JP4717336B2 - Bone regeneration base material and method for producing the same - Google Patents
Bone regeneration base material and method for producing the same Download PDFInfo
- Publication number
- JP4717336B2 JP4717336B2 JP2003206356A JP2003206356A JP4717336B2 JP 4717336 B2 JP4717336 B2 JP 4717336B2 JP 2003206356 A JP2003206356 A JP 2003206356A JP 2003206356 A JP2003206356 A JP 2003206356A JP 4717336 B2 JP4717336 B2 JP 4717336B2
- Authority
- JP
- Japan
- Prior art keywords
- bone
- base material
- hydroxyapatite
- lactic acid
- bioabsorbable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Materials For Medical Uses (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、骨再生用基材の提供に関する。
【0002】
【従来の技術】
外傷や骨腫瘍などで骨が大きく欠損した場合、患者自身の正常な骨を一部切り取って欠損部に移植する自家骨移植が一般的であるが、自家骨移植のために採取できる骨量には限界があり、さらに健康な組織を傷つけることになるため、患者の負担も大きい。そのため、組織バンクに保存されている他人の骨を移植する同種骨移植も行われているが、同種骨は患者自身の骨と一体化できないのみでなく、接合部から遠く隔たったところには栄養が届かないため、同種骨の強度が低くなって折れることがある。また、免疫的拒絶反応の発生も懸念される。
現在、人工材料からなる人工骨の開発が活発に行われ、既に利用されてる状況にある。かかる材料は、免疫的問題の心配がなく、材料入手および加工が容易であるため、工業的に大量生産が可能である反面、コバルト−クロム合金やチタン合金などの金属材料は、生体組織に比べて弾性率が高すぎ、また靭性に欠けるという欠点があり、更に、医療現場において個々の欠損形状に対応するのが実質的に不可能である課題を有する。また、生体親和性の欠如や感染などの問題も多く、適用範囲は限定されている。
また、多孔質ハイドロキシアパタイトなどのバイオセラミックスは、生体親和性が高いため、骨充填などを目的として大量に利用されているが、かかる無機材料は強度が低く、その用途は限定されている。また、予め特殊な組織形態に成形加工することも難かしく、手術室で個々の欠損部に応じた形状に調製することもきわめて困難である。更に、細胞の侵入効果を向上するため、連通孔構造をもつことが必要であるが、セラミックスで連通孔構造をもたせることは容易でなく、強度も著しく低下するため、満足のいくものは得られていない。
一方、再生医工学により、骨を再建する研究開発が近年活発に進められている。かかる骨の再生には、細胞外マトリクス、骨髄細胞、骨膜、骨膜由来の細胞、骨誘導タンパク因子などが用いられる。その基材として、例えば、コラーゲンとバイオセラミックスの複合材料、或いは、特許文献1〜5に示すような生体内分解吸収性の素材とハイドロキシアパタイトを複合化した再生基材も提案されている。
しかしながら、前者にあっては、強度が弱く、生体内分解も速いという課題を有する。また、後者においては、特許文献3および5は、連通孔構造ではなく、特許文献1、2および5も実用には至っていない。
かかる再生医工学においては、患者に最小限の傷で迅速に骨を再生しなければならないという大きな課題が存在するのであるが、かかる再生医工学が、骨が大きく欠損した場合の治療に用いることができれば、非常に有用である。
【0003】
【特許文献1】
特許第3243679号公報
【特許文献2】
特開2003−33429号公報
【特許文献3】
特開2002−325830号公報
【特許文献4】
特開2003−62060号公報
【特許文献5】
特開2001−54564号公報
【0004】
【発明が解決しようとする課題】
本発明は、生体吸収性有機多孔体と骨親和性無機材料との複合化を特徴とする骨再生用基材、並びにその製法にかかわり、骨組織を迅速に再生できる高靭性と柔軟で且つハサミなどによる切断が容易な基材を提供するもので、医療現場において複雑な形状にも容易に調製できる特徴を有する。
【0005】
【課題を解決するための手段】
しかるに、本発明は以下の構成に特徴を有する。
項.乳酸の重合比が3 0 〜 9 0 %である乳酸/ ε − カプロラクトンの共重合体からなる生体吸収性有機多孔体に、三燐酸カルシウム( T C P ) またはハイドロキシアパタイトのうちから選択される骨親和性無機材料の分散液を散布もしくは浸漬し、加圧もしくは減圧下で処理することにより前記骨親和性無機材料を生体吸収性有機多孔体に充填する工程と、その後にエタノールに浸漬して生体吸収性有機多孔体を収縮させることにより骨親和性無機材料を固定する工程からなる多孔性骨再生用基材の製造法。
2
【0006】
【発明の実施の形態】
本発明基材を構成する連通孔を有する生体吸収性有機多孔体としては、乳酸、グリコール酸、ε−カプロラクトン、p−ジオキサノンなどの重合体、もしくは共重合体、混合物などの合成高分子、コラーゲン、ゼラチン等のタンパク質、あるいはヒアルロン酸やアルギン酸等の天然高分子が挙げられる。この中で、柔軟性があり、成形が容易な乳酸−ε−カプロラクトン共重合体が特に好ましい。
即ち、かかる乳酸−ε−カプロラクトン共重合体は、重合比により強度、分解性を任意に変更することができる。なお、基材としての柔軟性と強度を維持するとともに、臨床の場で目的の形状に容易に調製するためには、共重合体中の乳酸組成が30〜90%にあるのが好ましい。30%未満であると十分な強度が得られず、90%を越えると柔軟性が失われるため好ましくない。
特にかかる範囲は50〜75%の範囲にあるのが好ましい。即ち、乳酸組成50%の共重合体は柔軟性に富むため、複雑な形状の欠損部に対して、大まかな形状に切断した後、欠損部に挿入して複雑な形状に対応することが可能である。例えば、交通事故などで、管状骨などの内部の海綿骨がつぶれた時、骨内部補充材として非常に有用である。また、乳酸組成75%の共重合体は、適度な強度と柔軟性を持つため、例えばハサミ等で中節骨の形に成形して使用することが可能である。
骨親和性無機材料としては、たとえば、燐酸四カルシウム(TTCP)、三燐酸カルシウム(TCP)、二燐酸カルシウム(DCPD)、ハイドロキシアパタイト等が例示できるが、特に骨親和性において優れるため、三燐酸カルシウム(TCP)、ハイドロキシアパタイトが好ましい。その含有量は、任意に調製することが可能であるが、10〜95%、好ましくは40〜90%の範囲にあることが望ましい。
10%未満であると、十分な骨再生効果が得られず、また、95%を越えると、強度と柔軟性が失われる。これの粒径は特に限定されないが、10〜1000μmであることが好ましい。
連通孔構造を有する多孔体の形態としては、発泡体、編物、織物、不織布、などが例示できる。
例えば、生体吸収性材料の溶液に骨親和性無機材料を懸濁して凍結乾燥することにより、容易に連通多孔体を有する基材を形成することができる。
また、予め生体吸収性材料を凍結乾燥して連通多孔体を構成し、この空隙に加圧、減圧等の手段を用いて骨親和性無機材料を充填することにより形成できる。かかる方法によると、骨親和性無機材料の表面が生体吸収性材料にコートされずに複合化でき、生体親和性を十分に発揮することができる。
更に、生体吸収性合成高分子の溶液中に骨親和性無機材料を分散させ、かかる分散液をスプレードライすることによっても得ることができる。
また、生体吸収性材料と骨親和性無機材料を混練して紡糸し、編物、織物、不織布の形態をとることにより、容易に連通多孔体を形成することができる。
多孔体の孔径としては5〜500μm程度、好ましくは10〜200μm程度である。空隙率は30〜98%、好ましくは80〜95%程度である。
多孔体を補強する生体吸収性材料の原料としては、乳酸、グリコール酸、ε−カプロラクトン、p−ジオキサノン、などの共重合体が挙げられ、その形態としては、モノフィラメント、マルチフィラメント、紐などの繊維、編、織地シート、不織布などが例示される。該繊維の直径は10〜2000μm程度、好ましくは50〜1000μm程度で、例えば、前記した凍結乾燥による発泡化、或いは、スプレードライ処理において、溶液中、あるいはスプレードライ面に配置し、端部、中央部等、任意の位置に存在させて一体化する。
また、骨を形成する細胞としては、骨膜、骨髄、骨芽細胞などが挙げられる。骨膜は、前頭骨、前腕とう骨、肋軟骨、腸骨、大腿骨などを採取部位とできる。
本発明の骨再生用基材は、骨組織を速やかに再生すると共に、多孔体自体は吸収されていくため、異物反応が発生することなく、良好な組織再生を可能とする。さらに、手術場においても、容易に欠損部に応じた形状に加工することができるため、臨床の場で優れた骨治癒効果を発揮することができる。
以下に本発明の実施例を記載するが、これは本発明を限定するものではない。
【0007】
【実施例】
実施例1
乳酸−ε−カプロラクトン共重合体(乳酸組成75%)の5%ジオキサン溶液と平均粒径30μmのハイドロキシアパタイトを重量比35:4で混合懸濁後、ガラス枠の中に流し込み、−20℃にて直ちに凍結させた。これを凍結乾燥機にて24時間、30℃で凍結乾燥した。得られた複合基材は、ハイドロキシアパタイトを70重量%含む連通多孔体構造を有していた(図1)。これを中節骨の形にハサミで成形し、エチレンオキサイドガスにて3時間60℃で滅菌後、60℃にて48時間、真空下で脱ガスを行った。この基材に、子牛の前腕部より採取した骨膜を、下層の骨形成層を基材に密着させて縫合固定した。本基材をヌードマウス(4−6週、雄、平均体重30g)の背部皮下に移植した。対照として、ハイドロキシアパタイトを含まない基材を使用した。移植15週間後、ヌードマウスを犠牲死させ、組織を取り出した。この摘出組織は、10%ホルマリンにて固定した後、EDTAによる脱灰およびエタノールによる脱水を経て、パラフィン切片を作製し、von kossa染色を施して、組織学的検討を行った。
複合基材を用いた摘出組織は、外観上、中節骨の形状を保持した良好な骨組織を再生しており、組織学的検討でも、対照と比較すると、内部まで十分に骨組織が再生しており、本複合基材が良好な骨再生用基材として機能していることを確認した(図2、3)。
【0008】
実施例2
ポリL乳酸(重量平均分子量25万)50gをジクロロメタン950g中に溶解させて、5%溶液を作製し、さらに平均粒径30μmハイドロキシアパタイト400gを投入し、ハイドロキシアパタイトを均一に分散させたサスペンジョンを作製した。得られたサスペンジョンを有機溶媒用スプレードライヤー(Yamato:GS310)を用いて、ノズルから噴霧させ(入口温度80℃)、窒素ガスを密閉循環することにより、最終的にジクロロメタンを除去したポリL乳酸/ハイドロキシアパタイト複合基材を得た。
本複合基材は、ハイドロキシアパタイトを約90重量%含む連通多孔体構造を有していた(図4)。
【0009】
実施例3
乳酸−ε−カプロラクトン共重合体(乳酸組成50%)の5%ジオキサン溶液をガラス枠の中に流し込み、−20℃にて直ちに凍結させた後、凍結乾燥機にて24時間、30℃で凍結乾燥した。得られた発泡体シートを約10%ハイドロキシアパタイト懸濁液に浸漬し、さらに減圧することにより、ハイドロキシアパタイトを発泡体シートの空隙に充填した。軽く水洗して発泡体シート表面に付着したハイドロキシアパタイトを除去した後、エタノールに浸漬して発泡体シートを収縮することにより空隙に充填したハイドロキシアパタイトを固定した。得られた複合基材は、ハイドロキシアパタイトを約50重量%含む連通多孔体構造を有していた(図5)。これを直径10mmのディスク状に切り抜き、エチレンオキサイドガスにて3時間60℃で滅菌後、60℃にて48時間、真空下で脱ガスを行った。この基材に、ラット大腿骨の骨髄より単離した幹細胞を播種し、骨分化誘導をかけた。培養2週間後、細胞数を計測し、さらに培養3週間後、アルカリフォスファターゼ活性を測定した。コントロールとして、ハイドロキシアパタイトを充填しない発泡体シートで、同様の操作を行った。
その結果、細胞数およびアルカリフォスファターゼ活性ともに、ハイドロキシアパタイト複合基材のほうの数値が高く、本複合基材が良好な骨再生用基材として機能していることを確認した。
【0010】
【発明の効果】
本再生用基材は、骨親和性無機材料と生体吸収性有機高分子材料とからなる連通多孔体であるため、骨組織を速やかに再生すると共に、多孔体自体柔軟で手術室でハサミ等を用いたり、熱を加えての加工が可能であるため、望み通りの形状を持つ骨の組織再生を可能とする。
【図面の簡単な説明】
【図1】複合基材の断面を示す図面代用写真(300倍拡大)である。
【図2】対照基材を用いた摘出組織のvon Kossa染色を示す図面代用写真である。
【図3】複合基材を用いた摘出組織のvon Kossa染色を示す図面代用写真である。
【図4】複合基材の断面を示す図面代用写真(650倍拡大)である。
【図5】複合基材の断面を示す図面代用写真(300倍拡大)である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to provision of a bone regeneration base material.
[0002]
[Prior art]
Autologous bone transplantation in which a patient's own normal bone is partially cut out and transplanted into the defect when a large bone loss is caused by trauma or bone tumor is common, but the amount of bone that can be collected for autologous bone transplantation Has a limit, and it also hurts healthy tissue, so the burden on the patient is great. For this reason, allogeneic bone transplantation that transplants the bones of others stored in the tissue bank is also performed, but not only can the allograft be integrated with the patient's own bone, but also in a place far away from the joint. May not be able to reach, so the strength of the same kind of bone may be reduced and it may break. There is also concern about the occurrence of immune rejection.
At present, artificial bones made of artificial materials are being actively developed and are already in use. Such materials do not have to worry about immunological problems and are easy to obtain and process. Therefore, they can be industrially mass-produced. On the other hand, metal materials such as cobalt-chromium alloys and titanium alloys are more difficult than biological tissues. In addition, there is a drawback that the elastic modulus is too high and the toughness is lacking, and further, there is a problem that it is substantially impossible to cope with individual defect shapes in the medical field. In addition, there are many problems such as lack of biocompatibility and infection, and the scope of application is limited.
Bioceramics such as porous hydroxyapatite have high biocompatibility, and are used in large quantities for the purpose of filling bones. However, such inorganic materials have low strength, and their uses are limited. In addition, it is difficult to mold into a special tissue form in advance, and it is extremely difficult to prepare a shape corresponding to each defect in the operating room. Furthermore, in order to improve the cell invasion effect, it is necessary to have a communication hole structure, but it is not easy to provide a communication hole structure with ceramics, and the strength is significantly reduced, so that a satisfactory one can be obtained. Not.
On the other hand, research and development to reconstruct bones by regenerative medical engineering has been actively promoted in recent years. For such bone regeneration, extracellular matrix, bone marrow cells, periosteum, periosteum-derived cells, osteoinductive protein factor, and the like are used. As the base material, for example, a composite material of collagen and bioceramics, or a regenerated base material in which a biodegradable and absorbable material and hydroxyapatite as shown in Patent Documents 1 to 5 are combined are proposed.
However, the former has a problem that the strength is weak and the biodegradation is fast. In the latter case, Patent Documents 3 and 5 do not have a communication hole structure, and Patent Documents 1, 2, and 5 have not been put into practical use.
In such regenerative medical engineering, there is a big problem that the patient has to regenerate bones quickly with a minimum of wounds. However, such regenerative medical engineering should be used for treatment when bone is largely lost. If you can, it will be very useful.
[0003]
[Patent Document 1]
Japanese Patent No. 3243679 [Patent Document 2]
JP 2003-33429 A [Patent Document 3]
JP 2002-325830 A [Patent Document 4]
JP 2003-62060 A [Patent Document 5]
Japanese Patent Laid-Open No. 2001-54564
[Problems to be solved by the invention]
The present invention relates to a bone regeneration base material characterized by a composite of a bioabsorbable organic porous material and a bone-compatible inorganic material, and a method for producing the same, and has high toughness, flexibility and scissors capable of rapidly regenerating bone tissue. It provides a base material that can be easily cut by, for example, and has a feature that it can be easily prepared into a complicated shape in a medical field.
[0005]
[Means for Solving the Problems]
However, the present invention is characterized by the following configurations.
Term. Bone selected from calcium triphosphate (TCP) or hydroxyapatite in a bioabsorbable organic porous body made of a copolymer of lactic acid / ε-caprolactone having a polymerization ratio of lactic acid of 30 to 90% A step of filling the bioabsorbable organic porous material with a bioabsorbable organic porous material by spraying or immersing a dispersion of the affinity inorganic material and processing the mixture under pressure or reduced pressure, and then immersing the biocompatible organic material in ethanol. A method for producing a porous bone regeneration base material comprising a step of fixing an osteophilic inorganic material by contracting an absorbent organic porous material.
2
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the bioabsorbable organic porous material having communication holes constituting the substrate of the present invention include polymers such as lactic acid, glycolic acid, ε-caprolactone, and p-dioxanone, or synthetic polymers such as copolymers and mixtures, collagen And proteins such as gelatin, or natural polymers such as hyaluronic acid and alginic acid. Among these, a lactic acid-ε-caprolactone copolymer that is flexible and easy to mold is particularly preferable.
That is, the lactic acid-ε-caprolactone copolymer can be arbitrarily changed in strength and degradability depending on the polymerization ratio. In order to maintain flexibility and strength as a base material and to easily prepare a target shape in clinical settings, the lactic acid composition in the copolymer is preferably 30 to 90%. If it is less than 30%, sufficient strength cannot be obtained, and if it exceeds 90%, flexibility is lost, which is not preferable.
In particular, such a range is preferably in the range of 50 to 75%. In other words, since the copolymer with 50% lactic acid composition is rich in flexibility, it can be cut into a rough shape and then inserted into the defective portion to cope with the complicated shape. It is. For example, when an internal cancellous bone such as a tubular bone is crushed due to a traffic accident or the like, it is very useful as a bone internal supplement. Further, since a copolymer having a lactic acid composition of 75% has an appropriate strength and flexibility, it can be used after being formed into a middle phalanx shape with scissors, for example.
Examples of the osteophilic inorganic material include tetracalcium phosphate (TTCP), calcium triphosphate (TCP), calcium diphosphate (DCPD), hydroxyapatite, and the like. (TCP) and hydroxyapatite are preferred. The content can be arbitrarily prepared, but is desirably in the range of 10 to 95%, preferably 40 to 90%.
If it is less than 10%, a sufficient bone regeneration effect cannot be obtained, and if it exceeds 95%, strength and flexibility are lost. Although the particle size of this is not specifically limited, It is preferable that it is 10-1000 micrometers.
Examples of the form of the porous body having a communicating hole structure include foams, knitted fabrics, woven fabrics, and nonwoven fabrics.
For example, a base material having a continuous porous body can be easily formed by suspending an osteophilic inorganic material in a solution of a bioabsorbable material and freeze-drying it.
Alternatively, the bioabsorbable material can be freeze-dried in advance to form a continuous porous body, and this void can be filled with a bone-compatible inorganic material using means such as pressurization and decompression. According to this method, the surface of the bone-compatible inorganic material can be combined without being coated with the bioabsorbable material, and the biocompatibility can be sufficiently exhibited.
Furthermore, it can also be obtained by dispersing a bone-compatible inorganic material in a bioabsorbable synthetic polymer solution and spray-drying the dispersion.
Moreover, a continuous porous body can be easily formed by kneading and spinning a bioabsorbable material and an osteophilic inorganic material and taking the form of a knitted fabric, a woven fabric or a non-woven fabric.
The pore diameter of the porous body is about 5 to 500 μm, preferably about 10 to 200 μm. The porosity is 30 to 98%, preferably about 80 to 95%.
Examples of the raw material of the bioabsorbable material that reinforces the porous body include copolymers such as lactic acid, glycolic acid, ε-caprolactone, and p-dioxanone, and the form thereof includes fibers such as monofilament, multifilament, and string. Examples thereof include knitted fabrics, woven fabric sheets, and nonwoven fabrics. The fiber has a diameter of about 10 to 2000 μm, preferably about 50 to 1000 μm. For example, in the above-described foaming by freeze-drying or spray-drying treatment, the fiber is disposed in a solution or on a spray-dried surface, and the end portion, the center It is made to exist in arbitrary positions, such as a part, and is integrated.
Examples of cells that form bone include periosteum, bone marrow, and osteoblasts. The periosteum can be taken from the frontal bone, forearm radius, costal cartilage, iliac bone, femur, and the like.
The base material for bone regeneration according to the present invention quickly regenerates bone tissue and absorbs the porous body itself, so that good tissue regeneration is possible without causing a foreign body reaction. Furthermore, since it can be easily processed into a shape corresponding to the defect in the surgical field, an excellent bone healing effect can be exhibited in the clinical field.
Examples of the present invention will be described below, but this does not limit the present invention.
[0007]
【Example】
Example 1
A 5% dioxane solution of lactic acid-ε-caprolactone copolymer (lactic acid composition 75%) and hydroxyapatite with an average particle size of 30 μm are mixed and suspended at a weight ratio of 35: 4, and then poured into a glass frame and kept at −20 ° C. And immediately frozen. This was freeze-dried at 30 ° C. for 24 hours in a freeze-dryer. The obtained composite base material had a continuous porous structure containing 70% by weight of hydroxyapatite (FIG. 1). This was formed into a middle phalanx shape with scissors, sterilized with ethylene oxide gas at 60 ° C. for 3 hours, and then degassed under vacuum at 60 ° C. for 48 hours. To this base material, the periosteum collected from the calf's forearm portion was sutured and fixed with the lower bone forming layer in close contact with the base material. The substrate was transplanted subcutaneously to the back of nude mice (4-6 weeks, male, average body weight 30 g). As a control, a substrate without hydroxyapatite was used. Nude mice were sacrificed 15 weeks after transplantation, and the tissues were removed. After this fixed tissue was fixed with 10% formalin, it was decalcified with EDTA and dehydrated with ethanol, a paraffin section was prepared, and von Kossa staining was performed for histological examination.
The excised tissue using a composite base material regenerates a good bone tissue that retains the shape of the middle phalane in appearance, and the histological examination also sufficiently regenerates the bone tissue to the inside compared to the control It was confirmed that this composite base material functions as a good bone regeneration base material (FIGS. 2 and 3).
[0008]
Example 2
Dissolve 50 g of poly-L lactic acid (weight average molecular weight 250,000) in 950 g of dichloromethane to prepare a 5% solution, and then add 400 g of hydroxyapatite with an average particle size of 30 μm to prepare a suspension in which hydroxyapatite is uniformly dispersed. did. The obtained suspension was sprayed from a nozzle using an organic solvent spray dryer (Yamato: GS310) (inlet temperature 80 ° C.), and nitrogen gas was sealed and circulated to finally remove poly (L-lactic acid) / dichloromethane / A hydroxyapatite composite substrate was obtained.
The composite base material had a continuous porous structure containing about 90% by weight of hydroxyapatite (FIG. 4).
[0009]
Example 3
A 5% dioxane solution of lactic acid-ε-caprolactone copolymer (lactic acid composition 50%) is poured into a glass frame, immediately frozen at −20 ° C., and then frozen at 30 ° C. for 24 hours in a freeze dryer. Dried. The obtained foam sheet was immersed in about 10% hydroxyapatite suspension and further decompressed to fill the voids of the foam sheet with hydroxyapatite. After removing the hydroxyapatite adhering to the foam sheet surface by lightly washing with water, the hydroxyapatite filled in the voids was fixed by immersing in ethanol to shrink the foam sheet. The obtained composite base material had a continuous porous structure containing about 50% by weight of hydroxyapatite (FIG. 5). This was cut into a disk shape having a diameter of 10 mm, sterilized with ethylene oxide gas for 3 hours at 60 ° C., and then degassed under vacuum at 60 ° C. for 48 hours. Stem cells isolated from the bone marrow of rat femur were seeded on this base material to induce bone differentiation. After 2 weeks of culture, the number of cells was counted, and after 3 weeks of culture, alkaline phosphatase activity was measured. As a control, the same operation was performed with a foam sheet not filled with hydroxyapatite.
As a result, both the number of cells and alkaline phosphatase activity were higher in the hydroxyapatite composite base material, confirming that this composite base material functions as a good bone regeneration base material.
[0010]
【The invention's effect】
Since the regeneration base material is a continuous porous body made of a bone-compatible inorganic material and a bioabsorbable organic polymer material, the bone tissue is quickly regenerated, and the porous body itself is flexible so that scissors and the like can be used in the operating room. Since it can be used or processed by applying heat, bone tissue having the desired shape can be regenerated.
[Brief description of the drawings]
FIG. 1 is a drawing substitute photograph (magnified 300 times) showing a cross section of a composite substrate.
FIG. 2 is a drawing-substituting photograph showing von Kossa staining of an excised tissue using a control substrate.
FIG. 3 is a drawing-substituting photograph showing von Kossa staining of an excised tissue using a composite substrate.
FIG. 4 is a drawing-substituting photograph (magnified 650 times) showing a cross section of the composite substrate.
FIG. 5 is a drawing-substituting photograph (300 × magnification) showing a cross section of the composite substrate.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003206356A JP4717336B2 (en) | 2003-08-06 | 2003-08-06 | Bone regeneration base material and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003206356A JP4717336B2 (en) | 2003-08-06 | 2003-08-06 | Bone regeneration base material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005052224A JP2005052224A (en) | 2005-03-03 |
JP4717336B2 true JP4717336B2 (en) | 2011-07-06 |
Family
ID=34363247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003206356A Expired - Fee Related JP4717336B2 (en) | 2003-08-06 | 2003-08-06 | Bone regeneration base material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4717336B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010505480A (en) * | 2006-10-06 | 2010-02-25 | セルゲン エージー | 3D artificial callus extension |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102056633B (en) * | 2008-06-05 | 2016-09-14 | 布莱贝斯株式会社 | Bone renovating material and manufacture method thereof |
JP5725489B2 (en) | 2008-06-27 | 2015-05-27 | 公立大学法人大阪市立大学 | Medical composition and medical kit |
JP5553596B2 (en) * | 2009-12-24 | 2014-07-16 | 株式会社イノアック技術研究所 | Bone regenerative medical material and manufacturing method thereof |
JP5683160B2 (en) * | 2010-07-26 | 2015-03-11 | グンゼ株式会社 | Bioresorbable bone regeneration film and GBR membrane |
CN107376026B (en) * | 2017-07-15 | 2019-03-19 | 深圳市立心科学有限公司 | Absorbable bio-medical composition and preparation method thereof |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63272355A (en) * | 1987-01-19 | 1988-11-09 | スティクティング サイエンス パーク グロニンゲン | Implant piece suitable for remedy by rebuilding operation having tissue specific porosity and production thereof |
JPH01502642A (en) * | 1986-06-09 | 1989-09-14 | セラムド コーポレイシヨン | Augmentation graft strands of animal or human bone structures |
JPH04500013A (en) * | 1988-08-09 | 1992-01-09 | メルク・パテント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | New materials for bone replacement and osseointegration and prosthetics |
JPH09182784A (en) * | 1995-12-29 | 1997-07-15 | Takiron Co Ltd | Prosthesis shell and manufacture thereof |
JPH1033657A (en) * | 1996-07-23 | 1998-02-10 | Dainippon Ink & Chem Inc | In vivo decomposing material and its manufacture |
JPH1052485A (en) * | 1996-08-12 | 1998-02-24 | Takiron Co Ltd | Cell structure containing bioceramics and process for preparation thereof |
JPH10130952A (en) * | 1996-10-30 | 1998-05-19 | Dainippon Ink & Chem Inc | Lactic acid-based fiber |
JP2000262608A (en) * | 1999-03-12 | 2000-09-26 | Mitsubishi Materials Corp | Composite type bone packing material |
JP2002000717A (en) * | 2000-06-21 | 2002-01-08 | National Institute For Materials Science | Osteoanagenesis induction material |
JP2003033429A (en) * | 2002-05-27 | 2003-02-04 | Takiron Co Ltd | Bioceramics-containing cell composition |
JP2003159321A (en) * | 2001-11-27 | 2003-06-03 | Takiron Co Ltd | Organic-inorganic compound porous body and manufacturing method thereof |
JP2003169845A (en) * | 2001-12-07 | 2003-06-17 | Japan Science & Technology Corp | Sponge-like porous apatite-collagen composite, sponge-like superporous apatite-collagen composite and method of manufacturing the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6480365A (en) * | 1987-09-22 | 1989-03-27 | Meidensha Electric Mfg Co Ltd | Manufacturing porous sintered body for organism |
-
2003
- 2003-08-06 JP JP2003206356A patent/JP4717336B2/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01502642A (en) * | 1986-06-09 | 1989-09-14 | セラムド コーポレイシヨン | Augmentation graft strands of animal or human bone structures |
JPS63272355A (en) * | 1987-01-19 | 1988-11-09 | スティクティング サイエンス パーク グロニンゲン | Implant piece suitable for remedy by rebuilding operation having tissue specific porosity and production thereof |
JPH04500013A (en) * | 1988-08-09 | 1992-01-09 | メルク・パテント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | New materials for bone replacement and osseointegration and prosthetics |
JPH09182784A (en) * | 1995-12-29 | 1997-07-15 | Takiron Co Ltd | Prosthesis shell and manufacture thereof |
JPH1033657A (en) * | 1996-07-23 | 1998-02-10 | Dainippon Ink & Chem Inc | In vivo decomposing material and its manufacture |
JPH1052485A (en) * | 1996-08-12 | 1998-02-24 | Takiron Co Ltd | Cell structure containing bioceramics and process for preparation thereof |
JPH10130952A (en) * | 1996-10-30 | 1998-05-19 | Dainippon Ink & Chem Inc | Lactic acid-based fiber |
JP2000262608A (en) * | 1999-03-12 | 2000-09-26 | Mitsubishi Materials Corp | Composite type bone packing material |
JP2002000717A (en) * | 2000-06-21 | 2002-01-08 | National Institute For Materials Science | Osteoanagenesis induction material |
JP2003159321A (en) * | 2001-11-27 | 2003-06-03 | Takiron Co Ltd | Organic-inorganic compound porous body and manufacturing method thereof |
JP2003169845A (en) * | 2001-12-07 | 2003-06-17 | Japan Science & Technology Corp | Sponge-like porous apatite-collagen composite, sponge-like superporous apatite-collagen composite and method of manufacturing the same |
JP2003033429A (en) * | 2002-05-27 | 2003-02-04 | Takiron Co Ltd | Bioceramics-containing cell composition |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010505480A (en) * | 2006-10-06 | 2010-02-25 | セルゲン エージー | 3D artificial callus extension |
Also Published As
Publication number | Publication date |
---|---|
JP2005052224A (en) | 2005-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8524265B2 (en) | Medical implant sheets useful for tissue regeneration | |
US6511510B1 (en) | Osteoinductive ceramic materials | |
TWI394597B (en) | Biodegradable scaffold bone graft for orthopaedic use | |
CA2591464C (en) | Biocompatible material comprising poly(e-caprolactone) and a hyaluronic acid derivative for the replacement, repair or regeneration of the meniscus | |
EP3338818B1 (en) | Bone repair reusable composite material based on acellular biological tissue matrix material and preparation method therefor | |
JPH09509082A (en) | Biocompatible porous matrix of bioabsorbable materials | |
EP1638621A1 (en) | High density fibrous polymers suitable for implant | |
KR20080004486A (en) | Biomaterial | |
JP2005515802A (en) | Hybrid / Synthetic Porous Extracellular Matrix Support Skeleton | |
Khang et al. | A manual for biomaterials/scaffold fabrication technology | |
JP2005506114A (en) | Scaffolds for human bone tissue engineering, methods for their preparation and their use | |
CN110665055B (en) | Sericin/nano-hydroxyapatite tissue engineering bone graft and preparation method and application thereof | |
CA2807581C (en) | Self-expandable biopolymer-mineral composite for repairing mineralized tissue | |
KR100737167B1 (en) | Method for preparing of a porous osteochondral composite scaffold | |
JP4923235B2 (en) | Bone-cartilage tissue regeneration implant | |
Zhang et al. | Self-assembling peptide and nHA/CTS composite scaffolds promote bone regeneration through increasing seed cell adhesion | |
JP4717336B2 (en) | Bone regeneration base material and method for producing the same | |
Taylor et al. | Recent advances in bone graft technologies | |
WO2010050935A1 (en) | Devices containing demineralized bone matrix particles | |
JP2005213449A (en) | Gelatin sponge | |
Sezer et al. | In vivo performance of poly (ε-caprolactone) constructs loaded with gentamicin releasing composite microspheres for use in bone regeneration | |
Passuti et al. | Experimental data regarding macroporous biphasic calcium phosphate ceramics | |
Thomas et al. | Tissue Engineering Systems | |
JP2024515302A (en) | Multicomponent Breast Implants | |
AU2011286008B9 (en) | Self-expandable biopolymer-mineral composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100330 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100526 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110329 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110330 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4717336 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140408 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140408 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |