languages
Japanese (ja)
Other versions
JP2008142467A (en
Inventor
喜久男 脇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2006335993A priority Critical patent/JP4618241B2/en
Publication of JP2008142467A publication Critical patent/JP2008142467A/en
Application granted granted Critical
Publication of JP4618241B2 publication Critical patent/JP4618241B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Surgical Instruments (AREA)

Description

本発明は、例えば生体組織内に挿入してマイクロ波により加熱治療を行う際に用いることができる同軸プローブに関するものである。   The present invention relates to a coaxial probe that can be used, for example, when inserted into a living tissue to perform heat treatment using microwaves.

近年、悪性腫瘍等の病気に対する治療方法として電磁波を利用したものが幾つか提案されている。その内の1つにマイクロ波を直接患部に吸収させて、患部の温度を上昇させ凝固させるという凝固療法がある。この方法は、マイクロ波を効率よく放射する同軸プローブを直接患部に射し込み、同軸プローブから放射されるマイクロ波によって患部に発生する誘電熱により患部の組織を凝固壊死させるというものである。   In recent years, several methods using electromagnetic waves have been proposed as treatment methods for diseases such as malignant tumors. One of them is coagulation therapy in which microwaves are directly absorbed into the affected area, and the temperature of the affected area is increased to coagulate. In this method, a coaxial probe that efficiently radiates microwaves is directly projected onto the affected area, and the tissue of the affected area is coagulated and necrosed by dielectric heat generated in the affected area by the microwave radiated from the coaxial probe.

同軸プローブは直径1mm程度又はそれ以下に形成が可能であり、経皮的に患部に挿入する方法や、胸腔鏡または腹腔鏡を利用して患部に挿入する方法がある。同軸プローブを用いることにより切開部分を小さくできる、もしくは切開せずに済み、治療時間も比較的短時間であるため悪性腫瘍等を手術により摘出するのに比較して、患者への負担が小さく特に癌の初期治療として有用である。   The coaxial probe can be formed with a diameter of about 1 mm or less, and there are a method of percutaneously inserting into the affected part and a method of inserting into the affected part using a thoracoscope or a laparoscope. By using a coaxial probe, the incision can be made smaller or no incision can be made, and the treatment time is relatively short, so the burden on the patient is particularly small compared to surgical removal of malignant tumors. Useful as an initial treatment for cancer.

特許文献1には、MRI装置によるモニタリングを行いながらマイクロ波治療を行う際に、MRI装置により患部と同軸プローブの相対位置がモニタリング可能となるように、先端部に磁性体材料からなるマーカー部材を備えた針状モノポーラ電極装置が開示されている。図Xに針状モノポーラ電極装置100の部分断面図を示す。針状モノポーラ電極装置は外部電極103、絶縁体104、中心電極105、中心導体106、およびマーカー部材107からなり、中心電極105はマーカー部材107を介して中心導体106と電気的に一体化されている。   In Patent Document 1, when performing microwave therapy while monitoring with an MRI apparatus, a marker member made of a magnetic material is provided at the distal end so that the relative position of the affected part and the coaxial probe can be monitored by the MRI apparatus. A needle-shaped monopolar electrode device is disclosed. FIG. X shows a partial cross-sectional view of the acicular monopolar electrode device 100. The acicular monopolar electrode device includes an external electrode 103, an insulator 104, a center electrode 105, a center conductor 106, and a marker member 107. The center electrode 105 is electrically integrated with the center conductor 106 via the marker member 107. Yes.

特許文献2には、生体組織にマイクロ波を効率よく吸収させる構造を有する同軸プローブが開示されている。この同軸プローブは先端を内導体から外導体にかけて円錐状にして内導体、外導体および内導体と外導体の間に介在する誘電体を露出させた形状を有し、生体組織に対して利用するマイクロ波の反射係数が最も小さくなる形状条件と誘電体の比誘電率の条件が開示されている。
特開2004−008243号公報 特開2004−058750号公報
Patent Document 2 discloses a coaxial probe having a structure that allows a living tissue to efficiently absorb microwaves. This coaxial probe has a shape in which the tip is conically formed from the inner conductor to the outer conductor, and the inner conductor, the outer conductor, and the dielectric interposed between the inner conductor and the outer conductor are exposed, and is used for living tissue. A shape condition that minimizes the reflection coefficient of the microwave and a condition of the relative dielectric constant of the dielectric are disclosed.
JP 2004008243 A JP 2004-058750 A

特許文献1記載の針状モノポーラ電極装置では、その先端部において同軸ケーブル部とマイクロ波の放射部がインピーダンス的に不整合となりがちで、伝送されてきた電力の内、数%〜数十%の電力がこの部分で反射される。また、中心電極105と生体組織との間においても電力の反射が起こり、電力が生体組織で効率よく消費されない。   In the needle-shaped monopolar electrode device described in Patent Document 1, the coaxial cable portion and the microwave radiating portion tend to be mismatched in impedance at the tip portion, and the transmitted power is several% to several tens%. Power is reflected at this part. Further, power is also reflected between the center electrode 105 and the living tissue, and the power is not efficiently consumed by the living tissue.

特許文献2記載の同軸プローブでは、内導体と外導体の間に介在する誘電体をアルミナとし、先端の形状を所定の形状とすることにより生体組織と同軸プローブとの間での電力反射を非常に小さくすることができる。この同軸プローブの特性インピーダンスは約23Ωである。一般の信号発生器、電力増幅アンプ、同軸伝送ケーブルは通常特性インピーダンスが50Ωとされており、前記同軸プローブと同軸伝送ケーブルを直接接合するとインピーダンスが不整合となり、大部分の電力が反射されることとなる。   In the coaxial probe described in Patent Document 2, the dielectric interposed between the inner conductor and the outer conductor is alumina, and the shape of the tip is set to a predetermined shape, so that power reflection between the living tissue and the coaxial probe is extremely low. Can be made smaller. The characteristic impedance of this coaxial probe is about 23Ω. General signal generators, power amplification amplifiers, and coaxial transmission cables usually have a characteristic impedance of 50Ω. When the coaxial probe and coaxial transmission cable are directly joined, the impedance becomes mismatched and most of the power is reflected. It becomes.

一般にマイクロ波凝固療法に用いられる周波数は2.4〜2.45GHzであり、この周波数を増幅できる高周波増幅器は非常に高価である。また出力する電力の大きさによって価格は高くなる。同軸プローブからの電力の反射が大きければ、その分増幅器から大きな電力を供給する必要があり、増幅器の価格がさらに高くなってしまう。また、大きな反射電力を増幅器に直接戻さないために、高電力のアイソレータが必要となり、全体の設備自体の価格が高くなってしまうという問題点があった。   Generally, the frequency used for microwave coagulation therapy is 2.4 to 2.45 GHz, and a high-frequency amplifier capable of amplifying this frequency is very expensive. In addition, the price increases depending on the magnitude of the output power. If the reflection of power from the coaxial probe is large, it is necessary to supply a large amount of power from the amplifier, and the price of the amplifier is further increased. In addition, since high reflected power is not returned directly to the amplifier, a high-power isolator is required, and there is a problem that the price of the entire equipment itself is increased.

更に、同軸プローブと同軸伝送ケーブルのインピーダンスが不整合において反射波が発生し、この反射波と入射波が干渉して無視できない大きさの定在波が存在することとなる。この定在波の電力はインピーダンス不整合による反射係数の2乗に比例して大きくなり、線路上で不要な発熱を伴い、正常な組織まで壊死させるという問題があった。   Further, when the impedances of the coaxial probe and the coaxial transmission cable are mismatched, a reflected wave is generated, and the reflected wave and the incident wave interfere with each other, and a standing wave having a magnitude that cannot be ignored exists. The power of this standing wave increases in proportion to the square of the reflection coefficient due to impedance mismatching, causing unnecessary heat generation on the line, and causing a problem of necrosis to a normal tissue.

上記問題点を解決するために請求項1記載の発明は、外導体と内導体との間に誘電体を介在させた構造を有する同軸プローブ装置であって、前記同軸プローブ装置は、比誘電率がε1である第1の誘電体と前記外導体および前記内導体を有する伝送線路部と、比誘電率がε2である第2の誘電体と前記外導体および前記内導体を有するプローブ部と、単層又は複数層で構成され平均の比誘電率がε3である第3の誘電体と前記外導体および前記内導体を有するインピーダンス整合部とからなり、前記それぞれの比誘電率は下記の数1の関係を満たし、前記伝送線路部と、前記インピーダンス整合部と、前記プローブ部とは、この順で外導体同士と内導体同士がそれぞれ電気的に接合され、かつ、前記第1の誘電体と前記第3の誘電体、および前記第3の誘電体と前記第2の誘電体は隙間無く接合されており、前記プローブ部は、外部に電力を放射する放射部を有していることを特徴とする。 In order to solve the above problem, the invention according to claim 1 is a coaxial probe device having a structure in which a dielectric is interposed between an outer conductor and an inner conductor, wherein the coaxial probe device has a relative dielectric constant. A first dielectric having ε 1 , a transmission line portion having the outer conductor and the inner conductor, and a second dielectric having a relative dielectric constant ε 2 , the probe portion having the outer conductor and the inner conductor And a third dielectric having an average relative dielectric constant of ε 3 and an impedance matching portion having the outer conductor and the inner conductor, each of which has the following relative dielectric constant: The transmission line section, the impedance matching section, and the probe section are electrically connected to each other between the outer conductor and the inner conductor in this order, and the first A dielectric, the third dielectric, and the It said third dielectric second dielectric is no gap junction, the probe unit is characterized by having a radiating portion for radiating the power to the external.

請求項2に記載の発明は、請求項1に記載の同軸プローブ装置において、前記放射部は前記プローブ部の一端に形成されており、該放射部は前記内導体から前記外導体にかけて円錐形状にして前記内導体と前記第2の誘電体を露出する尖端であることを特徴とする。 According to a second aspect of the present invention, in the coaxial probe device according to the first aspect, the radiating portion is formed at one end of the probe portion, and the radiating portion has a conical shape from the inner conductor to the outer conductor. And a tip that exposes the inner conductor and the second dielectric.

請求項3に記載の発明は、請求項1から2のいずれかに記載の同軸プローブ装置において、3つの異なる比誘電率の誘電体が連続する任意の部分において、中間層となる誘電体の比誘電率をεm、両側の誘電体の比誘電率をそれぞれεa、εbとしたとき、εmが下記の数2を満足することを特徴とする。 According to a third aspect of the present invention, in the coaxial probe device according to any one of the first to second aspects, the ratio of the dielectric material serving as the intermediate layer in any portion where the dielectric materials having three different relative dielectric constants are continuous. When the dielectric constant is ε m and the relative dielectric constants of the dielectrics on both sides are ε a and ε b , respectively, ε m satisfies the following formula 2.

請求項4に記載の発明は、請求項1から3のいずれか1項に記載の同軸プローブ装置において、前記異なる比誘電率の誘電体同士が接合される部分において、前記誘電体の一方は内導体から前記外導体にかけて円錐状の凸部とされ、他方は該凸部に隙間無く嵌合する円錐状の凹部とされていることを特徴とする。 According to a fourth aspect of the present invention, in the coaxial probe device according to any one of the first to third aspects, in the portion where the dielectrics having different relative dielectric constants are joined, one of the dielectrics is an inner part. is the conical protrusions from the conductor toward the outer conductor, the other is characterized in that there is a conical recess without clearance fit in the convex portion.

請求項5に記載の発明は、請求項1から4のいずれか1項に記載の同軸プローブ装置において、前記凸部は比誘電率の低い側の誘電体に設けられていることを特徴とする。   According to a fifth aspect of the present invention, in the coaxial probe device according to any one of the first to fourth aspects, the convex portion is provided on a dielectric having a low relative dielectric constant. .

請求項6に記載の発明は、請求項1から5のいずれか1項に記載の同軸プローブ装置において、前記第2の誘電体はアルミナであることを特徴とする。   According to a sixth aspect of the present invention, in the coaxial probe device according to any one of the first to fifth aspects, the second dielectric is alumina.

請求項7に記載の発明は、請求項1から6のいずれか1項に記載の同軸プローブ装置において、前記第1の誘電体はポリテトラフルオロエチレンであることを特徴とする。   A seventh aspect of the present invention is the coaxial probe device according to any one of the first to sixth aspects, wherein the first dielectric is polytetrafluoroethylene.

請求項8に記載の発明は、請求項1から7のいずれか1項に記載の同軸プローブ装置において、前記第3の誘電体はポリフェニレンサルファイドからなることを特徴とする。 According to an eighth aspect of the invention, in the coaxial probe device according to any one of the first to seventh aspects, the third dielectric is made of polyphenylene sulfide.

請求項9に記載の発明は、請求項1から8のいずれか1項に記載の同軸プローブ装置において、前記伝送線路部は特性インピーダンスが50Ωであることを特徴とする。   According to a ninth aspect of the present invention, in the coaxial probe device according to any one of the first to eighth aspects, the transmission line section has a characteristic impedance of 50Ω.

この発明によれば、マイクロ波凝固療法に用いられる同軸プローブ装置に供給する電力を反射させることなく、効率よく生体組織に吸収させることができる。これにより、増幅器の出力を必要以上に大きくする必要がないため、装置自体を安価にすることができる。インピーダンス不整合部からの反射波と入射波の干渉により発生する定在波が無視できるため不要な発熱による正常組織の破壊を回避できる。   According to the present invention, the power supplied to the coaxial probe device used for the microwave coagulation therapy can be efficiently absorbed into the living tissue without reflecting. Thereby, since it is not necessary to make the output of the amplifier larger than necessary, the device itself can be made inexpensive. Since the standing wave generated by the interference between the reflected wave from the impedance mismatching part and the incident wave can be ignored, the destruction of the normal tissue due to unnecessary heat generation can be avoided.

第1の実施例を図1に基づいて説明する。図1は同軸プローブ装置1の部分断面図である。同軸プローブ装置1は外導体3、内導体2、および外導体3と内導体2の間に挿入された誘電体からなる。第1の誘電体4は比誘電率が約2.1のポリテトラフルオロエチレン(テフロン:登録商標)で構成されており、第1の誘電体4が存在する部分は伝送線路部として機能する。内導体2の外径は0.48mm、外導体3の内径は1.6mmで、伝送線路部における特性インピーダンスは50Ωとされている。   A first embodiment will be described with reference to FIG. FIG. 1 is a partial cross-sectional view of the coaxial probe device 1. The coaxial probe device 1 includes an outer conductor 3, an inner conductor 2, and a dielectric inserted between the outer conductor 3 and the inner conductor 2. The first dielectric 4 is made of polytetrafluoroethylene (Teflon: registered trademark) having a relative dielectric constant of about 2.1, and a portion where the first dielectric 4 exists functions as a transmission line portion. The outer diameter of the inner conductor 2 is 0.48 mm, the inner diameter of the outer conductor 3 is 1.6 mm, and the characteristic impedance in the transmission line portion is 50Ω.

第2の誘電体5は比誘電率が約9.7のアルミナで構成されており、第2の誘電体5が存在する部分はプローブ部として機能する。プローブ部は鋭い先端部Aを有する。先端部Aは内導体の中心を頂点とする円錐形状とされており、第2の誘電体5の一部が外部に露出している。プローブ部は生体組織の患部に射し込まれるため、内導体2の先端および外導体3は人体にとって無毒である金属でめっきされていることが好ましく、金めっきが好適である。また、テフロンなどの薄い樹脂被膜で覆われていてもよい。tを約5.3mmとすれば、プローブ部が生体組織(肝臓)に射し込まれているときに電力の反射が極小となり、反射係数Γ<0.1となる。   The second dielectric 5 is made of alumina having a relative dielectric constant of about 9.7, and the portion where the second dielectric 5 exists functions as a probe portion. The probe portion has a sharp tip A. The tip A has a conical shape with the center of the inner conductor as the apex, and a part of the second dielectric 5 is exposed to the outside. Since the probe part is projected into the affected part of the living tissue, the tip of the inner conductor 2 and the outer conductor 3 are preferably plated with a metal that is non-toxic to the human body, and gold plating is preferred. Further, it may be covered with a thin resin film such as Teflon. If t is about 5.3 mm, the reflection of electric power is minimized when the probe part is projected into the living tissue (liver), and the reflection coefficient Γ <0.1.

第3の誘電体6は比誘電率が約4.5のガラスで構成されている。第3の誘電体6の比誘電率をεm、第1の誘電体4の比誘電率をεa、第2の誘電体5の比誘電率をεbとしたとき、εmは下記の数2を満足している。 The third dielectric 6 is made of glass having a relative dielectric constant of about 4.5. When the relative dielectric constant of the third dielectric 6 is ε m , the relative dielectric constant of the first dielectric 4 is ε a , and the relative dielectric constant of the second dielectric 5 is ε b , ε m is I am satisfied with Equation 2.

尤も必ずしもこの関係を満たす必要はなく、後述するL1、L2の値を適宜設定することにより第3の誘電体6の比誘電率はある程度の範囲をとることが可能である。 However, it is not always necessary to satisfy this relationship, and the relative permittivity of the third dielectric 6 can take a certain range by appropriately setting values of L1 and L2 described later.

第1の誘電体4は第3の誘電体6に向けて錐状の凸部を有しており、この錐状の凸部の高さはL1とされている。一方第3の誘電体6は前記凸部と嵌合する錐状の凹部を有しており、この錐状の凹部の高さはL1とされ、前記凸部と前記凹部は隙間無く組み合わされている。L1は双方の比誘電率により適宜決定される。 The first dielectric 4 has a cone-shaped projection toward the third dielectric 6, and the height of the cone-shaped projection is L1. Whereas third dielectric 6 has a conical recess for mating with the protrusion, the height of the cone-shaped recess is the L1, the concave portion is combined without clearance between the convex portion Yes. L1 is appropriately determined depending on the relative permittivity of both.

上記と同様に第3の誘電体6は第2の誘電体5に向けて錐状の凸部を有しており、この錐状の凸部の高さはL2とされている。一方第2の誘電体5は前記凸部と嵌合する錐状の凹部を有しており、この錐状の凹部の高さはL2とされ、前記凸部と前記凹部は隙間無く組み合わされている。L2は双方の比誘電率により適宜決定される。 Similarly to the above, the third dielectric 6 has a cone-shaped projection toward the second dielectric 5, and the height of the cone-shaped projection is L2. On the other hand, the second dielectric 5 has a conical concave portion that fits into the convex portion, and the height of the conical concave portion is L2, and the convex portion and the concave portion are combined with no gap. Yes. L2 is appropriately determined depending on the relative permittivity of both.

図2、図3、図4、図5はεmをそれぞれ4.0、4.5、5.0、5.5としたときの、L1とL2と同軸プローブ装置1の反射係数の関係を有限要素法を用いてシミュレーションを行った結果を示したものである。プローブ部は肝臓に差し込まれていると仮定し、計算に用いたパラメータは以下の通りで、一部のパラメータはすでに前述したものの再掲である。
解析周波数(F) :2.45GHz
内導体2の外径(r) :0.48mm
外導体3の内径 (R) :1.60mm
先端錐状部の高さ(t) :5.2mm
テフロンの比誘電率(εa) :2.1
テフロンの誘電正接(tanδa):1.0E-04
アルミナの比誘電率(εb) :9.7
アルミナの誘電正接(tanδb):1.0E-04
肝臓の比誘電率(εr) :43.0
肝臓の誘電正接(tanδr) :2.85E-01
図2、図3、図4、図5の各々において横軸はL1の寸法を示し、縦軸はL2の寸法を示している。例えば図3においてL1を5、L2を9とすれば、その時の反射係数Γはおよそ0.05(V.S.W.R=1.10)となる。このとき供給される電力に対し、反射される電力はわずか0.3%程度しかなく、大部分の電力が生体に放射吸収されていることを表している。従って電力増幅器は必要以上に大きな電力を供給する必要が無く、増幅レベルの大きい電力増幅器を必要としないため設備を安価に構成できる。
2, 3, 4, and 5 simulate the relationship between L1 and L2 and the reflection coefficient of the coaxial probe device 1 using the finite element method when εm is 4.0, 4.5, 5.0, and 5.5, respectively. The results are shown. Assuming that the probe unit is inserted into the liver, the parameters used in the calculation are as follows, and some of the parameters have already been described above.
Analysis frequency (F): 2.45GHz
Inner conductor 2 outer diameter (r): 0.48 mm
Inner diameter of outer conductor 3 (R): 1.60mm
Tip cone height (t): 5.2 mm
Teflon dielectric constant (ε a ): 2.1
Teflon dielectric loss tangent (tanδ a ): 1.0E-04
Relative permittivity of alumina (ε b ): 9.7
Dielectric loss tangent of alumina (tanδ b ): 1.0E-04
Liver dielectric constant (ε r ): 43.0
Liver dielectric loss tangent (tanδ r ): 2.85E-01
In each of FIGS. 2, 3, 4, and 5, the horizontal axis indicates the dimension of L1, and the vertical axis indicates the dimension of L2. For example, if L1 is 5 and L2 is 9 in FIG. 3, the reflection coefficient Γ at that time is approximately 0.05 (VSWR = 1.10). The reflected power is only about 0.3% of the power supplied at this time, which means that most of the power is radiated and absorbed by the living body. Therefore, the power amplifier does not need to supply more power than necessary, and does not require a power amplifier with a high amplification level, so that the equipment can be configured at low cost.

図2、図3、図4、図5から、εmのいずれの条件においてもL1、L2を適宜選択すれば、反射係数を小さくできる領域が有ることが分かる。従って、用いる誘電体の比誘電率に合わせてシミュレーションを実施しL1、L2を最適値に設計することで電力反射の小さい同軸プローブ装置を作成することができる。 2, 3, 4, and 5, it can be seen that there is a region where the reflection coefficient can be reduced if L1 and L2 are appropriately selected under any condition of ε m . Therefore, a coaxial probe device with low power reflection can be created by performing simulation in accordance with the relative dielectric constant of the dielectric to be used and designing L1 and L2 to optimum values.

εa=2.1、εb=9.7を[数1]に代入すればεm≒4.5となる。図2〜図5において、特に図4は[数1]を満たした時のシミュレーション結果を表すグラフである。このとき、反射係数を小さくできる領域がεm=4のグラフと比較して広くなり、L1、L2の設計領域が大きくなる。またεm=5のグラフと比較すれば、反射係数を小さくできる領域は幾分小さいものの、L1とL2が小さい領域において寸法による反射係数の変化が小さいため、ばらつきを抑えた設計が可能となる。比誘電率が4.5に近い特性を持つものとして比誘電率が4.6のポリフェニレンサルファイド(PPS)がある。PPSは耐環境性能に優れており、またTanδも0.002程度と非常に小さいため、第3の誘電体として好適である。 Substituting ε a = 2.1 and ε b = 9.7 into [Equation 1] gives ε m ≈4.5. 2 to 5, in particular, FIG. 4 is a graph showing a simulation result when [Equation 1] is satisfied. At this time, the region where the reflection coefficient can be reduced becomes wider compared to the graph of ε m = 4, and the design region of L1 and L2 becomes large. Compared with the graph of ε m = 5, although the area where the reflection coefficient can be reduced is somewhat small, the change in the reflection coefficient due to the dimension is small in the area where L1 and L2 are small, so that design with reduced variation is possible. . Polyphenylene sulfide (PPS) with a relative dielectric constant of 4.6 is a characteristic having a dielectric constant close to 4.5. PPS is excellent in environmental resistance, and Tanδ is very small, about 0.002, and thus is suitable as the third dielectric.

次に第2の実施例を図6に基づいて説明する。図6は図1と同様に同軸プローブ装置1の部分断面図である。図1と同じ部分については同じ番号を付し説明を省略する。第3の誘電体6は、それぞれ誘電率の異なる第1の層6aと第2の層6bを有する2層構造とされている。第1の層6aの誘電率をεma、第2の層6bの誘電率をεmbとすれば、それぞれの誘電率の関係は、 Next, a second embodiment will be described with reference to FIG. FIG. 6 is a partial cross-sectional view of the coaxial probe device 1 as in FIG. The same parts as those in FIG. The third dielectric 6 has a two-layer structure having a first layer 6a and a second layer 6b having different dielectric constants. If the dielectric constant of the first layer 6a is ε ma and the dielectric constant of the second layer 6b is ε mb , the relationship between the respective dielectric constants is

とされていることが好ましい。さらに、 It is preferable that further,

とされ。また、 And Also,

とされていることが好ましい。第2の実施例において第3の誘電体6は第1の層6aと第2の層6bとから成る例を示したが、3層以上の層を有しても構わない。 It is preferable that In the second embodiment, the third dielectric 6 is composed of the first layer 6a and the second layer 6b. However, the third dielectric 6 may have three or more layers.

本発明の第1の実施例を示す同軸プローブ装置の先端付近部分断面図である。1 is a partial cross-sectional view near the tip of a coaxial probe device showing a first embodiment of the present invention. 本発明の第1の実施例において、εm=4.0としたときの、L1とL2と反射係数との関係を表すグラフである。6 is a graph showing the relationship between L1, L2, and the reflection coefficient when ε m = 4.0 in the first example of the present invention. 本発明の第1の実施例において、εm=4.5としたときの、L1とL2と反射係数との関係を表すグラフである。In the first embodiment of the present invention, it is a graph showing the relationship between L1 and L2 and the reflection coefficient when ε m = 4.5. 本発明の第1の実施例において、εm=5.0としたときの、L1とL2と反射係数との関係を表すグラフである。In the first embodiment of the present invention, it is a graph showing the relationship between L1 and L2 and the reflection coefficient when ε m = 5.0. 本発明の第1の実施例において、εm=5.5としたときの、L1とL2と反射係数との関係を表すグラフである。In the first embodiment of the present invention, it is a graph showing the relationship between L1 and L2 and the reflection coefficient when ε m = 5.5. 本発明の第1の実施例を示す同軸プローブ装置の先端付近の部分断面図である。It is a fragmentary sectional view near the front-end | tip of the coaxial probe apparatus which shows the 1st Example of this invention. 従来の針状モノポーラ電極装置の先端付近の部分断面図である。It is a fragmentary sectional view near the front-end | tip of the conventional acicular monopolar electrode apparatus.

2 内部電極
3 外部電極
4 第1の誘電体
5 第2の誘電体
6 第3の誘電体
6a 第3の誘電体の第1の層
6b 第3の誘電体の第2の層
103 外部電極
104 絶縁体
105 中心電極
106 中心導体
107 マーカー部材
2 internal electrode 3 external electrode 4 first dielectric 5 second dielectric 6 third dielectric 6a third dielectric first layer 6b third dielectric second layer 103 external electrode 104 Insulator 105 Center electrode 106 Center conductor 107 Marker member

Claims (9)

外導体と内導体との間に誘電体を介在させた構造を有する同軸プローブ装置であって、前記同軸プローブ装置は、
比誘電率がε1である第1の誘電体と前記外導体および前記内導体を有する伝送線路部と、比誘電率がε2である第2の誘電体と前記外導体および前記内導体を有するプローブ部と、単層又は複数層で構成され平均の比誘電率がε3である第3の誘電体と前記外導体および前記内導体を有するインピーダンス整合部とからなり、
前記それぞれの比誘電率は下記の数1の関係を満たし、
前記伝送線路部と、前記インピーダンス整合部と、前記プローブ部とは、この順で外導体同士と内導体同士がそれぞれ電気的に接合され、かつ、前記第1の誘電体と前記第3の誘電体、および前記第3の誘電体と前記第2の誘電体は隙間無く接合されており、
前記プローブ部は、外部に電力を放射する放射部を有していることを特徴とする同軸プローブ装置。
A coaxial probe device having a structure in which a dielectric is interposed between an outer conductor and an inner conductor, the coaxial probe device comprising:
A first dielectric having a relative dielectric constant of ε 1 , a transmission line portion having the outer conductor and the inner conductor, a second dielectric having a relative dielectric constant of ε 2 , the outer conductor, and the inner conductor. A probe portion having a single dielectric layer or a plurality of layers, and a third dielectric having an average relative dielectric constant of ε 3 and an impedance matching portion having the outer conductor and the inner conductor,
Each of the relative dielectric constants satisfies the following formula (1):
The transmission line section, the impedance matching section, and the probe section are such that the outer conductor and the inner conductor are electrically joined in this order, and the first dielectric and the third dielectric Body, and the third dielectric and the second dielectric are joined without gaps,
The coaxial probe device according to claim 1, wherein the probe section includes a radiation section that radiates power to the outside.
前記放射部は前記プローブ部の一端に形成されており、該放射部は前記内導体から前記外導体にかけて円錐形状にして前記内導体と前記第2の誘電体を露出する尖端であることを特徴とする請求項1に記載の同軸プローブ装置。   The radiating portion is formed at one end of the probe portion, and the radiating portion is a pointed end that exposes the inner conductor and the second dielectric body in a conical shape from the inner conductor to the outer conductor. The coaxial probe device according to claim 1. 3つの異なる比誘電率の誘電体が連続する任意の部分において、中間層となる誘電体の比誘電率をεm、両側の誘電体の比誘電率をそれぞれεa、εbとしたとき、εmが下記の数2を満足することを特徴とする請求項1または2に記載の同軸プローブ装置。
In an arbitrary portion where three different dielectric constant dielectrics are continuous, when the dielectric constant of the intermediate layer is ε m , and the dielectric constants of the dielectrics on both sides are ε a and ε b , respectively, The coaxial probe apparatus according to claim 1, wherein ε m satisfies the following formula 2.
前記異なる比誘電率の誘電体同士が接合される部分において、
前記誘電体の一方は内導体から前記外導体にかけて円錐状の凸部とされ、他方は該凸部に隙間無く嵌合する円錐状の凹部とされていることを特徴とする請求項1から3のいずれか1項に記載の同軸プローブ装置。
In the portion where the dielectrics having different relative dielectric constants are joined,
Said one of the dielectric is a conical projection portion to the outer conductor from the inner conductor and the other of claims 1, characterized in that there is a conical recess without clearance fitted to the convex portion 3 The coaxial probe device according to any one of the above.
前記凸部は比誘電率の低い側の誘電体に設けられていることを特徴とする請求項1から4のいずれか1項に記載の同軸プローブ装置。   5. The coaxial probe device according to claim 1, wherein the convex portion is provided on a dielectric having a low relative dielectric constant. 前記第2の誘電体はアルミナであることを特徴とする請求項1から5のいずれか1項に記載の同軸プローブ装置。   6. The coaxial probe device according to claim 1, wherein the second dielectric is alumina. 前記第1の誘電体はポリテトラフルオロエチレンであることを特徴とする請求項1から6のいずれか1項に記載の同軸プローブ装置。   The coaxial probe apparatus according to claim 1, wherein the first dielectric is polytetrafluoroethylene. 前記第3の誘電体はポリフェニレンサルファイドからなることを特徴とする請求項1から7のいずれか1項に記載の同軸プローブ装置。 The coaxial probe device according to claim 1, wherein the third dielectric is made of polyphenylene sulfide. 前記伝送線路部は特性インピーダンスが50Ωであることを特徴とする請求項1から8のいずれか1項に記載の同軸プローブ装置。   The coaxial probe apparatus according to claim 1, wherein the transmission line section has a characteristic impedance of 50Ω.
JP2006335993A 2006-12-13 2006-12-13 Coaxial probe device Expired - Fee Related JP4618241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006335993A JP4618241B2 (en) 2006-12-13 2006-12-13 Coaxial probe device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006335993A JP4618241B2 (en) 2006-12-13 2006-12-13 Coaxial probe device

Publications (2)

Publication Number Publication Date
JP2008142467A JP2008142467A (en) 2008-06-26
JP4618241B2 true JP4618241B2 (en) 2011-01-26

Family

ID=39603287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335993A Expired - Fee Related JP4618241B2 (en) 2006-12-13 2006-12-13 Coaxial probe device

Country Status (1)

Country Link
JP (1) JP4618241B2 (en)

Families Citing this family (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7197363B2 (en) 2002-04-16 2007-03-27 Vivant Medical, Inc. Microwave antenna having a curved configuration
US7553309B2 (en) 2004-10-08 2009-06-30 Covidien Ag Electrosurgical system employing multiple electrodes and method thereof
US7282049B2 (en) 2004-10-08 2007-10-16 Sherwood Services Ag Electrosurgical system employing multiple electrodes and method thereof
US7776035B2 (en) 2004-10-08 2010-08-17 Covidien Ag Cool-tip combined electrode introducer
US10363092B2 (en) 2006-03-24 2019-07-30 Neuwave Medical, Inc. Transmission line with heat transfer ability
US7846158B2 (en) 2006-05-05 2010-12-07 Covidien Ag Apparatus and method for electrode thermosurgery
US11389235B2 (en) 2006-07-14 2022-07-19 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US10376314B2 (en) 2006-07-14 2019-08-13 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US9375246B2 (en) 2007-01-19 2016-06-28 Covidien Lp System and method of using thermal and electrical conductivity of tissue
US8211099B2 (en) 2007-01-31 2012-07-03 Tyco Healthcare Group Lp Thermal feedback systems and methods of using the same
US7998139B2 (en) 2007-04-25 2011-08-16 Vivant Medical, Inc. Cooled helical antenna for microwave ablation
US7777130B2 (en) 2007-06-18 2010-08-17 Vivant Medical, Inc. Microwave cable cooling
US8181995B2 (en) 2007-09-07 2012-05-22 Tyco Healthcare Group Lp Cool tip junction
US8292880B2 (en) 2007-11-27 2012-10-23 Vivant Medical, Inc. Targeted cooling of deployable microwave antenna
US7713076B2 (en) 2007-11-27 2010-05-11 Vivant Medical, Inc. Floating connector for microwave surgical device
US7642451B2 (en) 2008-01-23 2010-01-05 Vivant Medical, Inc. Thermally tuned coaxial cable for microwave antennas
US8435237B2 (en) 2008-01-29 2013-05-07 Covidien Lp Polyp encapsulation system and method
US8353902B2 (en) 2008-01-31 2013-01-15 Vivant Medical, Inc. Articulating ablation device and method
US8221418B2 (en) 2008-02-07 2012-07-17 Tyco Healthcare Group Lp Endoscopic instrument for tissue identification
US9949794B2 (en) 2008-03-27 2018-04-24 Covidien Lp Microwave ablation devices including expandable antennas and methods of use
US9271796B2 (en) 2008-06-09 2016-03-01 Covidien Lp Ablation needle guide
US8192427B2 (en) 2008-06-09 2012-06-05 Tyco Healthcare Group Lp Surface ablation process with electrode cooling methods
US8343149B2 (en) 2008-06-26 2013-01-01 Vivant Medical, Inc. Deployable microwave antenna for treating tissue
AU2015215971B2 (en) * 2008-08-25 2016-11-03 Covidien Lp Microwave antenna assembly having a dielectric body portion with radial partitions of dielectric material
US8211098B2 (en) 2008-08-25 2012-07-03 Vivant Medical, Inc. Microwave antenna assembly having a dielectric body portion with radial partitions of dielectric material
US8251987B2 (en) 2008-08-28 2012-08-28 Vivant Medical, Inc. Microwave antenna
US8197473B2 (en) 2009-02-20 2012-06-12 Vivant Medical, Inc. Leaky-wave antennas for medical applications
US8118808B2 (en) 2009-03-10 2012-02-21 Vivant Medical, Inc. Cooled dielectrically buffered microwave dipole antenna
US9277969B2 (en) 2009-04-01 2016-03-08 Covidien Lp Microwave ablation system with user-controlled ablation size and method of use
US8246615B2 (en) 2009-05-19 2012-08-21 Vivant Medical, Inc. Tissue impedance measurement using a secondary frequency
US8292881B2 (en) 2009-05-27 2012-10-23 Vivant Medical, Inc. Narrow gauge high strength choked wet tip microwave ablation antenna
US8552915B2 (en) 2009-06-19 2013-10-08 Covidien Lp Microwave ablation antenna radiation detector
US8323275B2 (en) 2009-06-19 2012-12-04 Vivant Medical, Inc. Laparoscopic port with microwave rectifier
WO2011017168A2 (en) 2009-07-28 2011-02-10 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US8328800B2 (en) 2009-08-05 2012-12-11 Vivant Medical, Inc. Directive window ablation antenna with dielectric loading
US8328799B2 (en) 2009-08-05 2012-12-11 Vivant Medical, Inc. Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure
US8328801B2 (en) 2009-08-17 2012-12-11 Vivant Medical, Inc. Surface ablation antenna with dielectric loading
US8069553B2 (en) 2009-09-09 2011-12-06 Vivant Medical, Inc. Method for constructing a dipole antenna
US8355803B2 (en) 2009-09-16 2013-01-15 Vivant Medical, Inc. Perfused core dielectrically loaded dipole microwave antenna probe
US8394087B2 (en) 2009-09-24 2013-03-12 Vivant Medical, Inc. Optical detection of interrupted fluid flow to ablation probe
US9024237B2 (en) 2009-09-29 2015-05-05 Covidien Lp Material fusing apparatus, system and method of use
US8038693B2 (en) 2009-10-21 2011-10-18 Tyco Healthcare Group Ip Methods for ultrasonic tissue sensing and feedback
US8382750B2 (en) 2009-10-28 2013-02-26 Vivant Medical, Inc. System and method for monitoring ablation size
US8430871B2 (en) 2009-10-28 2013-04-30 Covidien Lp System and method for monitoring ablation size
US8469953B2 (en) 2009-11-16 2013-06-25 Covidien Lp Twin sealing chamber hub
US8394092B2 (en) 2009-11-17 2013-03-12 Vivant Medical, Inc. Electromagnetic energy delivery devices including an energy applicator array and electrosurgical systems including same
US8882759B2 (en) 2009-12-18 2014-11-11 Covidien Lp Microwave ablation system with dielectric temperature probe
US8764744B2 (en) 2010-01-25 2014-07-01 Covidien Lp System for monitoring ablation size
US8313486B2 (en) 2010-01-29 2012-11-20 Vivant Medical, Inc. System and method for performing an electrosurgical procedure using an ablation device with an integrated imaging device
US9113927B2 (en) 2010-01-29 2015-08-25 Covidien Lp Apparatus and methods of use for treating blood vessels
US8491579B2 (en) 2010-02-05 2013-07-23 Covidien Lp Electrosurgical devices with choke shorted to biological tissue
US8568404B2 (en) 2010-02-19 2013-10-29 Covidien Lp Bipolar electrode probe for ablation monitoring
US8968288B2 (en) 2010-02-19 2015-03-03 Covidien Lp Ablation devices with dual operating frequencies, systems including same, and methods of adjusting ablation volume using same
US8617153B2 (en) 2010-02-26 2013-12-31 Covidien Lp Tunable microwave ablation probe
US20110213353A1 (en) 2010-02-26 2011-09-01 Lee Anthony C Tissue Ablation System With Internal And External Radiation Sources
US8777939B2 (en) 2010-02-26 2014-07-15 Covidien Lp Self-tuning microwave ablation probe
US8728067B2 (en) 2010-03-08 2014-05-20 Covidien Lp Microwave antenna probe having a deployable ground plane
US8672923B2 (en) 2010-03-11 2014-03-18 Covidien Lp Automated probe placement device
US9028474B2 (en) 2010-03-25 2015-05-12 Covidien Lp Microwave surface coagulator with retractable blade
US10039601B2 (en) 2010-03-26 2018-08-07 Covidien Lp Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same
US8409188B2 (en) 2010-03-26 2013-04-02 Covidien Lp Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same
WO2011140087A2 (en) 2010-05-03 2011-11-10 Neuwave Medical, Inc. Energy delivery systems and uses thereof
US9867664B2 (en) 2010-05-03 2018-01-16 Covidien Lp System and method of deploying an antenna assembly
US9561076B2 (en) 2010-05-11 2017-02-07 Covidien Lp Electrosurgical devices with balun structure for air exposure of antenna radiating section and method of directing energy to tissue using same
US9192436B2 (en) 2010-05-25 2015-11-24 Covidien Lp Flow rate verification monitor for fluid-cooled microwave ablation probe
US8652127B2 (en) 2010-05-26 2014-02-18 Covidien Lp System and method for chemically cooling an ablation antenna
US9377367B2 (en) 2010-06-03 2016-06-28 Covidien Lp Specific absorption rate measurement and energy-delivery device characterization using thermal phantom and image analysis
US8188435B2 (en) 2010-06-03 2012-05-29 Tyco Healthcare Group Lp Specific absorption rate measurement and energy-delivery device characterization using thermal phantom and image analysis
US9468492B2 (en) 2010-06-03 2016-10-18 Covidien Lp Specific absorption rate measurement and energy-delivery device characterization using image analysis
US9241762B2 (en) 2010-06-03 2016-01-26 Covidien Lp Specific absorption rate measurement and energy-delivery device characterization using image analysis
US20110319880A1 (en) * 2010-06-25 2011-12-29 Vivant Medical, Inc Microwave Ground Plane Antenna Probe
US8672933B2 (en) 2010-06-30 2014-03-18 Covidien Lp Microwave antenna having a reactively-loaded loop configuration
US8740893B2 (en) 2010-06-30 2014-06-03 Covidien Lp Adjustable tuning of a dielectrically loaded loop antenna
US8974449B2 (en) 2010-07-16 2015-03-10 Covidien Lp Dual antenna assembly with user-controlled phase shifting
US10588684B2 (en) 2010-07-19 2020-03-17 Covidien Lp Hydraulic conductivity monitoring to initiate tissue division
US9119647B2 (en) 2010-11-12 2015-09-01 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US9028484B2 (en) 2010-11-16 2015-05-12 Covidien Lp Fingertip electrosurgical instruments for use in hand-assisted surgery and systems including same
US9055957B2 (en) 2010-12-23 2015-06-16 Covidien Lp Microwave field-detecting needle assemblies, methods of manufacturing same, methods of adjusting an ablation field radiating into tissue using same, and systems including same
US9770294B2 (en) 2011-01-05 2017-09-26 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US9011421B2 (en) 2011-01-05 2015-04-21 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US9017319B2 (en) 2011-01-05 2015-04-28 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US8932281B2 (en) 2011-01-05 2015-01-13 Covidien Lp Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same
US9028476B2 (en) 2011-02-03 2015-05-12 Covidien Lp Dual antenna microwave resection and ablation device, system and method of use
US8974450B2 (en) 2011-02-03 2015-03-10 Covidien Lp System and method for ablation procedure monitoring using electrodes
US9492190B2 (en) 2011-02-09 2016-11-15 Covidien Lp Tissue dissectors
US8317703B2 (en) 2011-02-17 2012-11-27 Vivant Medical, Inc. Energy-delivery device including ultrasound transducer array and phased antenna array, and methods of adjusting an ablation field radiating into tissue using same
US8376948B2 (en) 2011-02-17 2013-02-19 Vivant Medical, Inc. Energy-delivery device including ultrasound transducer array and phased antenna array
US10335230B2 (en) 2011-03-09 2019-07-02 Covidien Lp Systems for thermal-feedback-controlled rate of fluid flow to fluid-cooled antenna assembly and methods of directing energy to tissue using same
US9381059B2 (en) 2011-04-05 2016-07-05 Covidien Lp Electrically-insulative hinge for electrosurgical jaw assembly, bipolar forceps including same, and methods of jaw-assembly alignment using fastened electrically-insulative hinge
US9579150B2 (en) 2011-04-08 2017-02-28 Covidien Lp Microwave ablation instrument with interchangeable antenna probe
US9198724B2 (en) 2011-04-08 2015-12-01 Covidien Lp Microwave tissue dissection and coagulation
US9358066B2 (en) 2011-04-08 2016-06-07 Covidien Lp Flexible microwave catheters for natural or artificial lumens
US8992413B2 (en) 2011-05-31 2015-03-31 Covidien Lp Modified wet tip antenna design
US8888771B2 (en) 2011-07-15 2014-11-18 Covidien Lp Clip-over disposable assembly for use with hemostat-style surgical instrument and methods of manufacturing same
US8968297B2 (en) 2011-07-19 2015-03-03 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
US9192422B2 (en) 2011-07-19 2015-11-24 Covidien Lp System and method of matching impedances of an electrosurgical generator and/or a microwave generator
US9028482B2 (en) 2011-07-19 2015-05-12 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
US8870860B2 (en) 2011-08-09 2014-10-28 Covidien Lp Microwave antenna having a coaxial cable with an adjustable outer conductor configuration
US10842564B2 (en) 2011-08-10 2020-11-24 National University Corporation Shiga University Of Medical Science Microwave surgical instrument
US9039692B2 (en) 2011-09-20 2015-05-26 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US8745846B2 (en) 2011-09-20 2014-06-10 Covidien Lp Method of manufacturing handheld medical devices including microwave amplifier unit
US9023025B2 (en) 2011-09-20 2015-05-05 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US9033970B2 (en) 2011-09-20 2015-05-19 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US9039693B2 (en) 2011-09-20 2015-05-26 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
CN104220020B (en) 2011-12-21 2017-08-08 纽华沃医药公司 One kind ablation antenna assembly
US9375274B2 (en) 2012-01-05 2016-06-28 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9113930B2 (en) 2012-01-05 2015-08-25 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9113931B2 (en) 2012-01-06 2015-08-25 Covidien Lp System and method for treating tissue using an expandable antenna
US9119648B2 (en) 2012-01-06 2015-09-01 Covidien Lp System and method for treating tissue using an expandable antenna
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer
US9192308B2 (en) 2012-03-27 2015-11-24 Covidien Lp Microwave-shielded tissue sensor probe
US8945113B2 (en) 2012-04-05 2015-02-03 Covidien Lp Electrosurgical tissue ablation systems capable of detecting excessive bending of a probe and alerting a user
US10130416B2 (en) 2012-04-30 2018-11-20 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9943359B2 (en) 2012-04-30 2018-04-17 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9364278B2 (en) 2012-04-30 2016-06-14 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US8920410B2 (en) 2012-05-04 2014-12-30 Covidien Lp Peripheral switching device for microwave energy platforms
US8906008B2 (en) 2012-05-22 2014-12-09 Covidien Lp Electrosurgical instrument
US9168178B2 (en) 2012-05-22 2015-10-27 Covidien Lp Energy-delivery system and method for controlling blood loss from wounds
US20130324910A1 (en) 2012-05-31 2013-12-05 Covidien Lp Ablation device with drug delivery component and biopsy tissue-sampling component
AU2013278080B2 (en) 2012-06-22 2017-05-11 Covidien Lp Microwave thermometry for microwave ablation systems
US9192426B2 (en) 2012-06-26 2015-11-24 Covidien Lp Ablation device having an expandable chamber for anchoring the ablation device to tissue
US9066681B2 (en) 2012-06-26 2015-06-30 Covidien Lp Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US9332959B2 (en) 2012-06-26 2016-05-10 Covidien Lp Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US9192439B2 (en) 2012-06-29 2015-11-24 Covidien Lp Method of manufacturing a surgical instrument
US9901398B2 (en) 2012-06-29 2018-02-27 Covidien Lp Microwave antenna probes
US9439712B2 (en) 2012-07-12 2016-09-13 Covidien Lp Heat-distribution indicators, thermal zone indicators, electrosurgical systems including same and methods of directing energy to tissue using same
US9375252B2 (en) 2012-08-02 2016-06-28 Covidien Lp Adjustable length and/or exposure electrodes
US9370398B2 (en) 2012-08-07 2016-06-21 Covidien Lp Microwave ablation catheter and method of utilizing the same
US9370392B2 (en) 2012-10-02 2016-06-21 Covidien Lp Heat-sensitive optical probes
US9993283B2 (en) 2012-10-02 2018-06-12 Covidien Lp Selectively deformable ablation device
US9743975B2 (en) 2012-10-02 2017-08-29 Covidien Lp Thermal ablation probe for a medical device
US9662165B2 (en) 2012-10-02 2017-05-30 Covidien Lp Device and method for heat-sensitive agent application
US9522033B2 (en) 2012-10-02 2016-12-20 Covidien Lp Devices and methods for optical detection of tissue contact
US9668802B2 (en) 2012-10-02 2017-06-06 Covidien Lp Devices and methods for optical detection of tissue contact
US9901399B2 (en) 2012-12-17 2018-02-27 Covidien Lp Ablation probe with tissue sensing configuration
AU2014240941B2 (en) 2013-03-29 2018-07-19 Covidien Lp Step-down coaxial microwave ablation applicators and methods for manufacturing same
US9814844B2 (en) 2013-08-27 2017-11-14 Covidien Lp Drug-delivery cannula assembly
CN108937827B (en) 2013-09-06 2021-09-10 柯惠有限合伙公司 Handle (CN)
US10201265B2 (en) 2013-09-06 2019-02-12 Covidien Lp Microwave ablation catheter, handle, and system
US10631914B2 (en) 2013-09-30 2020-04-28 Covidien Lp Bipolar electrosurgical instrument with movable electrode and related systems and methods
US10765477B2 (en) * 2014-03-10 2020-09-08 Wisconsin Alumni Research Foundation Microwave ablation antenna system
US10624697B2 (en) 2014-08-26 2020-04-21 Covidien Lp Microwave ablation system
US10813691B2 (en) 2014-10-01 2020-10-27 Covidien Lp Miniaturized microwave ablation assembly
US10080600B2 (en) 2015-01-21 2018-09-25 Covidien Lp Monopolar electrode with suction ability for CABG surgery
GB2539494A (en) * 2015-06-19 2016-12-21 Creo Medical Ltd Electrosurgical Instrument
CN113367788B (en) 2015-10-26 2024-09-06 纽韦弗医疗设备公司 Energy delivery system and use thereof
GB2545465A (en) * 2015-12-17 2017-06-21 Creo Medical Ltd Electrosurgical probe for delivering microwave energy
US10813692B2 (en) 2016-02-29 2020-10-27 Covidien Lp 90-degree interlocking geometry for introducer for facilitating deployment of microwave radiating catheter
EP3442456B1 (en) 2016-04-15 2020-12-09 Neuwave Medical, Inc. System for energy delivery
US11065053B2 (en) 2016-08-02 2021-07-20 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US10376309B2 (en) 2016-08-02 2019-08-13 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US11000332B2 (en) 2016-08-02 2021-05-11 Covidien Lp Ablation cable assemblies having a large diameter coaxial feed cable reduced to a small diameter at intended site
US11197715B2 (en) 2016-08-02 2021-12-14 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US10814128B2 (en) 2016-11-21 2020-10-27 Covidien Lp Electroporation catheter
US10716619B2 (en) 2017-06-19 2020-07-21 Covidien Lp Microwave and radiofrequency energy-transmitting tissue ablation systems
US11147621B2 (en) 2017-11-02 2021-10-19 Covidien Lp Systems and methods for ablating tissue
US11123094B2 (en) 2017-12-13 2021-09-21 Covidien Lp Ultrasonic surgical instruments and methods for sealing and/or cutting tissue
US10707581B2 (en) 2018-01-03 2020-07-07 Wisconsin Alumni Research Foundation Dipole antenna for microwave ablation
US11672596B2 (en) 2018-02-26 2023-06-13 Neuwave Medical, Inc. Energy delivery devices with flexible and adjustable tips
US11160600B2 (en) 2018-03-01 2021-11-02 Covidien Lp Monopolar return electrode grasper with return electrode monitoring
US11832879B2 (en) 2019-03-08 2023-12-05 Neuwave Medical, Inc. Systems and methods for energy delivery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311334A (en) * 2003-04-10 2004-11-04 Murata Mfg Co Ltd Coaxial cable and antenna device
WO2004112628A1 (en) * 2003-06-23 2004-12-29 Microsulis Limited Radiation applicator for microwave medical treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311334A (en) * 2003-04-10 2004-11-04 Murata Mfg Co Ltd Coaxial cable and antenna device
WO2004112628A1 (en) * 2003-06-23 2004-12-29 Microsulis Limited Radiation applicator for microwave medical treatment

Also Published As

Publication number Publication date
JP2008142467A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP4618241B2 (en) Coaxial probe device
US6706040B2 (en) Invasive therapeutic probe
US9301804B2 (en) Dual antenna microwave resection and ablation device, system and method of use
EP2120763B1 (en) Tissue measurement and ablation antenna
US9713497B2 (en) System and method for performing an electrosurgical procedure using an ablation device with an integrated imaging device
US6527768B2 (en) End-firing microwave ablation instrument with horn reflection device
US20060189973A1 (en) Segmented catheter for tissue ablation
US8282632B2 (en) Feedpoint optimization for microwave ablation dipole antenna with integrated tip
EP2353645B1 (en) Electrosurgical devices with choke shorted to biological tissue
EP2008604B1 (en) Broadband microwave applicator
US11058487B2 (en) Microwave ablation antenna system with reflector and slot
JP5688814B2 (en) Surgical antenna and electrosurgical system using the same
US20130261616A1 (en) Patient isolation in a microwave-radio frequency generator
US10492860B2 (en) Microwave ablation antenna system with tapered slot balun
JP2010505570A (en) Apparatus and antenna calibration system and method for processing tissue using microwave radiation
JP7168227B2 (en) Microwave energy transmission components for electrosurgical devices
US20170231696A1 (en) Microwave ablation antenna assemblies
BR112017025884B1 (en) ELECTROSURGICAL INSTRUMENT, MANUFACTURING METHOD AND ELECTROSURGICAL SYSTEM
US11799206B2 (en) Helical antenna structure
CN112654321B (en) Electrosurgical instrument
US20050027335A1 (en) Coaxial probe
US20150366613A1 (en) Ablation probe with metalized ceramic component
US20190175271A1 (en) Microwave instrument
JP4438338B2 (en) Coaxial probe
CN112996452A (en) Electrosurgical ablation instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4618241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees