[go: nahoru, domu]

JP5481270B2 - Method for reducing sulfur compounds in hydrocarbon oils - Google Patents

Method for reducing sulfur compounds in hydrocarbon oils Download PDF

Info

Publication number
JP5481270B2
JP5481270B2 JP2010107124A JP2010107124A JP5481270B2 JP 5481270 B2 JP5481270 B2 JP 5481270B2 JP 2010107124 A JP2010107124 A JP 2010107124A JP 2010107124 A JP2010107124 A JP 2010107124A JP 5481270 B2 JP5481270 B2 JP 5481270B2
Authority
JP
Japan
Prior art keywords
extraction solvent
hydrocarbon oil
separated
hydrocarbon
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010107124A
Other languages
Japanese (ja)
Other versions
JP2011236282A (en
Inventor
功 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2010107124A priority Critical patent/JP5481270B2/en
Publication of JP2011236282A publication Critical patent/JP2011236282A/en
Application granted granted Critical
Publication of JP5481270B2 publication Critical patent/JP5481270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、溶剤抽出法によって炭化水素油中の硫黄分を低減する方法に関する。   The present invention relates to a method for reducing sulfur content in hydrocarbon oils by a solvent extraction method.

炭化水素油中の硫黄分を低減する方法として水素化脱硫方法がある。水素化脱硫方法は、高温かつ高圧の水素ガス雰囲気内で触媒の存在下で反応を行うことから、装置が大規模で、かつ、運転コストも大きい。また、水素化脱硫においては、水素ガスが脱硫反応以外の芳香環やオレフィンの水素化反応等にも消費されるために経済的でない。更には、脱硫する硫黄原子数に相当するモル量の毒性の硫化水素が副生する。
また、炭化水素油中の硫黄分を低減する方法として吸着剤法がある。この方法では、吸着剤に吸着した化合物の量がある一定量を超えると、脱硫活性が急激に低下するので運転管理が容易でない。また、脱硫活性が低下した吸着剤の脱硫活性を回復させる場合には、溶解力の強い溶媒を用いて吸着剤に吸着した硫黄化合物を吸着剤から脱離させたり、吸着剤を加熱して吸着剤に吸着した硫黄化合物を留去させる等の操作を追加しなければならない。そして、炭化水素油中から分離された硫黄化合物の利用は殆ど考慮されていない。
There is a hydrodesulfurization method as a method for reducing the sulfur content in hydrocarbon oil. In the hydrodesulfurization method, the reaction is performed in the presence of a catalyst in a high-temperature and high-pressure hydrogen gas atmosphere, so the apparatus is large-scale and the operation cost is high. In hydrodesulfurization, hydrogen gas is not economical because hydrogen gas is consumed in aromatic ring and olefin hydrogenation reactions other than desulfurization reaction. Furthermore, a toxic amount of toxic hydrogen sulfide corresponding to the number of sulfur atoms to be desulfurized is by-produced.
Moreover, there exists an adsorbent method as a method of reducing the sulfur content in hydrocarbon oil. In this method, if the amount of the compound adsorbed on the adsorbent exceeds a certain amount, the desulfurization activity is drastically reduced, so that the operation management is not easy. In addition, when recovering the desulfurization activity of the adsorbent whose desulfurization activity has decreased, the adsorbent is adsorbed by heating the adsorbent by desorbing the sulfur compound adsorbed on the adsorbent using a solvent with strong dissolving power. An operation such as distilling off the sulfur compound adsorbed on the agent must be added. And utilization of the sulfur compound isolate | separated from hydrocarbon oil is hardly considered.

また、炭化水素油中の硫黄化合物を低減する方法として溶剤抽出法も広く知られている。抽出用溶剤としては、液体二酸化硫黄、アニリン、ニトロベンゼン、クロレックス、フェノール、フルフラール、メチルピロリドン、スルフォラン、エチレングリコール等が知られているが、蒸気圧が高い、毒性が強い、腐食性がある、沸点が高い、凝固点が高い、臭気がある等の欠点を有している。特に、沸点が140〜350℃の炭化水素油の脱硫においては、前記炭化水素油との沸点差が充分にあり、かつ、取り扱いの容易な抽出溶剤が無いのが現状である。例えば、工業用に最も良く使われている抽出溶剤であるフルフラールは、沸点が162℃であるため、前記炭化水素油とは沸点が重なる。従って、フルフラールに抽出された前記炭化水素油を蒸留法のみで回収するのは容易ではない。   A solvent extraction method is also widely known as a method for reducing sulfur compounds in hydrocarbon oils. As extraction solvents, liquid sulfur dioxide, aniline, nitrobenzene, chlorex, phenol, furfural, methylpyrrolidone, sulfolane, ethylene glycol, etc. are known, but have high vapor pressure, strong toxicity, and corrosiveness. It has drawbacks such as high boiling point, high freezing point, and odor. In particular, in the desulfurization of hydrocarbon oil having a boiling point of 140 to 350 ° C., there is a sufficient difference in boiling point from the hydrocarbon oil and there is no extraction solvent that is easy to handle. For example, furfural which is the extraction solvent most often used for industrial use has a boiling point of 162 ° C., and therefore the boiling point overlaps with the hydrocarbon oil. Therefore, it is not easy to recover the hydrocarbon oil extracted to furfural only by distillation.

一方、抽出溶剤として、アセトン、ジメチルスルホキシド、アセトニトリル、ニトロメタン、トリメチル燐酸エステル、メタノール、ヘキサメチル燐酸アミド、酢酸、N−メチルピロリジノン、ピリジン等、及びそれらと水の混合液を用いる溶剤抽出法によりナフサ、ガソリン、灯油、直留軽質軽油から有機硫黄化合物を回収する方法が提案されている(特許文献1〜3)。しかし、これらの抽出溶剤による抽出効率は低い。   On the other hand, as an extraction solvent, acetone, dimethyl sulfoxide, acetonitrile, nitromethane, trimethyl phosphate, methanol, hexamethylphosphoric acid amide, acetic acid, N-methylpyrrolidinone, pyridine, and the like, and naphtha by a solvent extraction method using a mixture of these and water, Methods for recovering organic sulfur compounds from gasoline, kerosene, and straight-run light diesel oil have been proposed (Patent Documents 1 to 3). However, the extraction efficiency with these extraction solvents is low.

特開平7−197036号公報Japanese Patent Laid-Open No. 7-197036 特開平10−168464号公報Japanese Patent Laid-Open No. 10-168464 特開2001−247876号公報JP 2001-247876 A

本発明が解決しようとする課題は、硫黄化合物を含む炭化水素油から、高温かつ高圧の装置を必要とせず、高価な触媒や吸着剤を用いることなく、簡易に硫黄化合物を効率よく分離する方法を提供することである。     The problem to be solved by the present invention is a method for easily and efficiently separating a sulfur compound from a hydrocarbon oil containing a sulfur compound without using a high-temperature and high-pressure apparatus and without using an expensive catalyst or adsorbent. Is to provide.

本発明の硫黄化合物を含む炭化水素油中の硫黄分を低減する方法は、前記炭化水素油をハイドロフルオロエーテルおよびハイドロフルオロカーボンから選ばれる一種以上の抽出溶剤と接触することを特徴とするものである。
さらに、本発明は、前記炭化水素油と前記抽出溶剤との接触混合物を、静置分離及び/又は遠心分離により炭化水素油に富む相と前記抽出溶剤に富む相に分離し、分離された前記抽出溶剤に富む相から抽出溶剤を揮発させて前記硫黄化合物を不揮発分として回収する方法である。
The method for reducing the sulfur content in a hydrocarbon oil containing a sulfur compound of the present invention is characterized in that the hydrocarbon oil is contacted with one or more extraction solvents selected from hydrofluoroethers and hydrofluorocarbons. .
Furthermore, the present invention provides the contact mixture of the hydrocarbon oil and the extraction solvent separated into a hydrocarbon oil-rich phase and a phase rich in the extraction solvent by stationary separation and / or centrifugation, and separated. In this method, the extraction solvent is volatilized from the phase rich in extraction solvent to recover the sulfur compound as a non-volatile content.

本発明は、硫黄化合物を含む炭化水素油から、高温かつ高圧の装置を必要とせず、高価な触媒や吸着剤を用いることなく、簡易に硫黄化合物を効率よく分離し、しかも炭化水素油から分離された硫黄化合物を、硫化水素や二酸化硫黄などにガス化することなく回収できるという効果を奏する。   The present invention does not require a high-temperature and high-pressure apparatus from a hydrocarbon oil containing a sulfur compound, easily and efficiently separates a sulfur compound without using an expensive catalyst or adsorbent, and further separates from a hydrocarbon oil. The sulfur compound thus produced can be recovered without being gasified into hydrogen sulfide or sulfur dioxide.

前記硫黄化合物を含む炭化水素油は、特には制限がないが、炭素83〜87重量%、水素11〜14重量%、硫黄5重量%以下、窒素0.4重量%以下、酸素0.5重量%以下、かつ、金属0.5重量%以下の元素組成を有する原油から蒸留工程、水素化脱硫工程、水素化分解工程、接触改質工程、接触分解工程等の精製工程を経て得られた沸点が140〜350℃の範囲のものが好ましく、145〜300℃の沸点範囲の炭化水素油がより好ましい。沸点が140℃未満の場合は、前記炭化水素油と前記抽出溶剤との沸点差が小さく、前記炭化水素油から前記抽出溶剤へ抽出された前記硫黄化合物と前記抽出溶剤を蒸留法によって分離するのが難しいために好ましくない。また、沸点が350℃を超えると、粘性が高く、ハンドリングが難しいために好ましくない。具体的には、灯油留分、軽油留分、重質油留分などが好適である。   The hydrocarbon oil containing the sulfur compound is not particularly limited, but carbon is 83 to 87 wt%, hydrogen is 11 to 14 wt%, sulfur is 5 wt% or less, nitrogen is 0.4 wt% or less, and oxygen is 0.5 wt%. % Boiling point obtained from a crude oil having an elemental composition of less than or equal to 0.5% and less than or equal to 0.5% by weight of metal through a purification process such as a distillation process, hydrodesulfurization process, hydrocracking process, catalytic reforming process, catalytic cracking process Is preferably in the range of 140 to 350 ° C, more preferably hydrocarbon oil having a boiling range of 145 to 300 ° C. When the boiling point is less than 140 ° C., the difference in boiling point between the hydrocarbon oil and the extraction solvent is small, and the sulfur compound extracted from the hydrocarbon oil to the extraction solvent and the extraction solvent are separated by a distillation method. Is not preferable because it is difficult. Moreover, it is not preferable that the boiling point exceeds 350 ° C. because the viscosity is high and handling is difficult. Specifically, a kerosene fraction, a light oil fraction, a heavy oil fraction and the like are suitable.

前記抽出溶剤としては、ハイドロフルオロエーテルおよびハイドロフルオロカーボンから選ばれる一種類以上を用いる。この抽出溶剤は、沸点が30℃〜140℃の範囲のものが好ましく、35〜135℃の範囲のものがより好ましい。沸点が30℃未満の場合は、室温で揮発性が高く、ハンドリングが難しいために好ましくない。また、沸点が140℃を超えると、蒸留法によって前記抽出溶剤を留去して、炭化水素油から抽出された硫黄化合物を回収する際の運転コストが大きく、また前記抽出溶剤と前記硫黄化合物との沸点差が小さくなるために、蒸留法によって両者を分離することが困難であることからも好ましくない。   As the extraction solvent, one or more selected from hydrofluoroether and hydrofluorocarbon are used. This extraction solvent preferably has a boiling point in the range of 30 ° C to 140 ° C, more preferably in the range of 35 to 135 ° C. A boiling point of less than 30 ° C. is not preferable because it is highly volatile at room temperature and difficult to handle. Further, when the boiling point exceeds 140 ° C., the extraction solvent is distilled off by a distillation method, and the operation cost when recovering the sulfur compound extracted from the hydrocarbon oil is large. Also, the extraction solvent, the sulfur compound, Since the boiling point difference between the two is small, it is not preferable because they are difficult to separate by distillation.

さらに、この抽出溶剤は、25℃における抽出溶剤への飽和炭化水素の溶解度が20g/100g未満のものが好ましく、より好ましくは10g/100g未満のもので、また、25℃における抽出溶剤への芳香族炭化水素の溶解度が40g/100g以上のものが好ましく、50g/100g以上のものがより好ましい。ここで、溶解度とは、100gの前記抽出溶剤に炭化水素油を添加していくとき、混合液が均一な液を保つ最大の添加量である。   Further, the extraction solvent preferably has a saturated hydrocarbon solubility in the extraction solvent at 25 ° C. of less than 20 g / 100 g, more preferably less than 10 g / 100 g, and the fragrance in the extraction solvent at 25 ° C. The solubility of the group hydrocarbon is preferably 40 g / 100 g or more, more preferably 50 g / 100 g or more. Here, the solubility is the maximum addition amount that keeps the liquid mixture uniform when adding hydrocarbon oil to 100 g of the extraction solvent.

これは、原油の炭化水素組成が、軽質留分ではパラフィンと単環ナフテン(シクロパラフィン)が多く、重質になるに連れて芳香族化合物の割合が増えてくるので、25℃における抽出溶剤への飽和炭化水素の溶解度が20g/100g以上では、硫黄分が低減された炭化水素油の回収率が低くなるために好ましくない。
一方、原油中の硫黄化合物は、軽質留分ではメルカプタン類およびサルファイド類が多く、重質になるに連れて芳香族化合物であるチオフェン類が多くなる。したがって、25℃における芳香族炭化水素の溶解度が40g/100g未満の場合には、炭化水素油から分離される硫黄化合物の量が少なくなるために好ましくない。
This is because the hydrocarbon composition of crude oil contains a large amount of paraffin and monocyclic naphthene (cycloparaffin) in the light fraction, and the proportion of aromatic compounds increases as it becomes heavier. When the solubility of the saturated hydrocarbon is 20 g / 100 g or more, the recovery rate of the hydrocarbon oil with a reduced sulfur content is lowered, which is not preferable.
On the other hand, sulfur compounds in crude oil are mostly mercaptans and sulfides in light fractions, and thiophenes that are aromatic compounds increase as they become heavier. Therefore, when the solubility of the aromatic hydrocarbon at 25 ° C. is less than 40 g / 100 g, the amount of the sulfur compound separated from the hydrocarbon oil decreases, which is not preferable.

このようなハイドロフルオロエーテルの具体例としては、1,2,2,2‐テトラフルオロエチル‐ヘプタフルオロプロピルエーテル、1,1,2,2‐テトラフルオロエチル‐2,2,2‐トリフルオロエチルエーテル、ノナフルオロブチルメチルエーテル、ノナフルオロブチルエチルエーテル、1,1,1,2,2,3,4,5,5,5‐デカフルオロ‐3‐メトキシ‐4‐(トリフルオロメチル)‐ペンタン、1,1,1,2,3,3‐ヘキサフルオロ‐2‐ヘプタフルオロプロピロキシ‐3‐(1,2,2,2‐テトラフルオロエトキシ)‐プロパン、1,1,1,2,3,3‐ヘキサフルオロ‐4‐(1,1,2,3,3,3‐ヘキサフルオロプロポキシ)‐ペンタンなどを挙げることができる。
また、ハイドロフルオロカーボンの具体例としては、1,1,1,3,3‐ペンタフルオロブタン、1,1,1,2,2,3,4,5,5,5‐デカフルオロペンタン、1,1,2,2,3,3,4,5‐オクタフルオロシクロペンタン、1,1,2,2,3,3,4‐ヘプタフルオロシクロペンタンなどを挙げることができる。
Specific examples of such hydrofluoroethers include 1,2,2,2-tetrafluoroethyl-heptafluoropropyl ether, 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl. Ether, nonafluorobutyl methyl ether, nonafluorobutyl ethyl ether, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4- (trifluoromethyl) -pentane 1,1,1,2,3,3-hexafluoro-2-heptafluoropropyloxy-3- (1,2,2,2-tetrafluoroethoxy) -propane, 1,1,1,2,3 , 3-hexafluoro-4- (1,1,2,3,3,3-hexafluoropropoxy) -pentane.
Specific examples of the hydrofluorocarbon include 1,1,1,3,3-pentafluorobutane, 1,1,1,2,2,3,4,5,5,5-decafluoropentane, Examples include 1,2,2,3,3,4,5-octafluorocyclopentane, 1,1,2,2,3,3,4-heptafluorocyclopentane, and the like.

なお、これらのハイドロフルオロエーテル及びハイドロフルオロカーボンは、単独で用いても良く又は2種類以上混合して用いてもよい。
ハイドロフルオロエーテル及びハイドロフルオロカーボンの沸点、並びに25℃における抽出溶剤への飽和炭化水素(n‐トリデカン)と芳香族炭化水素(エチルベンゼン)の溶解度を表1に示す。
These hydrofluoroethers and hydrofluorocarbons may be used alone or in combination of two or more.
Table 1 shows the boiling points of hydrofluoroether and hydrofluorocarbon, and the solubility of saturated hydrocarbon (n-tridecane) and aromatic hydrocarbon (ethylbenzene) in the extraction solvent at 25 ° C.

Figure 0005481270
Figure 0005481270

本発明においては、上記炭化水素油と抽出溶剤と接触させるが、この接触は、どのような方法でも特に支障はなく、例えば、撹拌混合器を用いてバッチで行っても良く、スタティックミキサーのような静止型混合器や内部に上下方向に複数段の抽出層(例えば20段)を有する抽出塔を用いて、連続的に行うことでもよい。
この場合、炭化水素油に対する抽出溶剤は、重量比で0.1〜100とすることが好ましく、0.2〜50がより好ましい。0.1未満では、十分に硫黄化合物を抽出できず、また、100を超えると抽出溶剤の回収にコストがかかるため好ましくない。
接触温度は、好ましくは0〜140℃、より好ましくは20〜120℃で、接触時間は、好ましくは0.05〜50時間、より好ましくは0.5〜5時間である。
In the present invention, the hydrocarbon oil and the extraction solvent are brought into contact with each other. This contact is not particularly limited by any method, and may be performed in a batch using a stirring mixer, for example, as in a static mixer. It may be carried out continuously using a static mixer or an extraction tower having a plurality of extraction layers (for example, 20 stages) in the vertical direction.
In this case, it is preferable that the extraction solvent with respect to hydrocarbon oil shall be 0.1-100 by weight ratio, and 0.2-50 are more preferable. If it is less than 0.1, the sulfur compound cannot be sufficiently extracted, and if it exceeds 100, the recovery of the extraction solvent is costly.
The contact temperature is preferably 0 to 140 ° C., more preferably 20 to 120 ° C., and the contact time is preferably 0.05 to 50 hours, more preferably 0.5 to 5 hours.

炭化水素油と抽出溶剤と接触させた後は、静置して分離させるか、遠心分離などによって炭化水素油に富む相(ラフィネート)と抽出溶剤に富む相(エキストラクト)とに分離し、ラフィネート、エキストラクトのそれぞれから、蒸留などにより抽出溶剤を揮発させて、回収する。回収された抽出溶剤は炭化水素油との接触に再使用される。なお、エキストラクトからは、芳香族化合物と共に硫黄化合物が回収され、溶剤抽出法などにより、硫黄化合物を分離、回収する。芳香族化合物は、そのまま利用することもでき、また炭化水素油に戻すこともでき、硫黄化合物は、医薬品、農薬、染料、樹脂等の原料として利用できる。   After contacting with the hydrocarbon oil and the extraction solvent, it is allowed to stand to separate, or separated into a phase rich in hydrocarbon oil (raffinate) and a phase rich in extraction solvent (extract) by centrifugation or the like, and the raffinate From each of the extracts, the extraction solvent is volatilized by distillation or the like and recovered. The recovered extraction solvent is reused for contact with the hydrocarbon oil. In addition, a sulfur compound is collect | recovered from an extract with an aromatic compound, and a sulfur compound is isolate | separated and collect | recovered by the solvent extraction method etc. The aromatic compound can be used as it is or can be returned to the hydrocarbon oil, and the sulfur compound can be used as a raw material for pharmaceuticals, agricultural chemicals, dyes, resins and the like.

以下、本発明を実施例、比較例により更に詳細に説明するが、本発明はこれらにより限定して解釈されるものではない。
実施例、比較例で使用した石油留分の性状を表2に示す。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is limited to these and is not interpreted.
Table 2 shows properties of petroleum fractions used in Examples and Comparative Examples.

Figure 0005481270
Figure 0005481270

〔実施例1〕
石油留分1を10g(13mL)と、1,1,1,3,3‐ペンタフルオロブタン10g(7mL)を容器に入れて、35℃で60分間攪拌した。その後、室温で12時間静置して、ラフィネートとエキストラクトに分離した。ラフィネートをビーカーに分取して、40℃で1,1,1,3,3‐ペンタフルオロブタンを留去した後に、硫黄分をJIS K2541にて測定した。硫黄分は2480ppmであり、脱硫率は28%であった。
また、分離したエキストラクトをビーカーに分取し、40℃で1,1,1,3,3‐ペンタフルオロブタンを留去した後に、硫黄分をJIS K2541に規定された方法(硫黄分の測定方法は以下同じ)で測定した。硫黄分は5,850ppmであった。
[Example 1]
Petroleum fraction 1 (10 g, 13 mL) and 1,1,1,3,3-pentafluorobutane (10 g, 7 mL) were placed in a container and stirred at 35 ° C. for 60 minutes. Then, it left still at room temperature for 12 hours, and isolate | separated into the raffinate and the extract. The raffinate was dispensed into a beaker and 1,1,1,3,3-pentafluorobutane was distilled off at 40 ° C., and the sulfur content was measured according to JIS K2541. The sulfur content was 2480 ppm, and the desulfurization rate was 28%.
In addition, the separated extract was collected in a beaker, and 1,1,1,3,3-pentafluorobutane was distilled off at 40 ° C., and then the sulfur content was measured according to the method defined in JIS K2541 (measurement of sulfur content The method was the same below). The sulfur content was 5,850 ppm.

〔実施例2〕
1,1,1,3,3‐ペンタフルオロブタンに代えて1,1,2,2‐テトラフルオロエチル‐2,2,2‐トリフルオロエチルエーテル10g(7mL)を用いた以外は実施例1と同じ操作を行った。硫黄分は2,680ppmであり、脱硫率は22%であった。
また、分離したエキストラクトをビーカーに分取し、40℃で1,1,2,2‐テトラフルオロエチル‐2,2,2‐トリフルオロエチルエーテルを留去した後に、硫黄分を測定した。硫黄分は13,500ppmであった。
[Example 2]
Example 1 except that 10 g (7 mL) of 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether was used instead of 1,1,1,3,3-pentafluorobutane The same operation was performed. The sulfur content was 2,680 ppm and the desulfurization rate was 22%.
Further, the separated extract was collected in a beaker, and 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether was distilled off at 40 ° C., and then the sulfur content was measured. The sulfur content was 13,500 ppm.

〔実施例3〕
1,1,1,3,3‐ペンタフルオロブタンに代えて1,1,1,2,3,3‐ヘキサフルオロ‐4‐(1,1,2,3,3,3‐ヘキサフルオロプロポキシ)‐ペンタン10g(7mL)を用いた以外は実施例1と同じ操作を行った。硫黄分は2,580ppmであり、脱硫率は25%であった。
Example 3
1,1,1,2,3,3-hexafluoro-4- (1,1,2,3,3,3-hexafluoropropoxy) instead of 1,1,1,3,3-pentafluorobutane -The same operation as in Example 1 was carried out except that 10 g (7 mL) of pentane was used. The sulfur content was 2,580 ppm and the desulfurization rate was 25%.

〔実施例4〕
石油留分2を10g(13mL)と、1,1,1,3,3‐ペンタフルオロブタン10g(7mL)を容器に入れて、35℃で60分間攪拌した。その後、室温で12時間静置してラフィネートとエキストラクトに分離した。ラフィネートをビーカーに分取して、40℃で1,1,1,3,3−ペンタフルオロブタンを留去した後に、硫黄分を測定した。硫黄分は9ppmであり、脱硫率は25%であった。
Example 4
Petroleum fraction 2 (10 g, 13 mL) and 1,1,1,3,3-pentafluorobutane (10 g, 7 mL) were placed in a container and stirred at 35 ° C. for 60 minutes. Then, it left still at room temperature for 12 hours, and isolate | separated into the raffinate and the extract. The raffinate was fractionated into a beaker and 1,1,1,3,3-pentafluorobutane was distilled off at 40 ° C., and then the sulfur content was measured. The sulfur content was 9 ppm and the desulfurization rate was 25%.

〔実施例5〕
1,1,1,3,3‐ペンタフルオロブタンに代えて1,1,2,2‐テトラフルオロエチル‐2,2,2‐トリフルオロエチルエーテル10g(7mL)を用いた以外は実施例4と同じ操作を行った。硫黄分は9ppmであり、脱硫率は25%であった。
Example 5
Example 4 except that 10 g (7 mL) of 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether was used instead of 1,1,1,3,3-pentafluorobutane The same operation was performed. The sulfur content was 9 ppm and the desulfurization rate was 25%.

〔実施例6〕
1,1,1,3,3‐ペンタフルオロブタンに代えて1,1,1,2,3,3‐ヘキサフルオロ‐4‐(1,1,2,3,3,3‐ヘキサフルオロプロポキシ)‐ペンタン10g(7mL)を用いた以外は実施例4と同じ操作を行った。硫黄分は9ppmであり、脱硫率は25%であった。
Example 6
1,1,1,2,3,3-hexafluoro-4- (1,1,2,3,3,3-hexafluoropropoxy) instead of 1,1,1,3,3-pentafluorobutane -The same operation as in Example 4 was performed except that 10 g (7 mL) of pentane was used. The sulfur content was 9 ppm and the desulfurization rate was 25%.

〔比較例1〕
1,1,1,3,3‐ペンタフルオロブタンに代えてメタノール10g(13mL)を用いた以外は実施例1と同じ操作を行った。硫黄分は2,880ppmであり、脱硫率は16%であった。
[Comparative Example 1]
The same operation as in Example 1 was performed except that 10 g (13 mL) of methanol was used instead of 1,1,1,3,3-pentafluorobutane. The sulfur content was 2,880 ppm and the desulfurization rate was 16%.

〔比較例2〕
1,1,1,3,3‐ペンタフルオロブタンに代えてメタノール10g(13mL)を用いた以外は実施例4と同じ操作を行った。硫黄分は11ppmであり、脱硫率は8%であった。
[Comparative Example 2]
The same operation as in Example 4 was performed except that 10 g (13 mL) of methanol was used instead of 1,1,1,3,3-pentafluorobutane. The sulfur content was 11 ppm and the desulfurization rate was 8%.

〔比較例3〕
1,1,1,3,3‐ペンタフルオロブタンに代えてエタノール10g(13mL)を用いた以外は実施例4と同じ操作を行ったが、室温で12時間静置してもラフィネートとエキストラクトに相分離しなかった。
[Comparative Example 3]
The same operation as in Example 4 was performed except that 10 g (13 mL) of ethanol was used instead of 1,1,1,3,3-pentafluorobutane, but raffinate and extract were allowed to stand at room temperature for 12 hours. Phase separation did not occur.

〔比較例4〕
1,1,1,3,3‐ペンタフルオロブタンに代えてアセトン10g(13mL)を用いた以外は実施例4と同じ操作を行ったが、室温で12時間静置してもラフィネートとエキストラクトに相分離しなかった。
[Comparative Example 4]
The same operation as in Example 4 was performed except that 10 g (13 mL) of acetone was used instead of 1,1,1,3,3-pentafluorobutane, but raffinate and extract were allowed to stand at room temperature for 12 hours. Phase separation did not occur.

〔比較例5〕
1,1,1,3,3−ペンタフルオロブタンに代えてパーフルオロヘプタン10g(6mL)を用いた以外は実施例4と同じ操作を行った。硫黄分は12ppmであり、脱硫率は0%であった。
[Comparative Example 5]
The same operation as in Example 4 was performed except that 10 g (6 mL) of perfluoroheptane was used instead of 1,1,1,3,3-pentafluorobutane. The sulfur content was 12 ppm, and the desulfurization rate was 0%.

本発明は、硫黄化合物を含有する炭化水素油、特には灯油留分や軽油留分中の硫黄化合物の低減のために利用することができる。   The present invention can be used for reducing sulfur compounds in hydrocarbon oils containing sulfur compounds, particularly kerosene fractions and gas oil fractions.

Claims (2)

硫黄化合物を含有する沸点140〜350℃の炭化水素油を、1,1,1,3,3‐ペンタフルオロブタン、1,1,2,2‐テトラフルオロエチル‐2,2,2‐トリフルオロエチルエーテル、及び1,1,1,2,3,3‐ヘキサフルオロ‐4‐(1,1,2,3,3,3‐ヘキサフルオロプロポキシ)‐ペンタンから選ばれる一種以上の抽出溶剤と接触することを特徴とする炭化水素油中の硫黄化合物を低減する方法。 Hydrocarbon oil having a boiling point of 140 to 350 ° C. containing a sulfur compound is converted into 1,1,1,3,3-pentafluorobutane, 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoro. Contact with one or more extraction solvents selected from ethyl ether and 1,1,1,2,3,3-hexafluoro-4- (1,1,2,3,3,3-hexafluoropropoxy) -pentane A method for reducing sulfur compounds in hydrocarbon oils. 請求項1に記載の炭化水素油と抽出溶剤との接触混合物を、静置分離及び/又は遠心分離により炭化水素油に富む相と抽出溶剤に富む相に分離し、分離された前記抽出溶剤に富む相から抽出溶剤を揮発させて硫黄化合物を不揮発分として回収することを特徴とする炭化水素油中の硫黄化合物を低減する方法。
The contact mixture of the hydrocarbon oil and the extraction solvent according to claim 1 is separated into a phase rich in hydrocarbon oil and a phase rich in extraction solvent by stationary separation and / or centrifugation, and the separated extraction solvent is separated into the separated extraction solvent. A method for reducing sulfur compounds in hydrocarbon oils, comprising volatilizing an extraction solvent from a rich phase and recovering sulfur compounds as nonvolatile components.
JP2010107124A 2010-05-07 2010-05-07 Method for reducing sulfur compounds in hydrocarbon oils Active JP5481270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010107124A JP5481270B2 (en) 2010-05-07 2010-05-07 Method for reducing sulfur compounds in hydrocarbon oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010107124A JP5481270B2 (en) 2010-05-07 2010-05-07 Method for reducing sulfur compounds in hydrocarbon oils

Publications (2)

Publication Number Publication Date
JP2011236282A JP2011236282A (en) 2011-11-24
JP5481270B2 true JP5481270B2 (en) 2014-04-23

Family

ID=45324619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010107124A Active JP5481270B2 (en) 2010-05-07 2010-05-07 Method for reducing sulfur compounds in hydrocarbon oils

Country Status (1)

Country Link
JP (1) JP5481270B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102290668B1 (en) 2013-07-02 2021-08-19 사우디 베이식 인더스트리즈 코포레이션 Method for cracking a hydrocarbon feedstock in a steam cracker unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168464A (en) * 1996-12-09 1998-06-23 Izumi Funakoshi Production of diesel fuel oil and diesel fuel oil
FR2771408B1 (en) * 1997-11-26 2000-04-14 Archimex Pibs METHOD FOR SOLUBILIZING ORGANIC MOLECULE (S) USING A SOLVENT MEDIUM CONTAINING A HYDROFLUOROETHER
JP2001247876A (en) * 2000-03-03 2001-09-14 Yoshihide Takino Process and apparatus for separating and recovering organosulfur compound from liquid oil
JP2005194336A (en) * 2003-12-26 2005-07-21 Electric Power Dev Co Ltd Desulfurization process of hydrocarbon oil
JP2009074102A (en) * 2009-01-16 2009-04-09 Nippon Oil Corp Light oil composition

Also Published As

Publication number Publication date
JP2011236282A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
Yi et al. High-performance separation of phenolic compounds from coal-based liquid oil by deep eutectic solvents
Tahir et al. Deep eutectic solvents as alternative green solvents for the efficient desulfurization of liquid fuel: A comprehensive review
CN113195687A (en) Solvent for aromatic extraction process
CN101821359B (en) Extractive distillation process for recovering aromatics from petroleum streams
Dharaskar et al. Extractive desulfurization of liquid fuels by energy efficient green thiazolium based ionic liquids
Warrag et al. Combined extractive dearomatization, desulfurization, and denitrogenation of oil fuels using deep eutectic solvents: A parametric study
US2357344A (en) Solvent extraction process
CA2783754A1 (en) Denitrogenation of hydrocarbons by liquid-liquid extraction using ionic liquids
Wang et al. Removal of naphthenic acids from a vacuum fraction oil with an ammonia solution of ethylene glycol
US8282816B2 (en) Extractive distillation process and system
KR101956490B1 (en) Process for producing aromatics from wide-boiling temperature hydrocarbon feedstocks
US9890336B2 (en) Method and apparatus for the purification of a hydrocarbon-containing stream
EP2603480A1 (en) Regeneration process of polar solvents from aromatic extraction process by treating with light hydrocarbons
Kwek et al. A non-catalytic, supercritical methanol route for producing high-yield saturated and aromatic compounds from de-oiled asphaltenes
JP2016536290A5 (en)
RU2014108327A (en) METHOD FOR PRODUCING OLEFINS AND AROMATIC HYDROCARBONS
JP5481270B2 (en) Method for reducing sulfur compounds in hydrocarbon oils
JP2004323544A (en) Method of isolating sulfur compound present in oil, method of isolating sulfur compound and aromatic hydrocarbon present in oil, method of preparing high octane value desulfurized gasoline base and method of preparing high octane value desulfurized and dearomatized gasoline base
CN110446772A (en) Use the oxidation sweetening and sulfone processing method of solvent deasphalting
CN102051211B (en) Method for preparing aromatic rubber oil
CN104395427A (en) Manufacturing polymers of thiophene, benzothiophene, and their alkylated derivatives
Khalilov et al. Selective treatment methods of the refinery and petrochemical products by solvent extraction with ionic liquids
US20140166539A1 (en) Method of liquid fuel desulfurization
Kohli et al. Process for Producing High-Value Aromatics from Light Cycle Oil Using a Solvent Extraction Method
WO2016162887A1 (en) Aromatic free solvent and process of preparing the same from petroleum stream

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5481270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250