[go: nahoru, domu]

JP5070779B2 - Semiconductor device manufacturing method and semiconductor device - Google Patents

Semiconductor device manufacturing method and semiconductor device Download PDF

Info

Publication number
JP5070779B2
JP5070779B2 JP2006255259A JP2006255259A JP5070779B2 JP 5070779 B2 JP5070779 B2 JP 5070779B2 JP 2006255259 A JP2006255259 A JP 2006255259A JP 2006255259 A JP2006255259 A JP 2006255259A JP 5070779 B2 JP5070779 B2 JP 5070779B2
Authority
JP
Japan
Prior art keywords
gate electrode
recess
recess region
semiconductor device
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006255259A
Other languages
Japanese (ja)
Other versions
JP2008078347A (en
Inventor
俊利 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006255259A priority Critical patent/JP5070779B2/en
Publication of JP2008078347A publication Critical patent/JP2008078347A/en
Application granted granted Critical
Publication of JP5070779B2 publication Critical patent/JP5070779B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28114Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor characterised by the sectional shape, e.g. T, inverted-T
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66628Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation recessing the gate by forming single crystalline semiconductor material at the source or drain location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

本発明は、半導体装置の製造方法および半導体装置に関し、さらに詳しくは、特にはゲート電極の両側のシリコン基板に埋め込まれたシリコンゲルマニウム(SiGe)層をソース/ドレインとして用いた構成の半導体装置の製造方法および半導体装置に関する。   The present invention relates to a method of manufacturing a semiconductor device and a semiconductor device. More specifically, the present invention particularly relates to a method of manufacturing a semiconductor device having a silicon germanium (SiGe) layer embedded in a silicon substrate on both sides of a gate electrode as a source / drain. The present invention relates to a method and a semiconductor device.

MOS型のトランジスタを備えた半導体装置においては、シリコン基板への応力印加によってキャリア移動度を向上させる技術が積極的に利用されている。このような技術の一つとして、例えばp型のMOSトランジスタ(PMOS)においては、トランジスタのソース/ドレイン(S/D)として、シリコン(Si)よりも格子定数の大きいシリコンゲルマニウム(SiGe)層をエピタキシャル成長によって形成し、チャネル領域に局所的に応力を与えて歪みを発生させる手法が提案されている(例えば、下記非特許文献1、2参照)。この方法は、現在の90nm世代、65nm世代の技術に利用されて、量産まで進められている。さらには、45nm世代およびそれ以降に向けての技術開発の中でも、重要技術として検討されている。   In a semiconductor device including a MOS transistor, a technique for improving carrier mobility by applying stress to a silicon substrate is actively used. As one of such techniques, for example, in a p-type MOS transistor (PMOS), a silicon germanium (SiGe) layer having a lattice constant larger than that of silicon (Si) is used as the source / drain (S / D) of the transistor. A method has been proposed in which strain is generated by epitaxial growth and locally applying stress to the channel region (see, for example, Non-Patent Documents 1 and 2 below). This method is used for the current 90 nm generation and 65 nm generation technologies and is being advanced to mass production. Furthermore, it is considered as an important technology in the technological development for the 45 nm generation and beyond.

一方、面方位(110)のSi基板の正孔移動度が、従来から用いられている面方位(100)のSi基板の正孔移動度よりも高いことを利用する方法もある。この方法によれば、面方位を変えたSi基板を用いるだけで、PMOSの性能向上が図れる。   On the other hand, there is also a method that utilizes the fact that the hole mobility of the Si substrate with the plane orientation (110) is higher than the hole mobility of the Si substrate with the plane orientation (100) conventionally used. According to this method, the performance of the PMOS can be improved only by using a Si substrate with a different plane orientation.

以上のことから、SiGe層によりチャネル領域に局所的な応力をかける方法と、面方位(110)のSi基板を用いる方法とを組み合わせることが、次世代の高性能PMOSに対して有望と考えられており、検討されている。   From the above, combining the method of applying local stress to the channel region with the SiGe layer and the method of using the Si substrate with the plane orientation (110) is considered promising for the next-generation high-performance PMOS. Is being considered.

このような構成の半導体装置の製造方法について、図5の断面図を用いて説明する。まず、面方位(110)のシリコン基板11の表面側に素子分離領域(図示省略)を形成し、シリコン基板11上にゲート絶縁膜12を介して上部にハードマスク14、15が順次積層されたゲート電極13を形成する。その後、これらの側壁に絶縁性のオフセットスペーサー16を介してサイドウォール17を形成する。以上までは、通常のMOSプロセスと同様に行う。   A method for manufacturing the semiconductor device having such a structure will be described with reference to the cross-sectional view of FIG. First, an element isolation region (not shown) is formed on the surface side of a silicon substrate 11 having a plane orientation (110), and hard masks 14 and 15 are sequentially stacked on the silicon substrate 11 with a gate insulating film 12 interposed therebetween. A gate electrode 13 is formed. Thereafter, sidewalls 17 are formed on these sidewalls via insulating offset spacers 16. Up to the above, the process is performed in the same manner as a normal MOS process.

次に、ハードマスク15およびサイドウォール17をマスクにして、シリコン基板11の表面をエッチングによって掘り下げる、いわゆるリセスエッチングを行い、リセス領域18’を形成する。この際、等方性のリセスエッチングを行うことで、サイドウォール17の下方にまでリセス領域18’が広がるようにする。これにより、リセス領域18’のゲート電極13側の側壁は斜面を有した状態となり、この斜面に面方位(100)面が自然に露出される。   Next, using the hard mask 15 and the sidewall 17 as a mask, so-called recess etching is performed to dig the surface of the silicon substrate 11 by etching, thereby forming a recess region 18 ′. At this time, by performing isotropic recess etching, the recess region 18 ′ extends to the lower side of the sidewall 17. As a result, the side wall of the recess region 18 ′ on the gate electrode 13 side has a slope, and the plane orientation (100) plane is naturally exposed on this slope.

以上の後、ここでの図示は省略したが、エッチングによって掘り下げたリセス領域18’の表面に、SiGe層をエピタキシャル成長させてS/Dを形成する。   After the above, although illustration is omitted here, an S / D is formed by epitaxially growing a SiGe layer on the surface of the recess region 18 'dug by etching.

T.Ghani他,「A 90nm High Volume Manufacturing Logic Technology Featuring Novel 45nm Gate Length Strained Silicon CMOS Transistors」,International Electron Devices Meeting Technical Digest, 2003年,p.978T. Ghani et al., “A 90nm High Volume Manufacturing Logic Technology Featuring Novel 45nm Gate Length Strained Silicon CMOS Transistors”, International Electron Devices Meeting Technical Digest, 2003, p.978 S.Tyagi他,「An advanced low power, high performance, strained chanel 65nm technology」, International Electron Devices Meeting Technical Digest, 2005年,p.1070S. Tyagi et al., “An advanced low power, high performance, strained channel 65 nm technology”, International Electron Devices Meeting Technical Digest, 2005, p.1070

しかし、上述したような半導体装置の製造方法では、図6(a)のTEM写真および図6(b)の領域Aの拡大TEM写真に示すように、リセス領域18'のゲート電極13側の側壁に露出された面方位(100)の面へのSiGe層19のエピタキシャル成長のレートは、面方位(110)の面へのSiGe層19のエピタキシャル成長のレートよりも速い。このため、面方位(100)の面にSiGe層19が優先成長され、アクティブ領域のボトムとなるリセス領域18’の底部には、SiGe層19が成長し難くなる。このため、ゲート電極13の直下のシリコン基板11に形成されるチャネル領域Chに横方向からの応力がかかり難いという問題があった。   However, in the method for manufacturing a semiconductor device as described above, as shown in the TEM photograph of FIG. 6A and the enlarged TEM photograph of region A in FIG. 6B, the side wall on the gate electrode 13 side of the recess region 18 ′. The rate of epitaxial growth of the SiGe layer 19 on the surface of the surface orientation (100) exposed to the surface is faster than the rate of epitaxial growth of the SiGe layer 19 on the surface of the surface orientation (110). For this reason, the SiGe layer 19 is preferentially grown on the plane of the plane orientation (100), and the SiGe layer 19 is difficult to grow on the bottom of the recess region 18 ′ that becomes the bottom of the active region. For this reason, there is a problem that it is difficult to apply stress from the lateral direction to the channel region Ch formed in the silicon substrate 11 immediately below the gate electrode 13.

以上のような課題を解決するために、本発明は、チャネル領域に横方向から応力を効果的に印加する半導体装置の製造方法および半導体装置を提供することを目的とする。   In order to solve the above-described problems, an object of the present invention is to provide a semiconductor device manufacturing method and a semiconductor device that effectively apply stress to a channel region from the lateral direction.

上述したような目的を達成するために、本発明の半導体装置の製造方法は、次のような工程を順次行うことを特徴としている。まず、第1工程では、シリコン(Si)基板上にゲート絶縁膜を介してゲート電極を形成する工程を行う。次に、第2工程では、ゲート電極をマスクにした異方性のリセスエッチングにより、Si基板を掘り下げて、第1リセス領域を形成する。次いで、第3工程では、前記ゲート電極の両側の前記シリコン基板上に第1のサイドウォールを形成する。次いで、第4工程では、前記ゲート電極と前記第1のサイドウォールをマスクにした異方性のリセスエッチングにより、前記シリコン基板を掘り下げて第2リセス領域を形成する。次いで、第5工程では前記第2リセス領域の表面に、前記第1リセス領域の底面と同じ高さまで、SiとSiとは格子定数の異なる原子とからなる第1の混晶層をエピタキシャル成長させる工程を行う。次いで、第6工程では、前記第1のサイドウォールを除去する。次いで第7工程では、前記第1リセス領域と前記第1の混晶層の上に、シリコンとシリコンとは格子定数の異なる原子とからなり当該原子の濃度を前記第1の混晶層よりも高濃度とした第2の混晶層を、前記シリコン基板の表面よりも高くなるようにエピタキシャル成長させる。 In order to achieve the above-described object, the semiconductor device manufacturing method of the present invention is characterized by sequentially performing the following steps. First, in the first step, a step of forming a gate electrode on a silicon (Si) substrate via a gate insulating film is performed. Next, in the second step, the Si substrate is dug down by anisotropic recess etching using the gate electrode as a mask to form a first recess region. Next, in a third step, a first sidewall is formed on the silicon substrate on both sides of the gate electrode. Next, in a fourth step, the silicon substrate is dug down to form a second recess region by anisotropic recess etching using the gate electrode and the first sidewall as a mask. Next, in a fifth step, a step of epitaxially growing a first mixed crystal layer made of atoms having different lattice constants from Si and Si up to the same height as the bottom surface of the first recess region on the surface of the second recess region. I do. Next, in the sixth step, the first sidewall is removed. Next, in a seventh step, silicon and silicon are formed of atoms having different lattice constants on the first recess region and the first mixed crystal layer, and the concentration of the atoms is set higher than that of the first mixed crystal layer. The second mixed crystal layer having a high concentration is epitaxially grown so as to be higher than the surface of the silicon substrate.

このような半導体装置の製造方法によれば、第2工程及び第4工程において、ゲート電極や第1のサイドウォールをマスクにした異方性のリセスエッチングにより、Si基板を掘り下げて第1リセス領域や第2リセス領域を形成するため、これらリセス領域のゲート電極側の側壁が略垂直に加工される。このため、この側壁が斜面を有する場合と比較して、第1リセス領域や第2リセスに埋め込まれる混晶層により、ゲート電極の直下のSi基板に形成されるチャネル領域に横方向からの応力をかけ易い。また、面方位(110)のSi基板を用いた場合であっても、第1リセス領域や第2リセス領域のゲート電極側の側壁が略垂直に加工されるため、面方位(100)の面の露出が抑制される。これにより、第1リセス領域や第2リセス領域の表面に混晶層をエピタキシャル成長させることで、表面が平坦化された混晶層を形成することが可能となる。よって、チャネル領域に横方向からの応力を効果的にかけることができる。 According to such a method of manufacturing a semiconductor device, in the second step and the fourth step , the Si substrate is dug down by anisotropic recess etching using the gate electrode and the first sidewall as a mask, and the first recess region is formed. to form a or the second recess region, the side walls of the gate electrode side of the recess region is processed substantially vertically. For this reason, compared with the case where the side wall has a slope, the mixed crystal layer embedded in the first recess region or the second recess causes a lateral stress on the channel region formed in the Si substrate immediately below the gate electrode. Easy to apply. Even when a Si substrate having a plane orientation (110) is used, the side walls on the gate electrode side of the first recess region and the second recess region are processed substantially vertically, so that the plane with the plane orientation (100) Exposure is suppressed. Thus, the mixed crystal layer having a planarized surface can be formed by epitaxially growing the mixed crystal layer on the surface of the first recess region or the second recess region . Therefore, the stress from the lateral direction can be effectively applied to the channel region.

また、本発明の半導体装置は、Si基板上にゲート絶縁膜を介してゲート電極が設けられた半導体装置であって、ゲート電極側の側壁が略垂直となるように、前記ゲート電極側から第1リセス領域と第2リセス領域の順に堀込み度合いを高くして前記ゲート電極の両側のシリコン基板に掘り下げて形成されたリセス領域のうち、前記第2リセス領域については、前記第1リセス領域の底面と同じ高さまで、シリコンとシリコンとは格子定数の異なる原子とからなる第1の混晶層が設けられており、前記第1リセス領域及び前記第1の混晶層の上には、シリコンとシリコンとは格子定数の異なる原子とからなり当該原子の濃度を第1リセス領域よりも高濃度とした第2の混晶層が、前記シリコン基板の表面より上の高さまで設けられていることを特徴としている。 The semiconductor device of the present invention is a semiconductor device in which a gate electrode is provided on a Si substrate via a gate insulating film, and the gate electrode side wall is substantially vertical so that the side wall on the gate electrode side is substantially vertical. Among the recess regions formed by increasing the degree of digging in the order of the one recess region and the second recess region and digging into the silicon substrate on both sides of the gate electrode, the second recess region is the same as that of the first recess region. A first mixed crystal layer made of atoms having different lattice constants from silicon and silicon is provided up to the same height as the bottom surface, and silicon is formed on the first recess region and the first mixed crystal layer. the silicon and the second mixed crystal layer was higher concentration than the concentration of the atoms consists different from the atomic first recess region lattice constant is provided to a height above the surface of the silicon substrate and It is characterized.

このような半導体装置によれば、第1リセス領域や第2リセス領域のゲート電極側の側壁が略垂直に加工されているため、この側壁が斜面を有する場合と比較して、チャネル領域に横方向からの応力をかけ易い。したがって、チャネル領域に横方向からの応力を効果的にかけることができる。 According to such a semiconductor device, the side walls on the gate electrode side of the first recess region and the second recess region are processed substantially vertically. It is easy to apply stress from the direction. Therefore, stress from the lateral direction can be effectively applied to the channel region.

以上、説明したように、本発明の半導体装置の製造方法および半導体装置によれば、チャネル領域に横方向からの応力を効果的にかけることができることから、キャリア移動度を高くすることができるため、半導体装置の高性能化、高品質化が図れる。   As described above, according to the method for manufacturing a semiconductor device and the semiconductor device of the present invention, since the stress from the lateral direction can be effectively applied to the channel region, the carrier mobility can be increased. The performance and quality of the semiconductor device can be improved.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の半導体装置の製造方法に係わる実施の形態の一例を、図1〜図4の製造工程断面図によって説明する。なお、本実施形態においては、半導体装置の構成を製造工程順に説明する。また、背景技術で説明したものと同様の構成には、同一の番号を付して説明する。   An example of an embodiment relating to a method for manufacturing a semiconductor device of the present invention will be described with reference to manufacturing process cross-sectional views of FIGS. In the present embodiment, the configuration of the semiconductor device will be described in the order of the manufacturing process. Further, the same components as those described in the background art will be described with the same numbers.

まず、図1(a)に示すように、単結晶シリコンからなる面方位(110)のSi基板11を用意し、その表面側に素子分離領域(図示省略)を形成する。この際、例えば、Si基板11の表面側に溝を形成し、この溝内に例えば酸化シリコン(SiO2)膜からなる絶縁膜を埋め込んだSTI(shallow trench isolation)構造の素子分離領域を形成する。 First, as shown in FIG. 1A, a Si substrate 11 having a plane orientation (110) made of single crystal silicon is prepared, and an element isolation region (not shown) is formed on the surface side. At this time, for example, a groove is formed on the surface side of the Si substrate 11, and an element isolation region having an STI (shallow trench isolation) structure in which an insulating film made of, for example, a silicon oxide (SiO 2 ) film is embedded in the groove is formed. .

次に、素子分離領域で分離されたSi基板11上に、例えばSiO2からなるゲート絶縁膜12を介して、例えばポリシリコンからなるゲート電極13をパターン形成する。この際、ゲート電極13を微細なパターンとするために、2層のハードマスク14、15を用い、シリコン基板11上に、ゲート絶縁膜12、ゲート電極13、およびハードマスク14、15を構成する各材料膜を積層成膜した後に、これらの積層膜をパターンエッチングする。なお、このゲート絶縁膜12とゲート電極13とは、後工程で、ダミーとして除去される。 Next, a gate electrode 13 made of, for example, polysilicon is patterned on the Si substrate 11 separated in the element isolation region via a gate insulating film 12 made of, for example, SiO 2 . At this time, in order to make the gate electrode 13 into a fine pattern, the two-layer hard masks 14 and 15 are used, and the gate insulating film 12, the gate electrode 13, and the hard masks 14 and 15 are formed on the silicon substrate 11. After each material film is laminated, these laminated films are subjected to pattern etching. The gate insulating film 12 and the gate electrode 13 are removed as a dummy in a later process.

次いで、ゲート絶縁膜12、ゲート電極13、およびハードマスク14、15の側壁に、例えば窒化シリコン(SiN)からなるスペーサー16を介して、例えばTEOS(Tetraethoky Silane)からなる絶縁性のサイドウォール17aを形成する。   Next, insulating side walls 17a made of, for example, TEOS (Tetraethoky Silane) are provided on the side walls of the gate insulating film 12, the gate electrode 13, and the hard masks 14 and 15 through spacers 16 made of, for example, silicon nitride (SiN). Form.

次に、ゲート電極13をマスクにしたリセスエッチングにより、Si基板11の表面を掘り下げて、リセス領域を形成する。ここで、本発明の特徴的な構成は、異方性のリセスエッチングを行うことであり、ここでは、2段階の異方性のリセスエッチングを行うこととする。   Next, by recess etching using the gate electrode 13 as a mask, the surface of the Si substrate 11 is dug down to form a recess region. Here, a characteristic configuration of the present invention is to perform anisotropic recess etching, and here, two-stage anisotropic recess etching is performed.

まず、ハードマスク15およびサイドウォール17aをマスクにした異方性のリセスエッチングにより、Si基板11の表面を掘り下げて、50nm以下の深さのリセス領域18aを形成する。これにより、リセス領域18aのゲート電極13側の側壁は、略垂直に加工される。   First, the surface of the Si substrate 11 is dug down by anisotropic recess etching using the hard mask 15 and the sidewalls 17a as masks to form recess regions 18a having a depth of 50 nm or less. Thereby, the side wall of the recess region 18a on the gate electrode 13 side is processed substantially vertically.

次いで、図1(b)に示すように、サイドウォール17aの両側のSi基板11上に、例えばSiNからなるサイドウォール17bを形成する。続いて、ハードマスク15およびサイドウォール17bをマスクとして、異方性のリセスエッチングにより、Si基板11の表面を掘り下げることで、リセス領域18aをさらに掘り下げてリセス領域18bを形成する。これにより、リセス領域18aのゲート電極13側の側壁は、略垂直に加工され、リセス領域18a、18bと順次掘り込まれたリセス領域18となる。この際、リセス領域18のゲート電極13側の側壁は、上記サイドウォール17bの膜厚分、段差を有して形成される。上記異方性のリセスエッチングは、NF3 Basedエッチングガスを用いて行われる。 Next, as shown in FIG. 1B, sidewalls 17b made of, for example, SiN are formed on the Si substrates 11 on both sides of the sidewalls 17a. Subsequently, by using the hard mask 15 and the sidewalls 17b as a mask, the surface of the Si substrate 11 is dug down by anisotropic recess etching, so that the recess region 18a is further dug down to form the recess region 18b. As a result, the side wall of the recess region 18a on the gate electrode 13 side is processed substantially vertically to form the recess region 18 that is dug in sequence with the recess regions 18a and 18b. At this time, the side wall of the recess region 18 on the gate electrode 13 side is formed with a level difference corresponding to the film thickness of the side wall 17b. The anisotropic recess etching is performed using an NF 3 Based etching gas.

上述したように、2段階の異方性のリセスエッチングにより形成されたリセス領域18a、18bのゲート電極13側の側壁が略垂直に加工されることで、背景技術で図5を用いて説明したように、リセス領域18’のゲート電極13側の側壁が斜面を有する場合と比較して、リセス領域18に埋め込まれるSiGe層により、ゲート電極13の直下のSi基板11に形成されるチャネル領域に、横方向からの応力をかけ易くなる。また、リセス領域18のゲート電極13側の側壁に斜面が露出しないことで、面方位(100)の面の露出が抑制されるため、後述するように、SiGe層をほぼ均等なレートでエピタキシャル成長させることが可能となる。   As described above, the side walls on the gate electrode 13 side of the recess regions 18a and 18b formed by the two-step anisotropic recess etching are processed substantially vertically, which has been described with reference to FIG. 5 in the background art. Thus, compared with the case where the side wall of the recess region 18 ′ on the gate electrode 13 side has an inclined surface, the channel region formed in the Si substrate 11 immediately below the gate electrode 13 is formed by the SiGe layer embedded in the recess region 18. It becomes easy to apply stress from the lateral direction. Further, since the slope is not exposed on the side wall of the recess region 18 on the gate electrode 13 side, the exposure of the plane orientation (100) plane is suppressed, so that the SiGe layer is epitaxially grown at a substantially uniform rate, as will be described later. It becomes possible.

ここで、リセス領域18aの深さd1は5nm以上で50nmより小さく(5nm≦d1<50nm)、リセス領域18の深さd2はd1以上で、120nmよりも小さくなるように(d1≦d2<120nm)形成される。また、リセス領域18のゲート電極13側の側壁の段差の肩部分の幅d3は40nmより小さい幅で形成されることとする。これにより、リセス領域18bに埋め込まれる第1のSiGe層が近付きすぎることによる短チャネル効果が防止されるとともに、ゲート電極13の直下のSi基板11に形成されるチャネル領域に横方向からの応力を効果的にかけることが可能となる。 Here, the depth d 1 of the recess region 18a is 5 nm or more and less than 50 nm (5 nm ≦ d 1 <50 nm), and the depth d 2 of the recess region 18 is d 1 or more and less than 120 nm (d 1 ≦ d 2 <120 nm). Further, the width d 3 of the shoulder portion of the step on the side wall of the recess region 18 on the gate electrode 13 side is formed to be smaller than 40 nm. This prevents a short channel effect due to the first SiGe layer embedded in the recess region 18b being too close, and applies a lateral stress to the channel region formed in the Si substrate 11 immediately below the gate electrode 13. It can be applied effectively.

なお、ここでは、サイドウォールの形成工程と異方性のリセスエッチング工程を2回繰り返すこととするが、本発明はこれに限定されず、1回のみの異方性のリセスエッチングにより、側壁に段差のないリセス領域18を形成してもよく、上記工程を3回以上繰り返すことで、側壁に複数の段差が形成されるように、リセス領域を形成してもよい。ただし、上述したような短チャネル効果の防止と応力の印加の効果およびスループットの向上を考えると上記工程を2回繰り返すことが、最も好ましい。   Here, the side wall forming step and the anisotropic recess etching step are repeated twice. However, the present invention is not limited to this, and the side wall is formed by only one anisotropic recess etching. A recess region 18 without a step may be formed, or the recess region may be formed so that a plurality of steps are formed on the side wall by repeating the above steps three or more times. However, considering the prevention of the short channel effect as described above, the effect of applying stress, and the improvement of throughput, it is most preferable to repeat the above steps twice.

また、ここでは、サイドウォール17aが設けられた状態で、1回目の異方性のリセスエッチングを行う例について説明するが、サイドウォール17aを設けずに、上記リセスエッチングを行う場合であっても、本発明は適用可能である。ただし、この場合には、不純物の拡散による短チャネル効果の悪化を防ぐために、後工程でリセス領域18にSiGe層をエピタキシャル成長させる際に、不純物イオンを含有させないで行うこととする。   Here, an example in which the anisotropic recess etching is performed for the first time in a state where the sidewall 17a is provided will be described. However, even if the recess etching is performed without providing the sidewall 17a. The present invention is applicable. However, in this case, in order to prevent the deterioration of the short channel effect due to the diffusion of impurities, when the SiGe layer is epitaxially grown in the recess region 18 in a later step, the impurity ions are not included.

次いで、図1(c)に示すように、リセス領域18bの表面、すなわち掘り下げられたSi基板11の表面に、SiとSiとは格子定数の異なる原子との混晶層をエピタキシャル成長させる。ここでは、PMOSFETを形成することから、この混晶層に挟まれるチャネル領域に圧縮応力を印加するため、シリコン(Si)とシリコンよりも格子定数の大きいゲルマニウム(Ge)とからなるSiGe層(混晶層)をエピタキシャル成長させる。また、この際、不純物としてボロンを含んだ状態でSiGe層をエピタキシャル成長させる。   Next, as shown in FIG. 1C, a mixed crystal layer of Si and Si having different lattice constants is epitaxially grown on the surface of the recess region 18b, that is, the surface of the Si substrate 11 dug down. Here, since a PMOSFET is formed, a compressive stress is applied to the channel region sandwiched between the mixed crystal layers, and therefore, a SiGe layer (mixed layer) composed of silicon (Si) and germanium (Ge) having a lattice constant larger than that of silicon. Crystal layer) is grown epitaxially. At this time, the SiGe layer is epitaxially grown with boron as an impurity.

この際、まず、2回目のリセスエッチングにより掘り下げられたリセス領域18bに、第1のSiGe層19aをエピタキシャル成長させる。この際、リセス領域18bのゲート電極13側には、面方位(100)の面が露出されていないことから、均等なレートでエピタキシャル成長されるため、リセス領域18bは第1のSiGe層19aで埋め込まれた状態となり、その表面は平坦に形成される。   At this time, first, the first SiGe layer 19a is epitaxially grown in the recess region 18b dug down by the second recess etching. At this time, since the surface (100) plane is not exposed on the gate electrode 13 side of the recess region 18b, the recess region 18b is buried with the first SiGe layer 19a because it is epitaxially grown at an equal rate. The surface is formed flat.

上記第1のSiGe層19の成膜条件としては、成膜ガスとして、ジクロロシラン(Dichlorosilane(DCS))、塩化水素(HCl)、水素(H2)によりに希釈された水素化ゲルマニウム(GeH4)、水素(H2)により希釈されたジボラン(B26)を用い、処理温度を600℃〜900℃、処理圧力を1.3kPa〜13.3kPaに設定する。 The film formation conditions for the first SiGe layer 19 include germanium hydride (GeH 4 ) diluted with dichlorosilane (DCS), hydrogen chloride (HCl), and hydrogen (H 2 ) as a film formation gas. ), Diborane (B 2 H 6 ) diluted with hydrogen (H 2 ), the processing temperature is set to 600 ° C. to 900 ° C., and the processing pressure is set to 1.3 kPa to 13.3 kPa.

次に、図2(d)に示すように、サイドウォール17b(前記図1(c)参照)を除去することで、リセス領域18aの側壁側を露出させる。   Next, as shown in FIG. 2D, the sidewall 17b (see FIG. 1C) is removed to expose the side wall of the recess region 18a.

続いて、図2(e)に示すように、露出されたリセス領域18aの表面および第1のSiGe層19a上に第2のSiGe層19bをエピタキシャル成長させる。この際、リセス領域18aのゲート電極13側の側壁には、面方位(100)の面が露出されていないことから、均等なレートでエピタキシャル成長されるため、リセス領域18aは第1のSiGe層19bで埋め込まれた状態となり、その表面は平坦に形成される。上記第2のSiGe層19bの成膜条件としては、上記第1のSiGe層19aの成膜条件と同様の条件で行うことができる。これにより、リセス領域18が、第1のSiGe層19aと第2のSiGe層19bとで構成されるSiGe層19(混晶層)で埋め込まれた状態となる。   Subsequently, as shown in FIG. 2E, a second SiGe layer 19b is epitaxially grown on the exposed surface of the recess region 18a and the first SiGe layer 19a. At this time, the surface of the recess region 18a on the side of the gate electrode 13 is not exposed to the plane orientation (100), and therefore, the recess region 18a is epitaxially grown at a uniform rate. The surface is formed in a flat state. The film formation conditions for the second SiGe layer 19b can be the same as the film formation conditions for the first SiGe layer 19a. As a result, the recess region 18 is filled with the SiGe layer 19 (mixed crystal layer) composed of the first SiGe layer 19a and the second SiGe layer 19b.

ここで、チャネル領域に横方向からの応力を効果的にかけるため、第2のSiGe層19bの表面の高さは、マージンをとってシリコン基板11の表面よりも高くなるように形成することが好ましい、高さは50nm以下とする。また、これと同様の理由により、第1のSiGe層19aよりも第2のSiGe層19bのGe濃度が高い方が好ましい。この場合には、第1のSiGe層19aの成膜条件よりも、GeH4のガス流量を高くして、第2のSiGe層19bのGe濃度を高濃度化する。 Here, in order to effectively apply a lateral stress to the channel region, the surface of the second SiGe layer 19b may be formed to be higher than the surface of the silicon substrate 11 with a margin. The preferred height is 50 nm or less. For the same reason, it is preferable that the Ge concentration of the second SiGe layer 19b is higher than that of the first SiGe layer 19a. In this case, the GeH 4 gas flow rate is made higher than the film formation conditions of the first SiGe layer 19a, and the Ge concentration of the second SiGe layer 19b is increased.

その後、第2のSiGe層19b上にSi層20を成膜する。このSi層20には、後述するようにシリサイド層が形成される。   Thereafter, the Si layer 20 is formed on the second SiGe layer 19b. A silicide layer is formed on the Si layer 20 as will be described later.

次いで、図2(f)に示すように、ハードマスク15とオフセットスペーサー16をマスクに用いて、例えば斜め方向からn型の不純物を導入することで、空乏層を広げるとともに、p型の不純物イオンを注入することで、ゲート電極13の両側のSi基板11の表面にエクステンション領域(図示省略)を形成する。   Next, as shown in FIG. 2F, by using the hard mask 15 and the offset spacer 16 as a mask, for example, by introducing an n-type impurity from an oblique direction, the depletion layer is expanded and the p-type impurity ion is introduced. Then, extension regions (not shown) are formed on the surface of the Si substrate 11 on both sides of the gate electrode 13.

その後、図3(g)に示すように、ゲート電極13の両側にオフセットスペーサー16を介して例えばSiNからなるサイドウォール17cを形成するとともに、サイドウォール17cの両側に、例えばSiO2からなるサイドウォール17dを形成する。なお、ここでは、2層のサイドウォール17c、17dを積層形成することとしたが、単層のサイドウォールを形成してもよい。ただし、この場合には、配線間容量を低減するために、SiNではなくSiO2からなるサイドウォールを形成することが好ましい。 Thereafter, as shown in FIG. 3G, sidewalls 17c made of, for example, SiN are formed on both sides of the gate electrode 13 via offset spacers 16, and sidewalls made of, for example, SiO 2 are formed on both sides of the sidewall 17c. 17d is formed. Here, the two-layer sidewalls 17c and 17d are stacked, but a single-layer sidewall may be formed. However, in this case, in order to reduce the capacitance between the wirings, it is preferable to form a sidewall made of SiO 2 instead of SiN.

次に、図3(h)に示すように、SiGe層19に導入したボロン濃度が十分でない場合には、ハードマスク15およびサイドウォール17dをマスクに用いて、SiGe層19およびSi層20にボロンを導入しS/Dを形成する。次いで、サイドウォール17dの両側のSi層20をシリサイド化し、シリサイド層21を形成する。   Next, as shown in FIG. 3H, when the boron concentration introduced into the SiGe layer 19 is not sufficient, the hard mask 15 and the sidewalls 17d are used as a mask to form boron in the SiGe layer 19 and the Si layer 20. To form S / D. Next, the Si layer 20 on both sides of the sidewall 17d is silicided to form a silicide layer 21.

続いて、図3(i)に示すように、洗浄処理により、SiO2からなるハードマスク15(前記図3(h)参照)を除去し、ハードマスク14を露出させる。この際、SiO2からなサイドウォール17dの上部も除去される。 Subsequently, as shown in FIG. 3I, the hard mask 15 made of SiO 2 (see FIG. 3H) is removed by a cleaning process, and the hard mask 14 is exposed. At this time, the upper portion of the sidewall 17d made of SiO 2 is also removed.

次に、図4(j)に示すように、例えばCVD法により、Si基板11上の全域を覆う状態で、例えばSiO2からなる層間絶縁膜22を形成する。続いて、例えば化学的機械的研磨(Chemical Mechanical Polishing(CMP))法により、ハードマスク14の表面が露出するまで、層間絶縁膜22を平坦化する。 Next, as shown in FIG. 4J, an interlayer insulating film 22 made of, for example, SiO 2 is formed so as to cover the entire area on the Si substrate 11 by, eg, CVD. Subsequently, the interlayer insulating film 22 is flattened until the surface of the hard mask 14 is exposed, for example, by a chemical mechanical polishing (CMP) method.

次いで、ハードマスク14(前記図4(j)参照)を除去することで、ポリシリコンからなるゲート電極13(前記図4(j)参照)の表面を露出する。この際、ハードマスク14の両側のオフセットスペーサー16とサイドウォール17cの上部は、ハードマスク14とともに除去される。続いて、ゲート電極13とゲート絶縁膜12(前記図4(j)参照)を除去し、Si基板11の表面を露出する凹部23を形成する。   Next, by removing the hard mask 14 (see FIG. 4J), the surface of the gate electrode 13 made of polysilicon (see FIG. 4J) is exposed. At this time, the offset spacers 16 on both sides of the hard mask 14 and the upper portions of the sidewalls 17 c are removed together with the hard mask 14. Subsequently, the gate electrode 13 and the gate insulating film 12 (see FIG. 4J) are removed, and a recess 23 exposing the surface of the Si substrate 11 is formed.

次に、図4(m)に示すように、凹部23の内壁を覆う状態で、層間絶縁膜22上に、例えば原子層蒸着(Atomic Layer Deposition(ALD))法により、例えば、酸化ハフニウム(HfO2)等のhigh−k材料からなるゲート絶縁膜24を新たに成膜する。 Next, as shown in FIG. 4M, for example, hafnium oxide (HfO) is formed on the interlayer insulating film 22 by, for example, atomic layer deposition (ALD) while covering the inner wall of the recess 23. 2 ) A gate insulating film 24 made of a high-k material such as 1 ) is newly formed.

続いて、凹部23を埋め込む状態で、ゲート絶縁膜24上に、例えばポリシリコンあるいは金属のゲート電極膜を成膜した後、CMP法により、層間絶縁膜22の表面が露出するまで、ゲート電極膜を除去することで、凹部23に、ゲート絶縁膜24を介して、ゲート電極25を形成する。これにより、ゲート電極25の直下のSi基板11がチャネル領域Chとなる。   Subsequently, for example, a polysilicon or metal gate electrode film is formed on the gate insulating film 24 in a state where the recess 23 is embedded, and then the gate electrode film is formed by CMP until the surface of the interlayer insulating film 22 is exposed. The gate electrode 25 is formed in the recess 23 with the gate insulating film 24 interposed therebetween. As a result, the Si substrate 11 immediately below the gate electrode 25 becomes the channel region Ch.

このような半導体装置の製造方法およびこれにより得られる半導体装置によれば、異方性のリセスエッチングにより、面方位(110)のSi基板11を掘り下げてリセス領域18を形成するため、リセス領域18のゲート電極13側の側壁が略垂直に加工される。このため、この側壁が斜面を有する場合と比較して、リセス領域18に埋め込まれるSiGe層により、ゲート電極13の直下のSi基板11に形成されるチャネル領域に横方向からの応力をかけ易い。また、リセス領域18のゲート電極13側の側壁が略垂直に加工されるため、面方位(100)の面の露出が抑制される。これにより、リセス領域18の表面にSiGe層19をエピタキシャル成長させることで、表面が平坦化されたSiGe層19を形成することが可能となる。よって、チャネル領域Chに横方向からの応力を効果的にかけることができる。したがって、正孔移動度を高くすることができるため、半導体装置の高性能化、高品質化が図れる。   According to such a method for manufacturing a semiconductor device and the semiconductor device obtained thereby, the recess region 18 is formed by digging down the Si substrate 11 having the plane orientation (110) by anisotropic recess etching to form the recess region 18. The side wall on the gate electrode 13 side is processed substantially vertically. For this reason, compared with the case where this side wall has a slope, the SiGe layer embedded in the recess region 18 makes it easier to apply a lateral stress to the channel region formed in the Si substrate 11 immediately below the gate electrode 13. Further, since the side wall on the gate electrode 13 side of the recess region 18 is processed substantially vertically, exposure of the surface with the surface orientation (100) is suppressed. Accordingly, the SiGe layer 19 having a planarized surface can be formed by epitaxially growing the SiGe layer 19 on the surface of the recess region 18. Therefore, it is possible to effectively apply stress from the lateral direction to the channel region Ch. Therefore, the hole mobility can be increased, so that the performance and quality of the semiconductor device can be improved.

また、本実施形態の半導体装置の製造方法によれば、サイドウォールの形成工程と異方性のリセスエッチング工程を2回繰り返すことで、リセス領域18のゲート電極13側の側壁に段差が形成される。これにより、短チャネル効果の防止と応力の印加の効果の両方の効果を奏することができる。   In addition, according to the method for manufacturing a semiconductor device of this embodiment, a step is formed on the side wall of the recess region 18 on the gate electrode 13 side by repeating the sidewall formation step and the anisotropic recess etching step twice. The Thereby, both the effect of prevention of a short channel effect and the effect of application of stress can be produced.

なお、上記実施形態においては、PMOSFETの製造方法を例にとり説明したが、本発明は、NMOSFETの製造方法としても適用可能である。この場合には、面方位(100)のSi基板11を用い、リセス領域18を埋め込む混晶層としては、シリコンとシリコンよりも格子定数の小さい炭素(C)とからなるSiC層をエピタキシャル成長させる。また、不純物としてはn型の不純物を用いる。これにより、ゲート電極25の直下のチャネル領域に引っ張り応力が印加される。この場合であっても、異方性のリセスエッチングにより、リセス領域のゲート電極側の側壁が略垂直に加工されるため、上記実施形態と同様の効果を奏する。   In the above embodiment, the method for manufacturing the PMOSFET has been described as an example, but the present invention can also be applied as a method for manufacturing the NMOSFET. In this case, a SiC layer made of silicon and carbon (C) having a lattice constant smaller than that of silicon is epitaxially grown as a mixed crystal layer in which the recess region 18 is embedded using the Si substrate 11 having a plane orientation (100). Further, an n-type impurity is used as the impurity. As a result, tensile stress is applied to the channel region immediately below the gate electrode 25. Even in this case, since the sidewall of the recess region on the gate electrode side is processed substantially vertically by anisotropic recess etching, the same effect as in the above embodiment can be obtained.

本発明の半導体装置の製造方法に係る実施形態を説明するための製造工程断面図(その1)である。It is manufacturing process sectional drawing (the 1) for demonstrating embodiment which concerns on the manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の製造方法に係る実施形態を説明するための製造工程断面図(その2)である。It is manufacturing process sectional drawing (the 2) for demonstrating embodiment which concerns on the manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の製造方法に係る実施形態を説明するための製造工程断面図(その3)である。It is manufacturing process sectional drawing (the 3) for demonstrating embodiment which concerns on the manufacturing method of the semiconductor device of this invention. 本発明の半導体装置の製造方法に係る実施形態を説明するための製造工程断面図(その4)である。FIG. 6 is a manufacturing process cross-sectional view (No. 4) for describing the embodiment of the method of manufacturing the semiconductor device according to the invention; 従来の半導体装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the conventional semiconductor device. 従来の半導体装置の製造方法を問題点を説明するための写真である。It is a photograph for demonstrating a problem in the manufacturing method of the conventional semiconductor device.

符号の説明Explanation of symbols

11…シリコン基板、12、24…ゲート絶縁膜、13、25…ゲート電極、18,18a、18b…リセス領域、19…SiGe層(混晶層)、19a…第1のSiGe層、19b…第2のSiGe層、22…層間絶縁膜   DESCRIPTION OF SYMBOLS 11 ... Silicon substrate, 12, 24 ... Gate insulating film, 13, 25 ... Gate electrode, 18, 18a, 18b ... Recess region, 19 ... SiGe layer (mixed crystal layer), 19a ... 1st SiGe layer, 19b ... 1st 2 SiGe layers, 22 ... interlayer insulating film

Claims (6)

シリコン基板上にゲート絶縁膜を介してゲート電極を形成する第1工程と、
前記ゲート電極をマスクにした異方性のリセスエッチングにより、前記シリコン基板を掘り下げて第1リセス領域を形成する第2工程と、
前記ゲート電極の両側の前記シリコン基板上に第1のサイドウォールを形成する第3工程と、
前記ゲート電極と前記第1のサイドウォールをマスクにした異方性のリセスエッチングにより、前記シリコン基板を掘り下げて第2リセス領域を形成する第4工程と、
前記第2リセス領域の表面に、前記第1リセス領域の底面と同じ高さまで、シリコンとシリコンとは格子定数の異なる原子とからなる第1の混晶層をエピタキシャル成長させる第5工程と、
前記第1のサイドウォールを除去する第6工程と、
前記第1リセス領域と前記第1の混晶層の上に、シリコンとシリコンとは格子定数の異なる原子とからなり当該原子の濃度を前記第1の混晶層よりも高濃度とした第2の混晶層を、前記シリコン基板の表面よりも高くなるようにエピタキシャル成長させる第7工程と、を行う
ことを特徴とする半導体装置の製造方法。
A first step of forming a gate electrode on a silicon substrate via a gate insulating film;
A second step of forming a first recess region by digging down the silicon substrate by anisotropic recess etching using the gate electrode as a mask;
Forming a first sidewall on the silicon substrate on both sides of the gate electrode;
A fourth step of forming a second recess region by digging down the silicon substrate by anisotropic recess etching using the gate electrode and the first sidewall as a mask;
A fifth step of epitaxially growing a first mixed crystal layer comprising silicon and atoms having different lattice constants on the surface of the second recess region to the same height as the bottom surface of the first recess region;
A sixth step of removing the first sidewall;
On the first recess region and the first mixed crystal layer, silicon and silicon are atoms having different lattice constants, and the concentration of the atoms is higher than that of the first mixed crystal layer. And a seventh step of epitaxially growing the mixed crystal layer so as to be higher than the surface of the silicon substrate.
請求項1記載の半導体装置の製造方法において、
前記半導体装置はp型の電界効果トランジスタであり、前記第1の混晶層と前記第2の混晶層はシリコンとゲルマニウムとからなる
ことを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 1,
The semiconductor device is a p-type field effect transistor, and the first mixed crystal layer and the second mixed crystal layer are made of silicon and germanium.
請求項1記載の半導体装置の製造方法において、
前記シリコン基板の面方位は(110)である
ことを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 1,
A method of manufacturing a semiconductor device, wherein the plane orientation of the silicon substrate is (110).
請求項1記載の半導体装置の製造方法において、
前記第1工程と前記第2工程との間に、前記ゲート電極の両側に第2のサイドウォールを形成する工程を行い、
前記第2工程では、前記第2のサイドウォールが設けられた前記ゲート電極をマスクにした異方性のリセスエッチングを行い、
前記第3工程では、前記第2のサイドウォールの両側の前記シリコン基板上に前記第1のサイドウォールを形成し、
前記第4工程では、前記ゲート電極と前記第1のサイドウォールをマスクにした異方性のリセスエッチングにより、前記シリコン基板を掘り下げて第2リセス領域を形成することを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 1,
Performing a step of forming second sidewalls on both sides of the gate electrode between the first step and the second step;
In the second step, anisotropic recess etching is performed using the gate electrode provided with the second sidewall as a mask,
In the third step, the first sidewall is formed on the silicon substrate on both sides of the second sidewall,
In the fourth step, the second recess region is formed by digging down the silicon substrate by anisotropic recess etching using the gate electrode and the first sidewall as a mask. Method.
請求項1記載の半導体装置の製造方法において、
前記第7工程の後に、
前記ゲート電極を覆う状態で、前記第2の混晶層上に、絶縁膜を形成し、当該ゲート電極の表面が露出するまで、当該絶縁膜を除去する工程と、
露出された前記ゲート電極と前記ゲート絶縁膜とをダミーとして除去することで、前記絶縁膜にシリコン基板を露出する凹部を形成する工程と、
前記凹部内に、新たにゲート絶縁膜を介してゲート電極を形成する工程とを行う
ことを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 1,
After the seventh step,
Forming an insulating film on the second mixed crystal layer so as to cover the gate electrode, and removing the insulating film until a surface of the gate electrode is exposed;
Removing the exposed gate electrode and the gate insulating film as a dummy to form a recess exposing the silicon substrate in the insulating film;
And a step of newly forming a gate electrode in the recess through a gate insulating film.
シリコン基板上にゲート絶縁膜を介してゲート電極が設けられた半導体装置であって、
前記ゲート電極側の側壁が略垂直となるように、前記ゲート電極側から第1リセス領域と第2リセス領域の順に堀込み度合いを高くして前記ゲート電極の両側の前記シリコン基板に掘り下げて形成されたリセス領域のうち、前記第2リセス領域については、前記第1リセス領域の底面と同じ高さまで、シリコンとシリコンとは格子定数の異なる原子とからなる第1の混晶層が設けられており、前記第1リセス領域及び前記第1の混晶層の上には、シリコンとシリコンとは格子定数の異なる原子とからなり当該原子の濃度を第1リセス領域よりも高濃度とした第2の混晶層が、前記シリコン基板の表面より上の高さまで設けられている
ことを特徴とする半導体装置。
A semiconductor device in which a gate electrode is provided on a silicon substrate via a gate insulating film,
Formed by digging into the silicon substrate on both sides of the gate electrode with increasing the degree of digging in order from the gate electrode side in the order of the first recess region and the second recess region so that the side wall on the gate electrode side is substantially vertical. Among the recess regions thus formed, the second recess region is provided with a first mixed crystal layer made of atoms having different lattice constants between silicon and silicon up to the same height as the bottom surface of the first recess region. On the first recess region and the first mixed crystal layer, silicon and silicon are atoms having different lattice constants, and the concentration of the atoms is higher than that of the first recess region. The mixed crystal layer is provided up to a height above the surface of the silicon substrate.
JP2006255259A 2006-09-21 2006-09-21 Semiconductor device manufacturing method and semiconductor device Expired - Fee Related JP5070779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006255259A JP5070779B2 (en) 2006-09-21 2006-09-21 Semiconductor device manufacturing method and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006255259A JP5070779B2 (en) 2006-09-21 2006-09-21 Semiconductor device manufacturing method and semiconductor device

Publications (2)

Publication Number Publication Date
JP2008078347A JP2008078347A (en) 2008-04-03
JP5070779B2 true JP5070779B2 (en) 2012-11-14

Family

ID=39350114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255259A Expired - Fee Related JP5070779B2 (en) 2006-09-21 2006-09-21 Semiconductor device manufacturing method and semiconductor device

Country Status (1)

Country Link
JP (1) JP5070779B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7759199B2 (en) * 2007-09-19 2010-07-20 Asm America, Inc. Stressor for engineered strain on channel
JP5211647B2 (en) 2007-11-01 2013-06-12 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof
JP2011091291A (en) * 2009-10-26 2011-05-06 Panasonic Corp Semiconductor device and method of manufacturing the same
CN108281358A (en) * 2011-05-12 2018-07-13 中芯国际集成电路制造(上海)有限公司 Semiconductor devices and its manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153863A (en) * 1986-12-18 1988-06-27 Fujitsu Ltd Manufacture of semiconductor device
JP3761918B2 (en) * 1994-09-13 2006-03-29 株式会社東芝 Manufacturing method of semiconductor device
JP4837902B2 (en) * 2004-06-24 2011-12-14 富士通セミコンダクター株式会社 Semiconductor device
JP4369359B2 (en) * 2004-12-28 2009-11-18 富士通マイクロエレクトロニクス株式会社 Semiconductor device
US7335959B2 (en) * 2005-01-06 2008-02-26 Intel Corporation Device with stepped source/drain region profile
US7696537B2 (en) * 2005-04-18 2010-04-13 Toshiba America Electronic Components, Inc. Step-embedded SiGe structure for PFET mobility enhancement
JP2007103654A (en) * 2005-10-04 2007-04-19 Toshiba Corp Semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
JP2008078347A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
US9653574B2 (en) Selective etching in the formation of epitaxy regions in MOS devices
US7592214B2 (en) Method of manufacturing a semiconductor device including epitaxially growing semiconductor epitaxial layers on a surface of semiconductor substrate
JP4345774B2 (en) Manufacturing method of semiconductor device
US7372099B2 (en) Semiconductor device and its manufacturing method
JP5141029B2 (en) Semiconductor device and manufacturing method thereof
JP4847152B2 (en) Semiconductor device and manufacturing method thereof
TWI323944B (en) Semiconductor device and fabrication method thereof
JP2006253317A (en) SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE AND p-CHANNEL MOS TRANSISTOR
US20080083948A1 (en) SiGe selective growth without a hard mask
US20060292783A1 (en) CMOS transistor and method of manufacturing the same
JP5915181B2 (en) Semiconductor device and manufacturing method thereof
JP2007214481A (en) Semiconductor device
US20080194070A1 (en) Metal-oxide-semiconductor transistor device, manufacturing method thereof, and method of improving drain current thereof
KR20110123733A (en) Methods for fabricating mos devices having epitaxially grown stress-inducing source and drain regions
US20100327329A1 (en) Semiconductor device and method of fabricating the same
JP5130648B2 (en) Semiconductor device manufacturing method and semiconductor device
JP5181466B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2008177319A (en) Semiconductor device manufacturing method and semiconductor device
JP5070779B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2009105163A (en) Semiconductor device
JP2011066042A (en) Semiconductor device and method of manufacturing the same
TWI585861B (en) Methods for fabricating mos devices having epitaxially grown stress-inducing source and drain regions
JP2008171999A (en) Semiconductor device and its manufacturing method
JP5076367B2 (en) Semiconductor device and manufacturing method thereof
JP5206427B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090706

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091009

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees