[go: nahoru, domu]

JP4942996B2 - Light emitting diode - Google Patents

Light emitting diode Download PDF

Info

Publication number
JP4942996B2
JP4942996B2 JP2005369334A JP2005369334A JP4942996B2 JP 4942996 B2 JP4942996 B2 JP 4942996B2 JP 2005369334 A JP2005369334 A JP 2005369334A JP 2005369334 A JP2005369334 A JP 2005369334A JP 4942996 B2 JP4942996 B2 JP 4942996B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting diode
light
diode according
transparent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005369334A
Other languages
Japanese (ja)
Other versions
JP2007173534A (en
Inventor
良一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005369334A priority Critical patent/JP4942996B2/en
Priority to US12/158,914 priority patent/US7915619B2/en
Priority to CNA2006800531682A priority patent/CN101379623A/en
Priority to TW95148554A priority patent/TWI335088B/en
Priority to PCT/JP2006/326299 priority patent/WO2007073001A1/en
Publication of JP2007173534A publication Critical patent/JP2007173534A/en
Priority to US13/028,370 priority patent/US8158987B2/en
Application granted granted Critical
Publication of JP4942996B2 publication Critical patent/JP4942996B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Devices (AREA)
  • Led Device Packages (AREA)

Description

この発明は、化合物半導体発光素子、特に放熱性に優れ、高輝度の発光ダイオードに関する。   The present invention relates to a compound semiconductor light emitting device, and more particularly, to a light emitting diode with excellent heat dissipation and high brightness.

従来、発光ダイオードの高輝度化を目的として、素子形状による光取り出し効率向上の方法が用いられている。半導体発光ダイオードの表面と裏面に電極を形成する素子構造において、側面形状による高輝度化の方法が提案されている(特許文献1〜3参照)。
特公昭63−28508号公報 USP6229160号明細書 特開平3−227078号公報
Conventionally, for the purpose of increasing the brightness of a light-emitting diode, a method for improving light extraction efficiency by using an element shape has been used. In an element structure in which electrodes are formed on the front surface and the back surface of a semiconductor light emitting diode, a method for increasing brightness by using a side surface shape has been proposed (see Patent Documents 1 to 3).
Japanese Examined Patent Publication No. 63-28508 USP 6229160 Specification JP-A-3-227078

従来技術では、発光ダイオードの表面と裏面に電極を形成する構造の素子においては多くの形状が提案されているが、高電流で使用する場合の放熱性について検討されていない。特に、光取り出し面に2つの電極を有するAlGaInPおよび窒化ガリウム系の発光層を含む発光ダイオードにおいては、裏面に電極を設けないため、裏面に電極を設ける素子構造より、放熱性が劣る。放熱性が、悪い場合、発光層の温度が上昇し、発光効率の低下を招き、輝度が低下することが、知られている。
透明基板型でAlGaInP発光層を用いる、光取り出し面に2つの電極を形成する素子の構造は、形状が複雑であり、側面状態、発光層および素子の裏面の最適化ができておらず、高輝度で、十分な放熱特性が得られていない問題点がある。
In the prior art, many shapes have been proposed for an element having a structure in which electrodes are formed on the front and back surfaces of a light emitting diode, but heat dissipation when used at a high current has not been studied. In particular, in a light-emitting diode including AlGaInP and a gallium nitride-based light-emitting layer having two electrodes on the light extraction surface, an electrode is not provided on the back surface, so heat dissipation is inferior to an element structure in which an electrode is provided on the back surface. It is known that when the heat dissipation is poor, the temperature of the light emitting layer increases, leading to a decrease in luminous efficiency and a decrease in luminance.
The structure of the device that uses the AlGaInP light emitting layer in a transparent substrate type and forms two electrodes on the light extraction surface is complicated in shape, and the side surface state, the light emitting layer, and the back surface of the device have not been optimized. There is a problem that sufficient heat dissipation characteristics are not obtained with brightness.

本発明は、上記の問題点に鑑み提案されたもので、上記構造の素子で輝度の高く、放熱性に優れる発光ダイオードを提供することを目的とする。   The present invention has been proposed in view of the above problems, and an object of the present invention is to provide a light-emitting diode that is high in luminance and excellent in heat dissipation with the element having the above structure.

本発明者は、発光ダイオードの形状と裏面を総合的に検討し、光取り出し効率の高く、放熱性に優れる発光ダイオードの素子構造に到達した。
発光ダイオードの側面形状が光取り出しに関係することは、従来技術からも明らかであるが、発光面が上部にある構造では、側面形状の効果を顕著にするため傾斜角度を増すと裏面の面積が小さくなり、放熱性が低下し、高電流域の輝度特性が低下する。また、放熱性を向上のため、発光層を小さくし、裏面の面積を大きくする場合は、高価な発光層に対してロスが大きく、コスト面で問題がある。また、発光層を裏面の近くにした場合、片面に2電極を有する構造では、通常のワイヤボンディング工程での組立てができない。
本発明者は、裏面の構造および面積、発光層の面積、側面形状および裏面の粗面化が重要であることを発見し、最適な素子構造および安定した製造方法を見出し本発明に至った。即ち、本発明は以下の各発明からなる。
The inventor has comprehensively studied the shape and the back surface of the light emitting diode, and has reached an element structure of a light emitting diode that has high light extraction efficiency and excellent heat dissipation.
It is clear from the prior art that the side surface shape of the light emitting diode is related to light extraction, but in the structure where the light emitting surface is at the top, the area of the back surface is increased when the inclination angle is increased in order to make the side surface shape effective. It becomes smaller, heat dissipation is reduced, and the luminance characteristics in the high current region are reduced. Further, in order to improve heat dissipation, when the light emitting layer is made small and the area of the back surface is made large, the loss is large with respect to the expensive light emitting layer, and there is a problem in cost. Further, when the light emitting layer is close to the back surface, the structure having two electrodes on one side cannot be assembled in a normal wire bonding process.
The present inventor discovered that the structure and area of the back surface, the area of the light emitting layer, the side surface shape, and the roughening of the back surface were important, and found the optimum device structure and a stable manufacturing method, and reached the present invention. That is, the present invention comprises the following inventions.

(1)化合物半導体から成る発光層を有する透明基板型の発光ダイオードにおいて、第1電極と第1電極とは極性の異なる第2電極とを形成された、光取り出し面の面積(A)に形成された発光層の面積(B)、発光ダイオード裏面の面積(C)の関係が(1)式の関係を満足することを特徴とする発光ダイオード。
A>C>B ・・・(1)
(2)前記発光層は、組成式(AlXGa1-XYIn1-YP(0≦X≦1,0<Y≦1)から成り、透明基板の熱伝導率は、100W/m・K以上であることを特徴とする上記(1)に記載の発光ダイオード。
(3)前記側面は、発光層に近い第1の側面と裏面に近い第2の側面を有し、第1の側面の傾斜角度は第2の側面の傾斜角度より小さいことを特徴とする上記(1)または(2)に記載の発光ダイオード。
(4)第1の側面が垂直であり、第2の側面が傾斜していることを特徴とする上(3)に記載の発光ダイオード。
(1) In a transparent substrate type light emitting diode having a light emitting layer made of a compound semiconductor, the first electrode and the first electrode are formed on the area (A) of the light extraction surface where the second electrode having a different polarity is formed. A light emitting diode characterized in that the relationship between the area (B) of the light emitting layer and the area (C) of the back surface of the light emitting diode satisfies the relationship of the expression (1).
A>C> B (1)
(2) the light emitting layer is made of composition formula (Al X Ga 1-X) Y In 1-Y P (0 ≦ X ≦ 1,0 <Y ≦ 1), the thermal conductivity of the transparent substrate, 100W / The light-emitting diode according to (1), wherein the light-emitting diode is m · K or more.
(3) The side surface has a first side surface close to the light emitting layer and a second side surface close to the back surface, and the inclination angle of the first side surface is smaller than the inclination angle of the second side surface. The light-emitting diode according to (1) or (2).
(4) The light-emitting diode according to (3) above, wherein the first side surface is vertical and the second side surface is inclined.

(5)第2の側面の傾斜角は、10度以上30度以下であることを特徴とする上記(1)乃至(4)のいずれかに記載の発光ダイオード。
(6)第2の側面の傾斜角は、10度以上20度以下であることを特徴とする上記(1)〜(5)のいずれかに記載の発光ダイオード
(7)前記第1の側面の長さは50μm以上、100μm以下で、第2の側面の長さは、100μm以上、250μm以下あることを特徴とする上記(1)〜(6)のいずれかに記載の発光ダイオード。
(8)透明基板は、リン化ガリウム(GaP)であることを特徴とする上記(1)〜(7)のいずれかに記載の発光ダイオード。
(9)透明基板は、炭化ケイ素(SiC)であることを特徴とする上記(1)〜(7)のいずれかに記載の発光ダイオード。
(5) The light emitting diode according to any one of (1) to (4) above, wherein the inclination angle of the second side surface is not less than 10 degrees and not more than 30 degrees.
(6) The light emitting diode according to any one of (1) to (5) above, wherein the inclination angle of the second side surface is 10 degrees or more and 20 degrees or less. The length is 50 μm or more and 100 μm or less, and the length of the second side surface is 100 μm or more and 250 μm or less.
(8) The light-emitting diode according to any one of (1) to (7), wherein the transparent substrate is gallium phosphide (GaP).
(9) The light-emitting diode according to any one of (1) to (7), wherein the transparent substrate is silicon carbide (SiC).

(10)前記透明基板の裏面は、光が散乱する粗面であることを特徴とする上記(1)〜(9)のいずれかに記載の発光ダイオード。
(11)前記透明基板の裏面に金属膜が形成されていることを特徴とする上記(1)〜(10)のいずれかに記載の発光ダイオード。
(12)前記透明基板の裏面の金属膜は、融点400℃以下の金属を含むことを特徴とする上記(11)に記載の発光ダイオード。
(13)前記金属膜は、AuSn合金であることを特徴とする上記(11)〜(12)に記載の発光ダイオード。
(14)発光ダイオードの裏面の面積は、0.6mm2以上であり、1.5W以上の電力で使用することを特徴とする上記(1)〜(13)のいずれかに記載の発光ダイオード。
(15)前記裏面は、GaP基板を塩酸で処理したものであることを特徴する上記(8)、(10)〜(14)のいずれかに記載の発光ダイオード。
(16)透明基板の側面はダイシング法で形成されたものであることを特徴とする上記(1)〜(15)のいずれかに記載の発光ダイオード。
(10) The light-emitting diode according to any one of (1) to (9), wherein the back surface of the transparent substrate is a rough surface on which light is scattered.
(11) The light-emitting diode according to any one of (1) to (10), wherein a metal film is formed on the back surface of the transparent substrate.
(12) The light-emitting diode according to (11), wherein the metal film on the back surface of the transparent substrate contains a metal having a melting point of 400 ° C. or lower.
(13) The light-emitting diode according to any one of (11) to (12), wherein the metal film is an AuSn alloy.
(14) The light-emitting diode according to any one of (1) to (13) above, wherein the area of the back surface of the light-emitting diode is 0.6 mm 2 or more and is used with a power of 1.5 W or more.
(15) The light-emitting diode according to any one of (8) and (10) to (14), wherein the back surface is a GaP substrate treated with hydrochloric acid.
(16) The light-emitting diode according to any one of (1) to (15), wherein the side surface of the transparent substrate is formed by a dicing method.

この発明の発光ダイオードでは、発光層の面積と裏面の面積の関係、側面形状の最適化により、従来にない高輝度で、放熱性の高い、高電流の使用に適した発光ダイオードを提供できる。   In the light-emitting diode of the present invention, by optimizing the relationship between the area of the light-emitting layer and the area of the back surface and the shape of the side surface, it is possible to provide a light-emitting diode with high brightness, high heat dissipation and suitable for high current use.

以下図面を参照しながら本発明を詳しく説明する。
本発明の発光ダイオードは化合物半導体の発光層を含む。通常は発光層以外にクラッド層、コンタクト層などが積層され、これらで発光部が形成されている。これらは図3に示すように基板上にエピタキシャル法で積層される。発光層は、ダブルヘテロ構造や、多重量子井戸構造など、公知の構造を利用できる。
発光層は、GaAlAs系、InGaN系、AlInGaP系などの公知の発光層を適用できるが、特にエピタキシャル層の薄いInGaN系、AlInGaP系が、作製しやすい。これらの発光部は紫外から赤外の広い波長に対して有効である。
電極は図2に示すように光取り出し面に第1電極(例えばn型)とこれとは極性の異なる第2電極(例えばp型)の両方とも形成されている。いずれもワイヤーボンディングができる構造である。
Hereinafter, the present invention will be described in detail with reference to the drawings.
The light emitting diode of the present invention includes a light emitting layer of a compound semiconductor. Usually, in addition to the light emitting layer, a clad layer, a contact layer, and the like are laminated to form a light emitting portion. These are laminated on the substrate by an epitaxial method as shown in FIG. A known structure such as a double hetero structure or a multiple quantum well structure can be used for the light emitting layer.
As the light emitting layer, known light emitting layers such as GaAlAs, InGaN, and AlInGaP can be applied. In particular, thin InGaN and AlInGaP based epitaxial layers are easy to produce. These light emitting portions are effective for a wide wavelength from ultraviolet to infrared.
As shown in FIG. 2, both the first electrode (for example, n-type) and the second electrode (for example, p-type) having a different polarity are formed on the light extraction surface as shown in FIG. Both are structures that allow wire bonding.

第2電極は積層体の一部が表面から発光層の下方までエッチングされ、半導体層あるいは導電性透明基板に接続することにより形成される。
本発明の発光ダイオードは光取り出し面とは反対側に透明基板を有する、所謂透明基板型発光ダイオードである。透明基板は、GaP、SiC、酸化亜鉛、サファイア、アルミナ、GaNなど、発光波長に対して透明な材料が適用できる。
これらの中でGaP、SiCが好ましい。GaPの熱伝導率は、110W/m・Kである。単結晶が量産されており、加工性にも優れている。GaPの主面は、(111)面、(100)面など、一般的な面方位が使用できるが、粗面化しやすい(111)面の方が望ましい。SiCは熱伝導率が167W/m・Kである。単結晶が量産されている。加工しにくい面があるが、放熱面では、最適な材料である。
この透明基板は図4の符号14で示すように半導体層135の上に接合されている。
The second electrode is formed by etching a part of the laminate from the surface to below the light emitting layer and connecting it to a semiconductor layer or a conductive transparent substrate.
The light emitting diode of the present invention is a so-called transparent substrate type light emitting diode having a transparent substrate on the side opposite to the light extraction surface. The transparent substrate can be made of a material that is transparent with respect to the emission wavelength, such as GaP, SiC, zinc oxide, sapphire, alumina, and GaN.
Of these, GaP and SiC are preferable. The thermal conductivity of GaP is 110 W / m · K. Single crystals are mass-produced and have excellent processability. As the main surface of GaP, general plane orientations such as (111) plane and (100) plane can be used, but the (111) plane which is easy to roughen is more preferable. SiC has a thermal conductivity of 167 W / m · K. Single crystals are mass-produced. Although it is difficult to process, it is an optimal material for heat dissipation.
This transparent substrate is bonded onto the semiconductor layer 135 as indicated by reference numeral 14 in FIG.

本発明は上記のような発光ダイオードにおいて、光取り出し面の面積(A)発光層の面積(B)、発光ダイオード裏面の面積(透明基板の電極形成側と反対側の面)(C)が特定の関係にあることが一つの特徴である。発光ダイオードは、素子の周囲を透明な樹脂で覆われているのが一般的である。エポキシ樹脂などの透明な樹脂は、熱伝導が悪く、素子からの放熱は、期待できない。従って、素子で発生したほとんどの熱は、素子の裏面と接触しているパッケージの基板から放熱される。放熱面である裏面(C)、発熱面で発光層(B)、光取り出し面である素子上面(A)には、輝度と放熱に最適な関係がある。   In the light-emitting diode as described above, the area of the light extraction surface (A), the area of the light-emitting layer (B), and the area of the back surface of the light-emitting diode (surface opposite to the electrode forming side of the transparent substrate) (C) are specified. One characteristic is that they are in the relationship. The light emitting diode is generally covered with a transparent resin around the element. Transparent resins such as epoxy resins have poor heat conduction and cannot be expected to release heat from the device. Therefore, most of the heat generated in the element is dissipated from the substrate of the package that is in contact with the back surface of the element. The back surface (C), which is a heat radiating surface, the light emitting layer (B), which is a heat generating surface, and the element upper surface (A), which is a light extraction surface, have an optimum relationship for luminance and heat dissipation.

放熱面だけを考えると、C>A>Bの関係が望ましいが、光取り出し面、発光層の面積が小さく、高輝度化ができない。また、高価なエピタキシャル層の除去面積が大きくコストが高くなる。
高輝度化するため、側面を傾斜面にした状態で、発光層、光取り出し面の面積を最大にする。発光層は、光取り出し面の近くにあり、発光層で発熱した熱を光取り出し面の大きな面積Aに拡散させて、発光層の熱を逃がし、その熱を素子の中をスムーズに伝導して、放熱面である裏面に放熱する。
Considering only the heat dissipation surface, the relationship of C>A> B is desirable, but the area of the light extraction surface and the light emitting layer is small, and high brightness cannot be achieved. Further, the removal area of the expensive epitaxial layer is large and the cost is increased.
In order to increase the brightness, the area of the light emitting layer and the light extraction surface is maximized with the side surfaces inclined. The light emitting layer is near the light extraction surface, diffuses the heat generated in the light emission layer to a large area A of the light extraction surface, releases the heat of the light emission layer, and smoothly conducts the heat through the element. The heat is dissipated to the back surface, which is the heat dissipating surface.

高輝度化のためには、側面を傾斜させる必要があり、放熱を良好に行うためには、発光層の面積(B)および、発光層の近くの面積(A)を大きくするため、傾斜面を設けないのが望ましい。熱が広がりやすくするため、発光層近くの半導体の体積が大きい方が良い。傾斜面を発光層から、遠い裏面近くに設ける。裏面近くでは、放熱性の良い材料と接しているため、面積Aより、やや小さくなっても、熱の逃げがよく放熱の律速にならない。これらのバランスを保つための望ましい条件を以下に示す。
0.95×A>C>0.6×A
0.9×A>B>0.7×A
C>B>0.8×C
∴A>C>B
発光ダイオードの裏面の面積は、0.6mm2以上であることが好ましい。放熱性が最も要求されるのは、0.5W以上で、更に、1.5W以上の大電力で使用するサイズ大きな発光ダイオードである。チップサイズ0.4mm2以上の用途に、効果が大きく、更に、0.7mm2以上の用途で顕著な効果がある。
In order to increase the brightness, the side surface needs to be inclined, and in order to perform heat dissipation satisfactorily, the area (B) of the light emitting layer and the area (A) near the light emitting layer are increased. It is desirable not to provide. In order to spread heat easily, it is better that the volume of the semiconductor near the light emitting layer is large. An inclined surface is provided near the back surface far from the light emitting layer. In the vicinity of the back surface, since it is in contact with a material with good heat dissipation, even if it is slightly smaller than the area A, the heat escape is good and the heat dissipation is not rate-limiting. Desirable conditions for maintaining these balances are shown below.
0.95 × A>C> 0.6 × A
0.9 × A>B> 0.7 × A
C>B> 0.8 × C
∴ A>C> B
The area of the back surface of the light emitting diode is preferably 0.6 mm 2 or more. The most demanded heat dissipation is a light emitting diode of 0.5 W or more and a large size used with a high power of 1.5 W or more. The effect is large for applications with a chip size of 0.4 mm 2 or more, and further, there is a remarkable effect for applications with a chip size of 0.7 mm 2 or more.

透明基板がGaPである場合、その裏面を塩酸で処理することが好ましい。特に面方位(111)面を利用して処理する方法が好適である。
本発明の発光ダイオードの他の特徴はその側面、通常は透明基板の側面の少なくとも一つが傾斜していることである。透明基板は図2、図5に示すように第1の側面21と第2の側面22を有することが好ましい。そして第1の側面の傾斜角度は第2の側面の傾斜角度より小さい。この場合第1の側面の傾斜角度はゼロ、即ち透明基板に対して垂直が好ましい。傾斜角度は透明基板の垂線に対する傾斜角(図の20)で表す。第2の側面の傾斜角度は10度以上30度以下の範囲が好ましく、さらに好ましくは10度以上20度以下である。第2の側面の角度は、一定でも、複数の角度でも、傾斜曲面でも良い。複数の場合はその角度は平均で表し、曲面の場合は、曲面の始点と終点を結んだ線との角度で表す。
When the transparent substrate is GaP, it is preferable to treat the back surface with hydrochloric acid. In particular, the processing method using the plane orientation (111) plane is suitable.
Another feature of the light emitting diode of the present invention is that at least one of its side surfaces, usually the side surface of the transparent substrate, is inclined. The transparent substrate preferably has a first side surface 21 and a second side surface 22 as shown in FIGS. The inclination angle of the first side surface is smaller than the inclination angle of the second side surface. In this case, the inclination angle of the first side surface is preferably zero, that is, perpendicular to the transparent substrate. The inclination angle is represented by an inclination angle (20 in the figure) with respect to the perpendicular of the transparent substrate. The inclination angle of the second side surface is preferably in the range of 10 degrees to 30 degrees, more preferably 10 degrees to 20 degrees. The angle of the second side surface may be constant, a plurality of angles, or an inclined curved surface. In the case of a plurality of surfaces, the angle is represented by an average, and in the case of a curved surface, the angle is represented by an angle between a line connecting the start point and the end point of the curved surface.

これら角度は、輝度と放熱性を考慮したもので、特に、高電流域の特性に優れる。角度が、大きいと光取り出しの点では、有利であるが、裏面の面積が小さくなり、熱抵抗が高くなるため、上記の範囲が最適である。
発光ダイオードの側面を傾斜させることにより、光の取り出し効率を上げることは先の文献に示すように公知である。
本発明において、上記のように第1の側面21と第2の側面22を有するように構成し、また第1の側面の傾斜角度は第2の側面の傾斜角度より小さくすることにより、発光層近くの面積を大きくし放熱を促進し、第2の側面で輝度を高める効果がある。
側面の長さについては、第1の側面の長さ(L)は50μm以上、100μm以下で、第2の側面の長さ(L)は、100μm以上、250μm以下あることが好ましい。そしてM/Lは、0.5から5の範囲が好ましい。
These angles take brightness and heat dissipation into consideration, and are particularly excellent in characteristics in a high current region. A large angle is advantageous in terms of light extraction, but the above range is optimal because the area of the back surface is small and the thermal resistance is high.
As shown in the above document, it is known to increase the light extraction efficiency by inclining the side surface of the light emitting diode.
In the present invention, the light emitting layer is formed by having the first side surface 21 and the second side surface 22 as described above, and the inclination angle of the first side surface is smaller than the inclination angle of the second side surface. There is an effect of enlarging the area in the vicinity to promote heat dissipation and increasing the brightness on the second side.
Regarding the length of the side surface, the length (L) of the first side surface is preferably 50 μm or more and 100 μm or less, and the length (L) of the second side surface is preferably 100 μm or more and 250 μm or less. M / L is preferably in the range of 0.5 to 5.

発光ダイオードの透明基板の第1の側面及び第2の側面はダイシング法で形成することができる。その他前記側面はウェットエッチング、ドライエッチング、スクライブ法、レーザー加工などの方法を組み合わせて、作製できるが、形状の制御性、生産性の高いダイシング法が最適な製造方法である。
発光ダイオードの透明基板の裏面は、光が散乱する粗面とすることができる。発光ダイオードの裏面は、組み立てられるパッケージと接続される面である。接続面は、輝度を高めるため、反射率の高い、Agペーストで接着したり、透明接着剤で、銀、アルミなどの反射率の高い金属上に固定されるのが一般的である。裏面で、光を散乱させることにより、側面や上面から取り出しにくい入射角の光も散乱され、光取り出しが可能な反射角になり、輝度の向上に貢献する。また、放熱面でも、表面積が大きくなりパッケージ側へ熱が逃げやすくなる効果もある。
The first side surface and the second side surface of the transparent substrate of the light emitting diode can be formed by a dicing method. In addition, the side surface can be produced by combining wet etching, dry etching, scribing, laser processing, and the like, but a dicing method with high shape controllability and high productivity is the optimum manufacturing method.
The back surface of the transparent substrate of the light emitting diode can be a rough surface on which light is scattered. The back surface of the light emitting diode is a surface connected to the package to be assembled. In order to increase the luminance, the connection surface is generally adhered with a highly reflective Ag paste or fixed on a highly reflective metal such as silver or aluminum with a transparent adhesive. By scattering light on the back surface, light having an incident angle that is difficult to be extracted from the side surface or the top surface is also scattered, resulting in a reflection angle at which light can be extracted, which contributes to improvement in luminance. In addition, even on the heat radiating surface, there is an effect that the surface area becomes large and heat easily escapes to the package side.

発光ダイオードの透明基板の裏面に金属膜を形成することができる。金属膜は、前記、反射の効果と熱伝導を高める機能を発光ダイオード側に持たせ、パッケージの材料の選定を広げる事ができる。金属膜は、融点400℃以下の金属を含むことが好ましい。パッケージへの接続方法で、はんだや、共晶接合を用いる技術があり、発光ダイオードが、金属でパッケージと接続され、放熱性の点では上記の金属が最適である。発光ダイオードの裏面に接合用の金属を付加することで、組み立てを簡便にする事ができる。パッケージの材質から、400℃以下での接合条件が望ましい。
上記の金属膜としてはAuSn合金であることが好ましい。AuSnは、共晶金属として広く用いられており、共晶点のSn20wt%の融点は、約283℃であるため、低温で接合できる最適な材料である。
A metal film can be formed on the back surface of the transparent substrate of the light emitting diode. The metal film has the above-described function of enhancing the reflection effect and heat conduction on the light emitting diode side, and can broaden the selection of the material of the package. The metal film preferably contains a metal having a melting point of 400 ° C. or lower. As a method for connecting to the package, there is a technique using solder or eutectic bonding. The light emitting diode is connected to the package with a metal, and the above metal is optimal in terms of heat dissipation. By adding a bonding metal to the back surface of the light emitting diode, assembly can be simplified. Bonding conditions at 400 ° C or lower are desirable due to the package material.
The metal film is preferably an AuSn alloy. AuSn is widely used as a eutectic metal, and since the melting point of Sn 20 wt% of the eutectic point is about 283 ° C., it is an optimal material that can be bonded at a low temperature.

その他の発光ダイオード製造方法は、公知の発光ダイオードの製造技術を利用でき、オーミック電極形成、分離、検査・評価工程を経て発光ダイオードを製造する。更に、発光ダイオードをパッケージに組込み発光ダイオード(ランプ)を製造できる。
その他の発光ダイオード製造方法は、公知の発光ダイオードの製造技術を利用でき、オーミック電極形成、分離、検査・評価工程を経て発光ダイオードを製造する。更に、発光ダイオードをパッケージに組込み発光ダイオード(ランプ)を製造できる。
Other light-emitting diode manufacturing methods can use known light-emitting diode manufacturing techniques, and manufacture light-emitting diodes through ohmic electrode formation, separation, inspection and evaluation processes. Further, a light emitting diode (lamp) can be manufactured by incorporating the light emitting diode into a package.
Other light-emitting diode manufacturing methods can use known light-emitting diode manufacturing techniques, and manufacture light-emitting diodes through ohmic electrode formation, separation, inspection and evaluation processes. Further, a light emitting diode (lamp) can be manufactured by incorporating the light emitting diode into a package.

本実施例では、本発明に係わる発光ダイオードを作製した例を具体的に説明する。
図1および図2は、本実施例で作製した半導体発光ダイオードを示した図で、図1はその平面図、図2は図1のI−I線に沿った断面図である。図3は、半導体発光ダイオードに用いられる半導体エピタキシャルウェーハの層構造の断面図である。
本実施例で作製した半導体発光ダイオード10は、AlGaInP発光部を有する赤色発光ダイオード(LED)である。
本実施例1では、GaAs基板上に設けたエピタキシャル積層構造体(エピウェーハ)とGaP基板とを接合させて発光ダイオードを作製する場合を例にして、本発明を具体的に説明する。
In this example, an example in which a light-emitting diode according to the present invention is manufactured will be specifically described.
1 and 2 are diagrams showing a semiconductor light-emitting diode manufactured in this example. FIG. 1 is a plan view of the semiconductor light-emitting diode, and FIG. 2 is a cross-sectional view taken along the line II of FIG. FIG. 3 is a cross-sectional view of a layer structure of a semiconductor epitaxial wafer used for a semiconductor light emitting diode.
The semiconductor light emitting diode 10 manufactured in this example is a red light emitting diode (LED) having an AlGaInP light emitting portion.
In the first embodiment, the present invention will be specifically described with reference to an example in which a light emitting diode is manufactured by bonding an epitaxial multilayer structure (epiwafer) provided on a GaAs substrate and a GaP substrate.

発光ダイオード10は、Siをドープしたn型の(100)面から15°傾けた面を有するGaAs単結晶からなる半導体基板11上に順次、積層した半導体層13を備えたエピタキシャルウェーハを使用して作製した。積層した半導体層とは、Siをドープしたn型の(Al0.5Ga0.50.5In0.5Pからなる130、Siをドープしたn型のGaAsからなるコンタクト層131、Siをドープしたn型の(Al0.7Ga0.30.5In0.5Pからなる下部クラッド層132、アンドープの(Al0.2Ga0.80.5In0.5P/Al0.7Ga0.30.5In0.5Pの20対からなる発光層133、およびMgをドープしたp型の(Al0.7Ga0.30.5In0.5Pからなる上部クラッド層134および薄膜(Al0.5Ga0.50.5In0.5Pからなる中間層134、Mgドープしたp型GaP層135である。 The light-emitting diode 10 uses an epitaxial wafer including a semiconductor layer 13 sequentially stacked on a semiconductor substrate 11 made of a GaAs single crystal having a plane inclined by 15 ° from an n-type (100) plane doped with Si. Produced. The stacked semiconductor layers are Si-doped n-type (Al 0.5 Ga 0.5 ) 0.5 In 0.5 P 130, Si-doped n-type GaAs contact layer 131, Si-doped n-type ( Al 0.7 Ga 0.3) 0.5 in 0.5 the lower cladding layer 132 composed of P, undoped (Al 0.2 Ga 0.8) 0.5 in 0.5 P / Al 0.7 Ga 0.3) 0.5 in 0.5 emitting layer 133 composed of P of 20 pairs, and Mg An upper clad layer 134 made of doped p-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P, an intermediate layer 134 made of a thin film (Al 0.5 Ga 0.5 ) 0.5 In 0.5 P, and an Mg-doped p-type GaP layer 135.

本実施例では、上記の半導体層130〜135各層は、トリメチルアルミニウム((CH33Al)、トリメチルガリウム((CH33Ga)およびトリメチルインジウム((CH33In)をIII族構成元素の原料に用いた減圧有機金属化学気相堆積法(MOCVD法)によりGaAs基板11上に積層して、エピタキシャルウェーハを形成した。Mgのドーピング原料にはビスシクロペンタジエチルマグネシウム(bis−(C552Mg)を使用した。Siのドーピング原料にはジシラン(Si26)を使用した。また、V族構成元素の原料としては、ホスフィン(PH3)またはアルシン(AsH3)を用いた。GaP層135は750℃で成長させ、半導体層13をなすその他の半導体層130〜134は730℃で成長させた。 In this embodiment, each of the semiconductor layers 130 to 135 is made of trimethylaluminum ((CH 3 ) 3 Al), trimethyl gallium ((CH 3 ) 3 Ga), and trimethylindium ((CH 3 ) 3 In) as a group III. An epitaxial wafer was formed by laminating on the GaAs substrate 11 by a low pressure metal organic chemical vapor deposition method (MOCVD method) used as a constituent element material. Biscyclopentadiethyl magnesium (bis- (C 5 H 5 ) 2 Mg) was used as the Mg doping material. Disilane (Si 2 H 6 ) was used as a Si doping material. Further, phosphine (PH 3 ) or arsine (AsH 3 ) was used as a raw material for the group V constituent elements. The GaP layer 135 was grown at 750 ° C., and the other semiconductor layers 130 to 134 forming the semiconductor layer 13 were grown at 730 ° C.

(Al0.5Ga0.50.5In0.5Pエッチングストップ層130のキャリア濃度は約2×1018cm-3、また、層厚は約0.2μmとした。コンタクト層131は、GaAsから構成し、キャリア濃度は約2×1018cm-3、層厚は、約0.2μmとした。n−クラッド層132のキャリア濃度は約8×1017cm-3、また、層厚は約2μmとした。発光層133は、アンドープの0.8μmとした。p−クラッド層134のキャリア濃度は約2×1017cm-3とし、また、層厚は1μmとした。GaP層135のキャリア濃度は約3×1018cm-3とし、層厚は9μmとした。
p型GaP層135は、表面から約1μmの深さに至る領域を研磨し、鏡面加工した。鏡面加工に依り、p型GaP層135の表面の粗さを0.18nmとした。
The carrier concentration of the (Al 0.5 Ga 0.5 ) 0.5 In 0.5 P etching stop layer 130 was about 2 × 10 18 cm −3 , and the layer thickness was about 0.2 μm. The contact layer 131 is made of GaAs, the carrier concentration is about 2 × 10 18 cm −3 , and the layer thickness is about 0.2 μm. The n-cladding layer 132 has a carrier concentration of about 8 × 10 17 cm −3 and a layer thickness of about 2 μm. The light emitting layer 133 was undoped 0.8 μm. The carrier concentration of the p-cladding layer 134 was about 2 × 10 17 cm −3 and the layer thickness was 1 μm. The carrier concentration of the GaP layer 135 was about 3 × 10 18 cm −3 and the layer thickness was 9 μm.
The p-type GaP layer 135 was polished and mirror-finished in a region reaching a depth of about 1 μm from the surface. Depending on the mirror finish, the surface roughness of the p-type GaP layer 135 was set to 0.18 nm.

一方、上記のp型GaP層135の鏡面研磨した表面に貼付するn型GaP基板14を用意した。この貼付用GaP基板14には、キャリア濃度が約1×1017 cm-3となる様にSiを添加した、面方位を(111)とする単結晶を用いた。貼付用GaP基板14の直径は50ミリメートル(mm)で、厚さは250μmであった。このGaP基板14の表面は、p型GaP層135に接合させる以前に鏡面に研磨し、平方平均平方根値(rms)にして0.12nmに仕上げておいた。
上記のGaP基板14及びエピタキシャルウェーハを搬入し、3×10-5Paまで装置内を真空に排気した。その後、表面の汚染を除去するためにGaP基板14およびエピウェーハ表面に加速されたArビームを表面に照射し、接合前の処理を行った。その後、真空中で、両者を室温で接合した。
On the other hand, an n-type GaP substrate 14 to be attached to the mirror-polished surface of the p-type GaP layer 135 was prepared. For this bonding GaP substrate 14, a single crystal having a plane orientation of (111) to which Si was added so that the carrier concentration was about 1 × 10 17 cm −3 was used. The diameter of the bonding GaP substrate 14 was 50 millimeters (mm) and the thickness was 250 μm. The surface of the GaP substrate 14 was polished to a mirror surface before being bonded to the p-type GaP layer 135, and finished to a square average square root value (rms) of 0.12 nm.
The GaP substrate 14 and the epitaxial wafer were carried in, and the inside of the apparatus was evacuated to 3 × 10 −5 Pa. Thereafter, in order to remove contamination on the surface, the surface of the GaP substrate 14 and the epi-wafer surface was irradiated with an accelerated Ar beam to perform pre-bonding processing. Then, both were joined at room temperature in vacuum.

次に、接合したウェーハから、GaAs基板11をアンモニア系エッチャントにより選択的に除去した。その後、エッチングストップ層130を塩酸で、除去した。
コンタクト層131の表面に第1のオーミック電極15として、AuGe、Ni合金を厚さが0.2μmとなるように真空蒸着法によりn形オーミック電極を形成した。一般的なフォトリソグラフィー手段を利用してパターニングを施し、電極15を形成した。その後、電極形成部以外のコンタクト層を除去した。
次に、p電極を形成する領域の発光層を含むエピ層131〜134を選択的に除去し、GaP層135を露出させた。GaP層の表面にAuBeを0.2μm、Auを1μmとなるように真空蒸着法でp形オーミック電極16を形成した。この時、発光層の面積は、0.72mm2であった。
450℃で10分間熱処理を行い、合金化し低抵抗のp型およびn型オーミック電極を形成した。
Next, the GaAs substrate 11 was selectively removed from the bonded wafer with an ammonia-based etchant. Thereafter, the etching stop layer 130 was removed with hydrochloric acid.
An n-type ohmic electrode was formed as a first ohmic electrode 15 on the surface of the contact layer 131 by a vacuum vapor deposition method so that the thickness of AuGe and Ni alloy was 0.2 μm. Patterning was performed using general photolithography means to form an electrode 15. Thereafter, the contact layer other than the electrode forming portion was removed.
Next, the epi layers 131 to 134 including the light emitting layer in the region for forming the p electrode were selectively removed to expose the GaP layer 135. A p-type ohmic electrode 16 was formed on the surface of the GaP layer by vacuum deposition so that AuBe was 0.2 μm and Au was 1 μm. At this time, the area of the light emitting layer was 0.72 mm 2 .
Heat treatment was performed at 450 ° C. for 10 minutes, and alloyed to form low resistance p-type and n-type ohmic electrodes.

その後、Auを1μmとなるように真空蒸着法でオーミック電極の上にボンディングパッドを形成した。更に、厚さ0.3μmとなるように半導体層をSiO2膜で覆って保護膜とした。
次に、ダイシングソーを用いて、GaP基板14の裏面から、傾斜面の角度20が15度となるように、第2の側面の長さが、約180μmとなるようにV字状の溝入れを行った。塩酸で、粗面化処理を実施した。
Thereafter, a bonding pad was formed on the ohmic electrode by vacuum deposition so that Au was 1 μm. Further, the semiconductor layer was covered with a SiO 2 film so as to have a thickness of 0.3 μm to form a protective film.
Next, using a dicing saw, a V-shaped grooving is performed so that the length of the second side surface is about 180 μm from the back surface of the GaP substrate 14 so that the angle 20 of the inclined surface is 15 degrees. Went. A roughening treatment was carried out with hydrochloric acid.

次に、表面側からダイシングソーを用い1mm間隔で切断し、チップ化した。第1の側面の長さが、約80μmとなるように、発光層とほぼ垂直となるようにした。
ダイシングによる破砕層および汚れを硫酸・過酸化水素混合液で除去し、半導体発光ダイオード(チップ)10を作製した。チップ裏面の面積は、0.8mm2であった。
上記の様にして作製したLEDチップ10を、図8及び図9に模式的に示す如く発光ダイオードランプ42に組み立てた。このLEDランプ42は、マウント用基板45に銀(Ag)ペーストで固定、支持(マウント)し、LEDチップ10のn型オーミック電極15とマウント基板45の表面に設けたn電極端子43とを、また、p型オーミック電極16とp電極端子44とを金線46で、ワイヤボンディングした後、一般的なエポキシ樹脂41で封止して作製した。
Next, it cut | disconnected by 1 mm space | interval using the dicing saw from the surface side, and was chipped. The length of the first side surface was approximately perpendicular to the light emitting layer so as to be about 80 μm.
The crushing layer and dirt due to dicing were removed with a sulfuric acid / hydrogen peroxide mixed solution to produce a semiconductor light emitting diode (chip) 10. The area of the chip back surface was 0.8 mm 2 .
The LED chip 10 manufactured as described above was assembled into a light emitting diode lamp 42 as schematically shown in FIGS. This LED lamp 42 is fixed and supported (mounted) with a silver (Ag) paste on a mounting substrate 45, and an n-type ohmic electrode 15 of the LED chip 10 and an n-electrode terminal 43 provided on the surface of the mounting substrate 45 are Further, the p-type ohmic electrode 16 and the p-electrode terminal 44 were wire-bonded with a gold wire 46 and then sealed with a general epoxy resin 41.

マウント用基板45は、放熱性の良い窒化アルミニウムを用い、表面に設けられたn電極端子43とp電極端子44とを介してn型及びp型オーミック電極15,16間に電流を流したところ、主波長を620nmとする赤色光が出射された。順方向に500ミリアンペア(mA)の電流を通流した際の順方向電圧(Vf)は、GaP層315及びGaP基板316との接合界面での抵抗の低さ、及び各オーミック電極15、16の良好なオーミック特性を反映し、約2.4ボルト(V)となった。また、順方向電流を500mAとした際の発光強度は、発光効率の高い発光部の構成及びチップへの裁断時に発生する破砕層を除去するなど外部への取り出し効率も向上させている事を反映して5500mcdの高輝度となった。
(実施例2)
The mounting substrate 45 is made of aluminum nitride having good heat dissipation, and a current is passed between the n-type and p-type ohmic electrodes 15 and 16 via the n-electrode terminal 43 and the p-electrode terminal 44 provided on the surface. Then, red light having a dominant wavelength of 620 nm was emitted. The forward voltage (Vf) when a current of 500 milliamperes (mA) is passed in the forward direction has a low resistance at the junction interface between the GaP layer 315 and the GaP substrate 316 and the ohmic electrodes 15, 16. Reflecting good ohmic characteristics, it was about 2.4 volts (V). In addition, the emission intensity when the forward current is 500 mA reflects the improvement of the extraction efficiency to the outside, such as the structure of the light emitting part with high emission efficiency and the removal of the crushing layer generated when cutting into chips. As a result, the luminance became 5500 mcd.
(Example 2)

実施例1と同様の素子形状を作製し、裏面にAuSn共晶(融点283℃)を1μm形成し、Agペーストを用いないでAuSnで、パッケージに固定した。チップ化し、裏面接続状態の異なる発光ダイオードを作製し、実施例1と同様に評価した結果を表1に示す。順方向に500ミリアンペア(mA)の電流を通流した際の順方向電圧(Vf)は、2.4Vであった。発光強度は、放熱性の更なる向上、Agペーストによる光吸収がなくなっている事を反映して6430mcdの高輝度となった。   An element shape similar to that of Example 1 was prepared, AuSn eutectic (melting point 283 ° C.) was formed to 1 μm on the back surface, and fixed to the package with AuSn without using Ag paste. Table 1 shows the results of fabricating light-emitting diodes that are made into chips and having different back-surface connection states and evaluated in the same manner as in Example 1. The forward voltage (Vf) when a current of 500 mA (mA) was passed in the forward direction was 2.4V. The emission intensity was 6430 mcd high brightness reflecting further improvement in heat dissipation and light absorption by Ag paste.

(比較例1)
実施例1と同様な工程で、側面形状を変更した。第1側面は、ほぼ垂直で長さ10μm、第2の側面は、角度30度、長さは、300μmとした。裏面の面積は、0.5mm2となった。発光層は、実施例と同じ、0.72mm2であった。実施例1と同様に評価した結果を表1に示す。順方向に500ミリアンペア(mA)の電流を通流した際の順方向電圧(Vf)は、2.4Vであった。発光強度は、裏面の面積が小さく、放熱不足のため3290mcdの輝度にとどまった。
(Comparative Example 1)
The side surface shape was changed in the same process as in Example 1. The first side surface was approximately vertical and 10 μm long, the second side surface was 30 degrees in angle, and the length was 300 μm. The area of the back surface was 0.5 mm 2 . The light emitting layer was 0.72 mm 2 as in the example. The results evaluated in the same manner as in Example 1 are shown in Table 1. The forward voltage (Vf) when a current of 500 mA (mA) was passed in the forward direction was 2.4V. The emission intensity remained at a luminance of 3290 mcd due to the small area of the back surface and insufficient heat dissipation.

(比較例2)
実施例1と同様の工程で、傾斜面のない直方体の発光ダイオードを作製した。
裏面の面積は、0.9mm2となった。発光層は、実施例と同じ、0.72mm2であった。実施例1と同様に評価した結果を表1に示す。順方向に500ミリアンペア(mA)の電流を通流した際の順方向電圧(Vf)は、2.4Vであった。発光強度は、傾斜面がないため光取り出し効率がやや低く、4270mcdの輝度にとどまった。
(Comparative Example 2)
A rectangular parallelepiped light-emitting diode having no inclined surface was manufactured in the same process as in Example 1.
The area of the back surface was 0.9 mm2. The light emitting layer was 0.72 mm 2 as in the example. The results evaluated in the same manner as in Example 1 are shown in Table 1. The forward voltage (Vf) when a current of 500 mA (mA) was passed in the forward direction was 2.4V. The light emission intensity was slightly low because there was no inclined surface, and the luminance was only 4270 mcd.

本発明の発光ダイオードは放熱性がよく高輝度である。放熱性がよいことから大電力で使用することができ、各種のランプとして幅広く利用することが出きる。   The light emitting diode of the present invention has good heat dissipation and high brightness. Because of its good heat dissipation, it can be used with high power and can be used widely as various lamps.

実施例1の半導体発光ダイオードの平面図である。1 is a plan view of a semiconductor light emitting diode of Example 1. FIG. 図1のI−I線に沿った断面図である。It is sectional drawing along the II line | wire of FIG. 本発明におけるエピウェーハの断面を示す図である。It is a figure which shows the cross section of the epi wafer in this invention. 本発明におけるエピウェーハに基板を接合した断面図である。It is sectional drawing which joined the board | substrate to the epitaxial wafer in this invention. 実施例2の半導体発光ダイオードの断面図である。6 is a sectional view of a semiconductor light emitting diode of Example 2. FIG. 比較例1の発光ダイオードの断面図である。6 is a cross-sectional view of a light emitting diode of Comparative Example 1. FIG. 比較例2の発光ダイオードの断面図である。10 is a cross-sectional view of a light emitting diode of Comparative Example 2. FIG. 実施例、比較例の半導体発光ダイオードランプの平面図であるIt is a top view of the semiconductor light emitting diode lamp of an Example and a comparative example. 実施例、比較例の半導体発光ダイオードランプの断面図である。It is sectional drawing of the semiconductor light emitting diode lamp of an Example and a comparative example.

符号の説明Explanation of symbols

10 半導体発光ダイオード
11 半導体基板(GaAs)
12 発光部
13 エピタキシャル成長層
130 エッチングストップ層
131 コンタクト層
132 下部クラッド層
133 発光層
134 上部クラッド層
135 GaP層
141 接合界面
14 GaP基板
15 第1の電極(n型オーミック)
16 第2の電極(p型オーミック)
20 傾斜角
21 第1の側面
22 第2の側面
23 裏面
24 金属層(AuSn)
41 エポキシ樹脂
42 発光ダイオード
43 第1の電極端子
44 第2の電極端子
45 絶縁性基板(AlN)
46 金ワイヤー
10 Semiconductor Light Emitting Diode 11 Semiconductor Substrate (GaAs)
12 Light Emitting Section 13 Epitaxial Growth Layer 130 Etching Stop Layer
131 Contact layer
132 Lower cladding layer 133 Light emitting layer
134 Upper cladding layer 135 GaP layer 141 Junction interface 14 GaP substrate 15 First electrode (n-type ohmic)
16 Second electrode (p-type ohmic)
20 Inclination angle 21 First side surface 22 Second side surface 23 Back surface 24 Metal layer (AuSn)
41 Epoxy resin 42 Light-emitting diode 43 First electrode terminal 44 Second electrode terminal 45 Insulating substrate (AlN)
46 gold wire

Claims (16)

化合物半導体から成る発光層を有する透明基板型の発光ダイオードにおいて、第1電極と第1電極とは極性の異なる第2電極とが光取り出し面に形成され、光取り出し面の上部に発光層が形成されており、光取り出し面である素子上面の面積(A)と、発光層の面積(B)と、発光ダイオードの裏面の面積(C)の関係が(1)式の関係を満足し、かつ素子上面の面積(A)が0.7mm 以上であり、裏面の面積(C)が0.6mm 以上であることを特徴とする発光ダイオード。
A>C>B ・・・(1)
In the compounds transparent substrate light-emitting diode having a light emitting layer made of semiconductor, and the first electrode and the first electrode and a second different electrode polarity is formed on the light extraction surface side, the light emitting layer on the light extraction surface The relationship between the area (A) of the upper surface of the element that is the light extraction surface, the area (B) of the light emitting layer, and the area (C) of the back surface of the light emitting diode satisfies the relationship of the formula (1). A light emitting diode having an upper surface area (A) of 0.7 mm 2 or more and an rear surface area (C) of 0.6 mm 2 or more .
A>C> B (1)
前記発光層は、組成式(AlXGa1-XYIn1-YP(0≦X≦1,0<Y≦1)から成り、透明基板の熱伝導率は、100W/m・K以上であることを特徴とする請求項1に記載の発光ダイオード。 The light emitting layer is made of composition formula (Al X Ga 1-X) Y In 1-Y P (0 ≦ X ≦ 1,0 <Y ≦ 1), the thermal conductivity of the transparent substrate, 100W / m · K It is the above, The light emitting diode of Claim 1 characterized by the above-mentioned. 前記発光ダイオードの側面は、発光層に近い第1の側面と裏面に近い第2の側面を有し、第1の側面の傾斜角度は第2の側面の傾斜角度より小さいことを特徴とする請求項1または2に記載の発光ダイオード。 The side surface of the light emitting diode has a first side surface close to the light emitting layer and a second side surface close to the back surface, and an inclination angle of the first side surface is smaller than an inclination angle of the second side surface. Item 3. The light emitting diode according to Item 1 or 2. 前記第1の側面が垂直であり、第2の側面が傾斜していることを特徴とする請求項3に記載の発光ダイオード。     4. The light emitting diode according to claim 3, wherein the first side surface is vertical and the second side surface is inclined. 前記第2の側面の傾斜角は、10度以上30度以下であることを特徴とする請求項3または4に記載の発光ダイオード。 5. The light emitting diode according to claim 3, wherein an inclination angle of the second side surface is not less than 10 degrees and not more than 30 degrees. 前記第2の側面の傾斜角は、10度以上20度以下であることを特徴とする請求項乃至5のいずれかに記載の発光ダイオード 6. The light emitting diode according to claim 3, wherein an inclination angle of the second side surface is 10 degrees or more and 20 degrees or less. 前記第1の側面の長さは50μm以上、100μm以下で、第2の側面の長さは、100μm以上、250μm以下あることを特徴とする請求項乃至6のいずれかに記載の発光ダイオード。 7. The light emitting diode according to claim 3, wherein a length of the first side surface is 50 μm or more and 100 μm or less, and a length of the second side surface is 100 μm or more and 250 μm or less. 透明基板は、リン化ガリウム(GaP)であることを特徴とする請求項1乃至7のいずれかに記載の発光ダイオード     The light-emitting diode according to claim 1, wherein the transparent substrate is gallium phosphide (GaP). 前記透明基板は、炭化ケイ素(SiC)であることを特徴とする請求項1乃至7のいずれかに記載の発光ダイオード     The light-emitting diode according to claim 1, wherein the transparent substrate is silicon carbide (SiC). 前記透明基板の裏面は、光が散乱する粗面であることを特徴とする請求項1乃至9のいずれかに記載の発光ダイオード     The light-emitting diode according to claim 1, wherein the back surface of the transparent substrate is a rough surface on which light is scattered. 前記透明基板の裏面に金属膜が形成されていることを特徴とする請求項1乃至10のいずれかに記載の発光ダイオード     The light emitting diode according to claim 1, wherein a metal film is formed on a back surface of the transparent substrate. 前記透明基板の裏面の金属膜は、融点400℃以下の金属を含むことを特徴とする請求項11に記載の発光ダイオード     The light emitting diode according to claim 11, wherein the metal film on the back surface of the transparent substrate contains a metal having a melting point of 400 ° C or lower. 前記金属膜は、AuSn合金であることを特徴とする請求項11又は12に記載の発光ダイオード。     The light emitting diode according to claim 11, wherein the metal film is an AuSn alloy. 発光ダイオードの裏面の面積は、0.6mm2以上であり、1.5W以上の電力で使用することを特徴とする請求項1乃至13のいずれかに記載の発光ダイオード。 14. The light emitting diode according to claim 1, wherein an area of a back surface of the light emitting diode is 0.6 mm 2 or more and is used with a power of 1.5 W or more. 前記裏面は、GaP基板を塩酸で処理したものであることを特徴する請求項8、10乃至14のいずれかに記載の発光ダイオード。     15. The light emitting diode according to claim 8, wherein the back surface is obtained by treating a GaP substrate with hydrochloric acid. 前記透明基板の側面はダイシング法で形成されたものであることを特徴とする請求項1乃至15のいずれかに記載の発光ダイオード。     16. The light emitting diode according to claim 1, wherein the side surface of the transparent substrate is formed by a dicing method.
JP2005369334A 2005-12-22 2005-12-22 Light emitting diode Expired - Fee Related JP4942996B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005369334A JP4942996B2 (en) 2005-12-22 2005-12-22 Light emitting diode
US12/158,914 US7915619B2 (en) 2005-12-22 2006-12-22 Light-emitting diode and method for fabrication thereof
CNA2006800531682A CN101379623A (en) 2005-12-22 2006-12-22 Light-emitting diode and method for fabricant thereof
TW95148554A TWI335088B (en) 2005-12-22 2006-12-22 Light-emitting diode and method for fabrication thereof
PCT/JP2006/326299 WO2007073001A1 (en) 2005-12-22 2006-12-22 Light-emitting diode and method for fabricant thereof
US13/028,370 US8158987B2 (en) 2005-12-22 2011-02-16 Light-emitting diode and method for fabrication thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005369334A JP4942996B2 (en) 2005-12-22 2005-12-22 Light emitting diode

Publications (2)

Publication Number Publication Date
JP2007173534A JP2007173534A (en) 2007-07-05
JP4942996B2 true JP4942996B2 (en) 2012-05-30

Family

ID=38299676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005369334A Expired - Fee Related JP4942996B2 (en) 2005-12-22 2005-12-22 Light emitting diode

Country Status (2)

Country Link
JP (1) JP4942996B2 (en)
CN (1) CN101379623A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192701A (en) * 2009-02-18 2010-09-02 Showa Denko Kk Light emitting diode, light emitting diode lamp, and method of manufacturing the light emitting diode
JP2010239098A (en) * 2009-03-10 2010-10-21 Showa Denko Kk Light-emitting diode, light-emitting diode lamp and illuminating device
JP5244703B2 (en) 2009-05-22 2013-07-24 昭和電工株式会社 LIGHT EMITTING DIODE, LIGHT EMITTING DIODE LAMP, AND LIGHTING DEVICE
JP5056799B2 (en) * 2009-06-24 2012-10-24 豊田合成株式会社 Group III nitride semiconductor light emitting device and method of manufacturing the same
US9437785B2 (en) 2009-08-10 2016-09-06 Cree, Inc. Light emitting diodes including integrated backside reflector and die attach
CN101997065B (en) * 2009-08-14 2012-09-05 昆山科技大学 Packaging structure of light emitting diode
JP2011096976A (en) * 2009-11-02 2011-05-12 Showa Denko Kk Light emitting device, light emitting module, and lighting system
JP5343018B2 (en) * 2010-02-08 2013-11-13 昭和電工株式会社 LIGHT EMITTING DIODE, MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DIODE LAMP
KR102546307B1 (en) 2015-12-02 2023-06-21 삼성전자주식회사 Light emitting device and display device including the same
JP7144732B2 (en) * 2018-09-19 2022-09-30 株式会社デンソーウェーブ laminated substrate
CN113506844B (en) * 2021-09-08 2022-03-15 深圳市思坦科技有限公司 Micro LED chip preparation method, micro LED chip, display device and light-emitting device
CN113990992B (en) * 2021-12-28 2022-04-15 深圳市思坦科技有限公司 Preparation method of micro LED chip, micro LED chip and display device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3326545B2 (en) * 1994-09-30 2002-09-24 ローム株式会社 Semiconductor light emitting device
JPH0936427A (en) * 1995-07-18 1997-02-07 Showa Denko Kk Semiconductor device and fabrication thereof
JP3881472B2 (en) * 1999-04-15 2007-02-14 ローム株式会社 Manufacturing method of semiconductor light emitting device
JP3973799B2 (en) * 1999-07-06 2007-09-12 松下電器産業株式会社 Gallium nitride compound semiconductor light emitting device
US6791119B2 (en) * 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
JP4046485B2 (en) * 2001-06-05 2008-02-13 シャープ株式会社 Nitride compound semiconductor light emitting device
JP2003344788A (en) * 2002-05-28 2003-12-03 Matsushita Electric Works Ltd Optical switch and method of manufacturing the same
JP2004289047A (en) * 2003-03-25 2004-10-14 Toyoda Gosei Co Ltd Semiconductor light emitting element and its manufacturing method
JP4393306B2 (en) * 2003-10-30 2010-01-06 シャープ株式会社 Semiconductor light emitting element, method for manufacturing the same, and semiconductor device
JP4334321B2 (en) * 2003-11-05 2009-09-30 シャープ株式会社 Manufacturing method of nitride semiconductor light emitting diode chip

Also Published As

Publication number Publication date
CN101379623A (en) 2009-03-04
JP2007173534A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
JP4942996B2 (en) Light emitting diode
US8158987B2 (en) Light-emitting diode and method for fabrication thereof
JP5533675B2 (en) Semiconductor light emitting device
JP5961358B2 (en) Light emitting diode and manufacturing method thereof
JP5245970B2 (en) LIGHT EMITTING DIODE, ITS MANUFACTURING METHOD, AND LAMP
TWI447956B (en) Light-emitting diode, production method thereof and light-emitting diode lamp
WO2012073993A1 (en) Light-emitting diode, light-emitting diode lamp, and illumination device
JP2012054422A (en) Light-emitting diode
JP2006066903A (en) Positive electrode for semiconductor light-emitting element
JP2010098068A (en) Light emitting diode, manufacturing method thereof, and lamp
JP2010263050A (en) Light emitting diode, method for producing the same, and light emitting diode lamp
JP5557649B2 (en) Light emitting diode, light emitting diode lamp, and lighting device
JP5586372B2 (en) Light emitting diode, light emitting diode lamp, and lighting device
JP5586371B2 (en) Light emitting diode, light emitting diode lamp, and lighting device
JP6101303B2 (en) Light emitting diode, light emitting diode lamp, and lighting device
JP5557648B2 (en) Light emitting diode, light emitting diode lamp, and lighting device
JP4918245B2 (en) Light emitting diode and manufacturing method thereof
TWI335088B (en) Light-emitting diode and method for fabrication thereof
KR101318492B1 (en) Light-emitting diode and light-emitting diode lamp
JP2014168101A (en) Light emitting diode, light emitting diode lamp, and lighting device
JP2011176268A (en) Light emitting diode, light emitting diode lamp, and lighting system
KR20080041327A (en) Semiconductor light emitting device having surface roughness of homogeneous substrates and method for manufacturing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111027

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120229

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees