[go: nahoru, domu]

JP5487944B2 - Non-contact power feeding device - Google Patents

Non-contact power feeding device Download PDF

Info

Publication number
JP5487944B2
JP5487944B2 JP2009288057A JP2009288057A JP5487944B2 JP 5487944 B2 JP5487944 B2 JP 5487944B2 JP 2009288057 A JP2009288057 A JP 2009288057A JP 2009288057 A JP2009288057 A JP 2009288057A JP 5487944 B2 JP5487944 B2 JP 5487944B2
Authority
JP
Japan
Prior art keywords
power
coil
resonance
power transmission
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009288057A
Other languages
Japanese (ja)
Other versions
JP2011130614A (en
Inventor
敏祐 甲斐
トロンナムチャイ クライソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009288057A priority Critical patent/JP5487944B2/en
Publication of JP2011130614A publication Critical patent/JP2011130614A/en
Application granted granted Critical
Publication of JP5487944B2 publication Critical patent/JP5487944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、共鳴法による非接触給電装置に関するものである。   The present invention relates to a contactless power feeding device using a resonance method.

非接触(ワイヤレス)の送電技術として、電磁場の共鳴を利用して送電する手法が知られている(非特許文献1)。   As a non-contact (wireless) power transmission technique, a technique of transmitting power using resonance of an electromagnetic field is known (Non-Patent Document 1).

Karalis A.et al (Wireless Power Transfer via Strolngly Coupled Magnetic Resonances) Sience,vol.317,no.5834,pp.83−86,2007.Karalis A. et al (Wireless Power Transfer via Strongly Coupled Magnetic Resonances) Science, vol. 317, no. 5834, pp. 83-86, 2007.

しかしながら、上記共鳴法による非接触給電装置では、送電用共振手段と受電用共振手段との距離(以下送電距離)が長くなると送電効率が低下するという問題がある。   However, the non-contact power feeding apparatus using the resonance method has a problem in that power transmission efficiency decreases when the distance between the power transmission resonance means and the power reception resonance means (hereinafter referred to as power transmission distance) becomes long.

本発明が解決しようとする課題は、送電距離が長くなっても送電効率を維持することができる非接触給電装置を提供することである。   The problem to be solved by the present invention is to provide a non-contact power feeding device that can maintain power transmission efficiency even when the power transmission distance becomes long.

本発明は、給電位置における送電用共振手段と受電用共振手段との間であって車両の車輪のタイヤ内部に、前記送電共振手段及び前記受電共振手段と同じ共振周波数に設定された中継用共振手段を設けることによって、上記課題を解決する。 The present invention provides a relay resonance between a power transmission resonance unit and a power reception resonance unit at a power feeding position and set in a tire of a vehicle wheel at the same resonance frequency as the power transmission resonance unit and the power reception resonance unit. By providing means, the above-mentioned problem is solved.

本発明によれば、送電用共振手段と中継用共振手段との磁気的結合により送電用共振手段から中継用共振手段へ電力が給電され、さらに中継用共振手段と受電用共振手段との磁気的結合により中継用共振手段から受電用共振手段へ電力が給電される。これにより、送電距離が長くなっても送電効率を維持することができる。   According to the present invention, power is supplied from the power transmission resonance means to the relay resonance means by magnetic coupling between the power transmission resonance means and the relay resonance means, and the magnetic resonance between the relay resonance means and the power reception resonance means is achieved. Power is supplied from the relay resonance means to the power reception resonance means by the coupling. Thereby, power transmission efficiency can be maintained even if the power transmission distance is increased.

本発明の一実施の形態を適用した電動車両への給電システムを示す全体構成図である。1 is an overall configuration diagram showing a power feeding system to an electric vehicle to which an embodiment of the present invention is applied. 送電距離Zに対する結合度κの関係を示すグラフである。3 is a graph showing a relationship of coupling degree κ with respect to transmission distance Z. X−Y平面上のズレXに対する結合度κの関係を示すグラフである。It is a graph which shows the relationship of the coupling | bonding degree (kappa) with respect to the shift | offset | difference X on an XY plane. 図1の送電コイル1と受電コイル2とがX−Y平面内でずれた状態を示す平面図および正面図である。It is the top view and front view which show the state which the power transmission coil 1 and the receiving coil 2 of FIG. 1 shifted | deviated within the XY plane. 送電距離ZまたはズレXに対する送電効率の関係を示すグラフである。It is a graph which shows the relationship of the power transmission efficiency with respect to the power transmission distance Z or the gap | deviation X. 図1に示す送電コイル1、受電コイル2および中継コイル3の配置例を示す構成図である。It is a block diagram which shows the example of arrangement | positioning of the power transmission coil 1, the receiving coil 2, and the relay coil 3 which are shown in FIG. 中継コイル3のコイル中心軸と送電コイル1のコイル中心軸とのなす角度θと送電効率との関係を示すグラフである。4 is a graph showing a relationship between an angle θ formed by a coil central axis of the relay coil 3 and a coil central axis of the power transmission coil 1 and power transmission efficiency. 図1の中継コイルの配置例を示すタイヤの断面図である。It is sectional drawing of the tire which shows the example of arrangement | positioning of the relay coil of FIG. 送電コイル1、受電コイル2および中継コイル3の他の配置例を示す正面図である。FIG. 6 is a front view illustrating another arrangement example of the power transmission coil 1, the power reception coil 2, and the relay coil 3. 送電コイル1、受電コイル2および中継コイル3のさらに他の配置例を示す正面図である。It is a front view which shows the further example of arrangement | positioning of the power transmission coil 1, the receiving coil 2, and the relay coil 3. FIG. 送電コイル1、受電コイル2および中継コイル3のさらに他の配置例を示す正面図である。It is a front view which shows the further example of arrangement | positioning of the power transmission coil 1, the receiving coil 2, and the relay coil 3. FIG. 送電コイル1、受電コイル2および中継コイル3のさらに他の配置例を示す正面図である。It is a front view which shows the further example of arrangement | positioning of the power transmission coil 1, the receiving coil 2, and the relay coil 3. FIG.

以下、本発明の一実施の形態を図面に基づいて説明する。図1は本発明の一実施の形態を適用した電動車両への給電システムを示す全体構成図であり、電動車両Vの駆動用電動機Mに電力を供給するための給電システムに具現化した例である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an overall configuration diagram showing a power supply system to an electric vehicle to which an embodiment of the present invention is applied, and is an example embodied in a power supply system for supplying electric power to a drive motor M of an electric vehicle V. is there.

本例の給電装置10は、高周波交流電源6と、一次コイル4と、送電コイル1と、受電コイル2と、二次コイル5と、整流器7と、蓄電装置8とを備える。この給電装置10のうち、受電コイル2と、二次コイル5と、整流器7と、蓄電装置8とが電動車両Vに設けられ、高周波交流電源6と、一次コイル4と、送電コイル1とが車両の外部(以下、給電場所ともいう)に設けられている。   The power supply device 10 of this example includes a high-frequency AC power source 6, a primary coil 4, a power transmission coil 1, a power reception coil 2, a secondary coil 5, a rectifier 7, and a power storage device 8. Of the power feeding device 10, the power receiving coil 2, the secondary coil 5, the rectifier 7, and the power storage device 8 are provided in the electric vehicle V, and the high-frequency AC power source 6, the primary coil 4, and the power transmission coil 1 are provided. It is provided outside the vehicle (hereinafter also referred to as a power feeding place).

なお、電動車両Vの駆動系(パワートレイン)に駆動用電動機Mが接続され、この駆動用電動機Mが蓄電装置8からの電力を受けて車両駆動力を発生し、この発生した駆動力を、駆動系を介して車輪へ出力することにより、電動車両Vが走行する。また図示を省略したが、駆動用電動機Mとして交流モータを用いる場合は蓄電装置8と駆動用電動機Mとの間にインバータ等の電力変換器が設けられる。   A drive motor M is connected to the drive system (power train) of the electric vehicle V, and the drive motor M receives electric power from the power storage device 8 to generate a vehicle drive force. The generated drive force is The electric vehicle V travels by outputting to the wheels via the drive system. Although not shown, when an AC motor is used as the drive motor M, a power converter such as an inverter is provided between the power storage device 8 and the drive motor M.

電動車両V側に設けられる受電コイル(二次自己共振コイル)2は、両端がオープン(非接続)のLC共振コイルから構成され、給電装置10の送電コイル(一次自己共振コイル)1と磁場の共鳴により磁気的に結合され、送電コイル1からの電力を受電可能に構成されている。すなわち、受電コイル2は、蓄電装置8の電圧、送電コイル1と受電コイル2との間の送電距離、送電コイル1と受電コイル2との共振周波数等の諸条件に基づいて、送電コイル1と受電コイル2との共鳴強度を示すQ値およびその結合度を示すκ値が大きくなるように、コイルの巻数、太さ、巻きピッチが適宜設定されている。受電コイル2の共振周波数をf2とする。   The power receiving coil (secondary self-resonant coil) 2 provided on the electric vehicle V side is composed of an LC resonant coil whose both ends are open (not connected), and is connected to the power transmitting coil (primary self-resonant coil) 1 of the power feeding device 10 and the magnetic field. It is magnetically coupled by resonance and is configured to receive power from the power transmission coil 1. That is, the power receiving coil 2 is based on various conditions such as the voltage of the power storage device 8, the power transmission distance between the power transmitting coil 1 and the power receiving coil 2, and the resonance frequency between the power transmitting coil 1 and the power receiving coil 2. The number of turns, the thickness, and the winding pitch of the coil are appropriately set so that the Q value indicating the resonance intensity with the power receiving coil 2 and the κ value indicating the degree of coupling thereof are increased. Let the resonance frequency of the power receiving coil 2 be f2.

二次コイル5は、両端が接続されたワンターンコイルであって、電磁誘導によって受電コイル2から受電可能に構成され、好ましくは受電コイル2と同軸上に設けられている。二次コイル5は受電コイル2の自己共振周波数f2を変化させないために設けられている。そして、二次コイル5は、受電コイル5から受電した電力を整流器7へ出力する。   The secondary coil 5 is a one-turn coil connected at both ends, and is configured to be able to receive power from the power receiving coil 2 by electromagnetic induction, and is preferably provided coaxially with the power receiving coil 2. The secondary coil 5 is provided so as not to change the self-resonant frequency f2 of the power receiving coil 2. Then, the secondary coil 5 outputs the power received from the power receiving coil 5 to the rectifier 7.

整流器7は、二次コイル5から受ける高周波の交流電力を整流して蓄電装置8へ出力する。なお、整流器7に代えて、二次コイル5から受ける高周波の交流電力を蓄電装置8の電圧レベルに変換するAC/DCコンバータを用いてもよい。   Rectifier 7 rectifies high-frequency AC power received from secondary coil 5 and outputs the rectified power to power storage device 8. Instead of the rectifier 7, an AC / DC converter that converts high-frequency AC power received from the secondary coil 5 into the voltage level of the power storage device 8 may be used.

蓄電装置8は、充放電可能な直流電源であり、たとえばリチウムイオンやニッケル水素などの二次電池から構成されている。蓄電装置8の電圧は、たとえば200〜500V程度である。蓄電装置8は、整流器7から供給される電力を蓄えるほか、駆動用電動機Mによって発電された回生電力も蓄えることができる。そして、蓄電装置8は、その蓄えた電力を駆動用電動機Mへ供給する。なお、蓄電装置8として、二次電池に代えてまたはこれと併用して、大容量のキャパシタを採用することができ、整流器7や駆動用電動機Mからの電力を一時的に蓄え、その蓄えた電力を駆動用電動機Mへ供給可能な電力バッファであればよい。   The power storage device 8 is a DC power source that can be charged and discharged, and is composed of, for example, a secondary battery such as lithium ion or nickel metal hydride. The voltage of power storage device 8 is, for example, about 200 to 500V. In addition to storing the electric power supplied from the rectifier 7, the power storage device 8 can also store the regenerative power generated by the driving motor M. The power storage device 8 supplies the stored electric power to the drive motor M. As the power storage device 8, a large capacity capacitor can be employed instead of or in combination with the secondary battery, and the electric power from the rectifier 7 and the driving motor M is temporarily stored and stored. Any power buffer that can supply power to the drive motor M may be used.

一方、車両の外部側である給電場所に設けられる高周波交流電源6は、たとえば系統電源6a(電力会社が保有する商用インフラ交流電源)と電力変換器6bとを備える。電力変換器6bは、交流電源6aから受ける電力を、磁場を共鳴させて送電コイル1から車両側の受電コイル2へ送電可能な高周波の電力に変換し、その変換した高周波電力を一次コイル4へ供給する。   On the other hand, the high-frequency AC power supply 6 provided at a power feeding place outside the vehicle includes, for example, a system power supply 6a (commercial infrastructure AC power supply owned by an electric power company) and a power converter 6b. The power converter 6b converts the power received from the AC power supply 6a into a high frequency power that can be transmitted from the power transmission coil 1 to the power reception coil 2 on the vehicle side by resonating the magnetic field, and the converted high frequency power is supplied to the primary coil 4. Supply.

一次コイル4は、電磁誘導によって送電コイル1へ送電可能に構成され、好ましくは送電コイル1と同軸上に配設されている。一次コイル4は送電コイル1の自己共振周波数f1を変化させないために設けられている。そして、一次コイル4は、電力変換器6bから受電した電力を送電コイル1へ出力する。   The primary coil 4 is configured to be able to transmit power to the power transmission coil 1 by electromagnetic induction, and is preferably arranged coaxially with the power transmission coil 1. The primary coil 4 is provided so as not to change the self-resonant frequency f1 of the power transmission coil 1. And the primary coil 4 outputs the electric power received from the power converter 6b to the power transmission coil 1.

送電コイル1は、給電場所のたとえば地面近傍に配設されている。この送電コイル1は、両端がオープン(非接続)のLC共振コイルから構成され、電動車両Vの受電コイル2と磁場の共鳴により磁気的に結合され、受電コイル2へ電力を送電可能に構成されている。すなわち、送電コイル1は、送電コイル1から送電される電力によって充電される蓄電装置8の電圧、送電コイル1と受電コイル2との間の送電距離、送電コイル1と受電コイル2との共鳴周波数等の諸条件に基づいて、Q値および結合度κ値が大きくなるように、コイルの巻数、太さ、巻きピッチが適宜設定されている。   The power transmission coil 1 is disposed, for example, in the vicinity of the ground of a power feeding place. The power transmission coil 1 is composed of an LC resonance coil that is open (not connected) at both ends, and is magnetically coupled to the power reception coil 2 of the electric vehicle V by magnetic field resonance so that power can be transmitted to the power reception coil 2. ing. That is, the power transmission coil 1 is a voltage of the power storage device 8 that is charged by power transmitted from the power transmission coil 1, a power transmission distance between the power transmission coil 1 and the power reception coil 2, and a resonance frequency between the power transmission coil 1 and the power reception coil 2. Based on various conditions such as the above, the number of turns, the thickness, and the winding pitch of the coil are appropriately set so that the Q value and the coupling degree κ value are increased.

そして、送電コイル1の共振周波数をf1は、上述した受電コイル2の共振周波数f2と等しい値に設定されている(f1=f2)。ただし、送電コイル1と受電コイル2とは、共振周波数f1,f2を等しく設定すればよく、コイルの巻数、太さ、巻きピッチ等のコイル形状やサイズを同一にする必要はない。また、共振周波数f1,f2を等しく設定すればよいので、送電コイル1及び/又は受電コイル2にコンデンサを外付けしてもよい。   The resonance frequency f1 of the power transmission coil 1 is set to a value equal to the resonance frequency f2 of the power reception coil 2 described above (f1 = f2). However, the power transmission coil 1 and the power reception coil 2 may have the resonance frequencies f1 and f2 set equal, and the coil shape and size such as the number of turns, thickness, and winding pitch of the coils need not be the same. Further, since the resonance frequencies f1 and f2 may be set equal, a capacitor may be externally attached to the power transmission coil 1 and / or the power reception coil 2.

共鳴法による送電の原理を説明すると、共鳴法は2つの音叉が共鳴するのと同様に、同じ固有振動数を有する2つのLC共振コイルが磁場を介して共鳴することによって、一方のコイルから他方のコイルへワイヤレスで電力が伝送される。   The principle of power transmission by the resonance method will be described. In the resonance method, two LC resonance coils having the same natural frequency resonate via a magnetic field, in the same manner as two tuning forks resonate. Power is transmitted wirelessly to the coil.

すなわち、高周波交流電源6によって一次コイル4に高周波交流電力が入力されると、一次コイル4に磁界が発生し、電磁誘導により送電コイル1に高周波交流電力が発生する。送電コイル1は、コイル自身のインダクタンスと導線間の浮遊容量とによるLC共振器として機能し、かつ送電コイル1と同じ共振周波数を有する受電コイル2と磁場共鳴により磁気的に結合することによって、受電コイル2へ電力を伝送する。そして、送電コイル1からの受電により受電コイル2に発生する磁界によって二次コイル5に電磁誘導による高周波交流電力が発生し、整流器7により直流電力に整流されたのち蓄電装置8に直流電力が供給される。   That is, when high-frequency AC power is input to the primary coil 4 by the high-frequency AC power source 6, a magnetic field is generated in the primary coil 4, and high-frequency AC power is generated in the power transmission coil 1 by electromagnetic induction. The power transmission coil 1 functions as an LC resonator based on the inductance of the coil itself and the stray capacitance between the conductors, and is magnetically coupled to the power reception coil 2 having the same resonance frequency as that of the power transmission coil 1 by magnetic field resonance. Electric power is transmitted to the coil 2. Then, high-frequency AC power due to electromagnetic induction is generated in the secondary coil 5 by the magnetic field generated in the power receiving coil 2 by receiving power from the power transmitting coil 1, and the DC power is supplied to the power storage device 8 after being rectified to DC power by the rectifier 7. Is done.

さて、共鳴法による送電システムにおいては、送電コイル1と受電コイル2との位置関係によってこれらの結合度κが変動し、これにより送電効率も変動することが知られている。図2Aは送電コイル1と受電コイル2との送電距離Zに対する結合度κの関係を示すグラフ、図2Bは送電コイル1と受電コイル2とのX方向(またはY方向)のズレXに対する結合度κの関係を示すグラフである。なお、図2Aの送電距離Zは、送電コイル1の先端と受電コイル2の先端とのZ軸方向の直線距離と定義する。また、図2BのズレXは、図2Cに示すように送電コイル1のコイル中心軸と受電コイル2のコイル中心軸とのX−Y平面上の距離と定義する。   Now, in the power transmission system based on the resonance method, it is known that the degree of coupling κ varies depending on the positional relationship between the power transmission coil 1 and the power reception coil 2, thereby varying the power transmission efficiency. FIG. 2A is a graph showing the relationship of the degree of coupling κ with respect to the transmission distance Z between the power transmission coil 1 and the power reception coil 2, and FIG. It is a graph which shows the relationship of (kappa). 2A is defined as a linear distance between the tip of the power transmission coil 1 and the tip of the power receiving coil 2 in the Z-axis direction. 2B is defined as the distance on the XY plane between the coil central axis of the power transmission coil 1 and the coil central axis of the power receiving coil 2 as shown in FIG. 2C.

図2Aに示すように、送電距離Zが大きくなると送電コイル1と受電コイル2との結合度κが漸減し、図2Bに示すようにズレXが大きくなると送電コイル1と受電コイル2との結合度κが漸減する。この結果、図3Dに点線で示すように、送電距離ZまたはズレXが大きくなると送電コイル1から受電コイル2に送電される電力の送電効率が減少する。   As shown in FIG. 2A, the coupling degree κ between the power transmission coil 1 and the power receiving coil 2 gradually decreases as the power transmission distance Z increases, and the coupling between the power transmission coil 1 and the power receiving coil 2 when the deviation X increases as shown in FIG. 2B. The degree κ gradually decreases. As a result, as shown by a dotted line in FIG. 3D, the transmission efficiency of the power transmitted from the power transmission coil 1 to the power reception coil 2 decreases as the power transmission distance Z or the deviation X increases.

特に限定はされないが、電動車両Vを給電場所に駐車して蓄電装置8を充電する場合を考えると、車両側に設置する受電コイル2のレイアウトや電動車両Vの車高によって送電距離Zが相違することがある。たとえば、受電コイル2は車両のフロア部などのようにできるだけ車両の下部に配置することが望ましいとされるが、電動車両Vのレイアウトによってはトランクルームやエンジンルームなどのように路面から離れた位置に配置しなければならない事情も考えられる。こうした諸事情により給電場所における送電距離Zが長くなることがある。   Although there is no particular limitation, considering the case where the electric vehicle V is parked at the power supply location and the power storage device 8 is charged, the transmission distance Z differs depending on the layout of the power receiving coil 2 installed on the vehicle side and the height of the electric vehicle V. There are things to do. For example, it is desirable that the power receiving coil 2 be disposed as low as possible in the vehicle, such as the floor portion of the vehicle. However, depending on the layout of the electric vehicle V, the power receiving coil 2 may be located away from the road surface such as in a trunk room or an engine room. There may also be circumstances that must be arranged. Due to these circumstances, the power transmission distance Z at the power feeding location may become long.

また、送電コイル1と受電コイル2とのズレXについては、運転手の運転技量などにより給電場所に精度よく駐車できないこともあり、これにより送電距離Zは短くてもズレXが長くなることがある。こうした送電距離ZまたはズレXが大きくなると給電効率が低下するため給電場所における充電時間が長くなる。そして充電時間を短縮するためには高周波交流電源6の電力を高める必要がある。   In addition, the displacement X between the power transmission coil 1 and the power reception coil 2 may not be accurately parked at the power feeding location due to the driver's driving skill, etc., which may cause the displacement X to be long even if the power transmission distance Z is short. is there. When the power transmission distance Z or the deviation X is increased, the power supply efficiency is lowered, so that the charging time at the power supply place is increased. And in order to shorten charging time, it is necessary to raise the electric power of the high frequency alternating current power supply 6. FIG.

本例の給電装置10は、送電距離ZまたはズレXが多少大きくなっても高周波交流電源6のパワーを増加させることなくしかも充電時間を維持するために、中継コイル3を備える。中継コイル3は車両側又は車両外部側(地面、路面又は壁面など)のいずれに設けてもよいが、図1に示す例では、前輪と後輪のそれぞれに中継コイル3が内蔵されている。本例の中継コイル3の配置例を図3に示す。   The power feeding apparatus 10 of this example includes the relay coil 3 in order to maintain the charging time without increasing the power of the high-frequency AC power source 6 even if the power transmission distance Z or the deviation X is somewhat increased. The relay coil 3 may be provided on either the vehicle side or the vehicle exterior side (the ground surface, road surface, wall surface, etc.), but in the example shown in FIG. 1, the relay coil 3 is built in each of the front wheels and the rear wheels. An arrangement example of the relay coil 3 of this example is shown in FIG.

図3は、図1の送電コイル1のコイル中心軸と、受電コイル2のコイル中心軸とが一致した場合における中継コイル3の配置例を示す正面図である。中継コイル3は、送電コイル1や受電コイル2と同様に両端がオープン(非接続)のLC共振コイルから構成され、その共振周波数f3が、送電コイル1の共振周波数f1および受電コイル2の共振周波数f2と等しい値に設定されている(f3=f1=f2)。ただし、中継コイル3は、送電コイル1や受電コイル2との関係において、共振周波数f1,f2,f3を等しく設定すればよく、コイルの巻数、太さ、巻きピッチ等のコイル形状やサイズを同一にする必要はない。または、共振周波数f1,f2,f3を等しく設定すればよいので、送電コイル1、受電コイル2及び/又は中継コイル3にコンデンサを外付けしてもよい。また、中継コイル3に電磁誘導により電力を授受するための一次コイル4や二次コイル5を設ける必要もない。   FIG. 3 is a front view illustrating an arrangement example of the relay coil 3 when the coil central axis of the power transmission coil 1 in FIG. 1 and the coil central axis of the power receiving coil 2 coincide with each other. The relay coil 3 is composed of an LC resonance coil whose both ends are open (not connected) like the power transmission coil 1 and the power reception coil 2, and the resonance frequency f3 is the resonance frequency f1 of the power transmission coil 1 and the resonance frequency of the power reception coil 2. It is set to a value equal to f2 (f3 = f1 = f2). However, the relay coil 3 has only to set the resonance frequencies f1, f2, and f3 equal in relation to the power transmission coil 1 and the power reception coil 2, and has the same coil shape and size such as the number of turns, thickness, and winding pitch of the coil. There is no need to make it. Alternatively, since the resonance frequencies f1, f2, and f3 may be set to be equal, a capacitor may be externally attached to the power transmission coil 1, the power reception coil 2, and / or the relay coil 3. Further, it is not necessary to provide the relay coil 3 with the primary coil 4 and the secondary coil 5 for transmitting and receiving electric power by electromagnetic induction.

図3に示すように、送電コイル1の先端と受電コイル2の先端との距離をZ(上述した送電距離Zに相当)とした場合に、本例の中継コイル3は、送電コイル1の先端から半径Z以内の範囲であって、かつ受電コイル2の先端から半径Z以内の範囲に配置することが望ましい。この場合に、少なくとも中継コイル3の先端が当該範囲内に配置されることが望ましい。また、中継コイル3のコイル中心軸と送電コイル1のコイル中心軸とのなす角度θが90度以外の角度になるように中継コイル3の配置方向を設定することが望ましく、送電効率の点から角度θは0度に近い方がより望ましい。   As shown in FIG. 3, when the distance between the tip of the power transmission coil 1 and the tip of the power reception coil 2 is Z (corresponding to the power transmission distance Z described above), the relay coil 3 of this example is the tip of the power transmission coil 1. And within a radius Z and preferably within a radius Z from the tip of the power receiving coil 2. In this case, it is desirable that at least the tip of the relay coil 3 is disposed within the range. In addition, it is desirable to set the arrangement direction of the relay coil 3 so that the angle θ formed by the coil central axis of the relay coil 3 and the coil central axis of the power transmission coil 1 is an angle other than 90 degrees. The angle θ is more preferably close to 0 degrees.

図4は中継コイル3のコイル中心軸と送電コイル1のコイル中心軸とのなす角度θと送電効率との関係を確認した結果を示すグラフである。同図において中継コイル3と送電コイル1の共振周波数fn1〜fn4別の送電効率を示すが、共振周波数の大小に拘わらず、中継コイル3のコイル中心軸と送電コイル1のコイル中心軸とのなす角度θが90度に近い方が0度に近い方に比べて送電効率が低いことが確認されている。また、同図のfn1やfn2のように共振周波数を高く設定すればするほど、角度θが90度近傍以外の角度に設定するだけで送電効率が高い値に維持されることも理解できる。   FIG. 4 is a graph showing the result of confirming the relationship between the angle θ formed by the coil central axis of the relay coil 3 and the coil central axis of the power transmission coil 1 and the power transmission efficiency. In the same figure, the power transmission efficiency is shown for each of the resonance frequencies fn1 to fn4 of the relay coil 3 and the power transmission coil 1, but the coil central axis of the relay coil 3 and the coil central axis of the power transmission coil 1 are formed regardless of the resonance frequency. It has been confirmed that the power transmission efficiency is lower when the angle θ is close to 90 degrees than when the angle θ is close to 0 degrees. It can also be understood that the higher the resonance frequency is set like fn1 and fn2 in the figure, the higher the transmission efficiency can be maintained by simply setting the angle θ to an angle other than 90 degrees.

図1および図3に戻り、同図の実線の矢印は送電コイル1で発生した磁束が受電コイル2へ伝わる有効磁束を示し、点線の矢印は送電コイルで発生した磁束が受電コイル2へ伝わらず漏洩する漏れ磁束を示す。送電コイル1と受電コイル2との送電距離Zが大きくなると有効磁束が減少して漏れ磁束が増加する結果、送電効率が低下するものと推察される。しかしながら、本例のように送電コイル1と受電コイル2との間に中継コイル3を配置すると、送電コイル1で発生した磁束のうちの主として漏れ磁束を中継コイル3が受け取り、これを同図の一転鎖線の矢印で示すように受電コイル2へ付加することになる。これにより、図2Dの実線で示すように、送電距離Zが同じ場合は送電効率が向上し、また送電距離Zが大きくなっても送電効率の低下を抑制することができる。換言すれば同じ送電効率であれば送電距離を長くすることができる   Returning to FIGS. 1 and 3, the solid line arrows in FIG. 1 indicate the effective magnetic flux that is transmitted to the power receiving coil 2 by the magnetic flux generated in the power transmission coil 1, and the dotted arrow indicates that the magnetic flux generated in the power transmission coil is not transmitted to the power receiving coil 2. The leakage magnetic flux which leaks is shown. When the power transmission distance Z between the power transmission coil 1 and the power reception coil 2 is increased, it is assumed that the effective magnetic flux decreases and the leakage magnetic flux increases, resulting in a decrease in power transmission efficiency. However, when the relay coil 3 is arranged between the power transmission coil 1 and the power reception coil 2 as in this example, the relay coil 3 mainly receives the leakage magnetic flux out of the magnetic flux generated in the power transmission coil 1, and this is shown in FIG. It is added to the power receiving coil 2 as indicated by the arrow of the one-dot chain line. Thereby, as shown by the solid line in FIG. 2D, when the transmission distance Z is the same, the transmission efficiency is improved, and even if the transmission distance Z is increased, a decrease in the transmission efficiency can be suppressed. In other words, the transmission distance can be increased if the transmission efficiency is the same.

なお、図1に示す中継コイル3は模式的に示したものであり、実際には図5に示すように前輪タイヤおよび後輪タイヤTの中空部にコイルの中心軸が水平にならないように傾斜して設けられている。また、中継コイル3は前輪タイヤおよび後輪タイヤTの全てに設ける必要はなくいずれか一つのタイヤTに設けてもよい。さらに、中継コイル3の設置場所はタイヤTの中空部にのみ限定されず、図3にて説明した送電コイル1と受電コイル2との間の範囲内であればよい。したがって、場合によっては車両側でなく路面側に配置することもできる。   In addition, the relay coil 3 shown in FIG. 1 is schematically shown, and in fact, as shown in FIG. 5, it is inclined so that the central axis of the coil does not become horizontal in the hollow portions of the front tire and the rear tire T. Is provided. Further, the relay coil 3 does not have to be provided on all of the front tires and the rear tires T, and may be provided on any one of the tires T. Furthermore, the installation location of the relay coil 3 is not limited to the hollow portion of the tire T, and may be in the range between the power transmission coil 1 and the power reception coil 2 described in FIG. Therefore, depending on the case, it can also arrange | position on the road surface side instead of the vehicle side.

図4を参照して説明したとおり、中継コイル3のコイル中心軸と送電コイルのコイル中心軸とのなす角度θは0度に近ければ近いほど送電効率が高くなる。したがって、送電コイル1と受電コイル2との間に、コイル中心軸を一致させるか又は平行にして配置することが望ましい。図6A〜図6Cに送電コイル1、受電コイル2および中継コイル3の他の配置例を示す。   As described with reference to FIG. 4, the power transmission efficiency increases as the angle θ between the coil central axis of the relay coil 3 and the coil central axis of the power transmission coil approaches 0 degrees. Therefore, it is desirable to arrange the coil central axes to coincide or be parallel between the power transmission coil 1 and the power reception coil 2. 6A to 6C show other arrangement examples of the power transmission coil 1, the power reception coil 2, and the relay coil 3. FIG.

図6Aは、送電コイル1のコイル中心軸と、受電コイル2のコイル中心軸と、中継コイル3のコイル中心軸とを一致させて配置した例である。また、図6Bは、図6Aは、送電コイル1のコイル中心軸と、受電コイル2のコイル中心軸と、中継コイル3のコイル中心軸とを平行にして配置した例である。いずれの場合も、送電コイル1で発生した磁束のうちの有効磁束を中継コイル3が受け取り、これを受電コイル2へ受け渡すとともに、送電コイル1で発生した磁束のうちの漏れ磁束を中継コイル3が受け取り、これを受電コイル2へ付加することになる。したがって、図1および図3に示すように中継コイル3を傾斜して配置した場合に比べてさらに送電効率を高く維持することができる。   FIG. 6A is an example in which the coil central axis of the power transmission coil 1, the coil central axis of the power receiving coil 2, and the coil central axis of the relay coil 3 are aligned with each other. 6B is an example in which the coil central axis of the power transmission coil 1, the coil central axis of the power receiving coil 2, and the coil central axis of the relay coil 3 are arranged in parallel. In either case, the relay coil 3 receives the effective magnetic flux of the magnetic flux generated in the power transmission coil 1 and passes it to the power receiving coil 2, and the leakage magnetic flux of the magnetic flux generated in the power transmission coil 1 is relayed to the relay coil 3. Is added to the power receiving coil 2. Therefore, as shown in FIGS. 1 and 3, the power transmission efficiency can be further maintained higher than the case where the relay coil 3 is disposed at an inclination.

図6Cは、図3に示す例と図6A又は図6Bに示す例とを組み合わせて複数の中継コイル3を配置した例である。この例によれば、送電コイル1で発生した磁束のうちの主として漏れ磁束を中継コイル3a,3aが受け取り、これを中継コイル3b(又は受電コイル2)へ付加する。これと同時に、送電コイル1で発生した磁束のうちの有効磁束を中継コイル3bが受け取り、これと中継コイル3a,3aからの付加された磁束とを受電コイル2へ受け渡すことになる。したがって、送電コイル1と受電コイル2との送電距離Zが長く設定されても、これらの中継コイル3a,3bをレイアウトに応じて適宜配置することにより送電効率の低下を抑制することができる。   FIG. 6C is an example in which a plurality of relay coils 3 are arranged by combining the example shown in FIG. 3 and the example shown in FIG. 6A or 6B. According to this example, the relay coils 3a and 3a receive mainly the leakage magnetic flux of the magnetic flux generated in the power transmission coil 1, and add it to the relay coil 3b (or the power reception coil 2). At the same time, the relay coil 3 b receives the effective magnetic flux of the magnetic flux generated in the power transmission coil 1, and passes this and the added magnetic flux from the relay coils 3 a and 3 a to the power receiving coil 2. Therefore, even if the power transmission distance Z between the power transmission coil 1 and the power reception coil 2 is set to be long, a decrease in power transmission efficiency can be suppressed by appropriately arranging these relay coils 3a and 3b according to the layout.

図4を参照して説明したとおり、LC共振コイルのコイル中心軸が直交すると送電効率が極度に低下する。すなわち、送電コイル1で発生した有効磁束が受電コイル2に殆んど伝わらず、漏れ磁束しか伝わらない。送電距離が長いと漏れ磁束も伝わらない場合がある。したがって、送電コイル1と受電コイル2とのコイル中心軸は平行又はそれに近い値であることが望ましい。しかしながら、車両側と給電場所とのレイアウトの都合によっては送電コイル1と受電コイル2とのコイル中心軸が直交せざるを得ない場合もある。図6Dはこうしたケースに本例の中継コイル3を用いた配置例を示す。   As described with reference to FIG. 4, when the coil center axis of the LC resonance coil is orthogonal, the power transmission efficiency is extremely reduced. That is, the effective magnetic flux generated in the power transmission coil 1 is hardly transmitted to the power receiving coil 2 and only the leakage magnetic flux is transmitted. If the transmission distance is long, the leakage flux may not be transmitted. Therefore, it is desirable that the coil central axes of the power transmission coil 1 and the power reception coil 2 are parallel or close to each other. However, the coil central axes of the power transmission coil 1 and the power reception coil 2 may have to be orthogonal depending on the layout of the vehicle side and the power feeding location. FIG. 6D shows an arrangement example using the relay coil 3 of this example in such a case.

図6Dに示すように、送電コイル1のコイル中心軸と受電コイル2のコイル中心軸とは直交又はそれに近い角度に設定されている。本例の中継コイル3は送電コイル1と受電コイル2との間に配置され、中継コイル3のコイル中心軸が送電コイル1のコイル中心軸と直交しないような傾斜角度に設定されている。この例によれば、送電コイル1で発生した磁束のうちの有効磁束を中継コイル3が受け取り、これを受電コイル2へ受け渡すと同時に、送電コイル1で発生した磁束のうちの漏れ磁束も中継コイル3が受け取り、これを受電コイル2へ付加することになる。したがって、送電コイル1と受電コイル2とのコイル中心軸が直交又はこれに近い値に設定されている場合であっても、送電を可能にすることができ又は送電効率の低下を抑制することができる。   As shown in FIG. 6D, the coil central axis of the power transmission coil 1 and the coil central axis of the power receiving coil 2 are set to be orthogonal or close to each other. The relay coil 3 in this example is disposed between the power transmission coil 1 and the power reception coil 2, and is set at an inclination angle such that the coil central axis of the relay coil 3 is not orthogonal to the coil central axis of the power transmission coil 1. According to this example, the relay coil 3 receives the effective magnetic flux of the magnetic flux generated in the power transmission coil 1 and transfers it to the power receiving coil 2. At the same time, the leakage magnetic flux of the magnetic flux generated in the power transmission coil 1 is also relayed. The coil 3 receives it and adds it to the power receiving coil 2. Therefore, even when the coil central axes of the power transmission coil 1 and the power receiving coil 2 are set to be orthogonal or close to each other, power transmission can be performed or reduction in power transmission efficiency can be suppressed. it can.

以上のように、本例の給電装置10においては、電力変換器6bによって交流電源6aからの電力が高周波電力に変換され、一次コイル4によって送電コイル1に与えられる。そして、送電コイル1と電動車両Vの受電コイル2とが磁場の共鳴により磁気的に結合され、送電コイル1から受電コイル2へ電力が送電される。これと同時に、中継コイル3によって送電コイル1で発生した電力又はその漏れ電力を受電コイル2へ受け渡すか又は付加することができる。こうして受電コイル2によって受電された電力は、整流器7によって整流されて電動車両Vの蓄電装置8に蓄えられる。   As described above, in the power supply device 10 of this example, the power from the AC power source 6 a is converted into the high frequency power by the power converter 6 b and is supplied to the power transmission coil 1 by the primary coil 4. The power transmission coil 1 and the power receiving coil 2 of the electric vehicle V are magnetically coupled by magnetic field resonance, and power is transmitted from the power transmitting coil 1 to the power receiving coil 2. At the same time, the power generated in the power transmission coil 1 by the relay coil 3 or the leakage power thereof can be delivered to or added to the power receiving coil 2. The electric power received by the power receiving coil 2 is rectified by the rectifier 7 and stored in the power storage device 8 of the electric vehicle V.

したがって、本例の給電装置10によれば、車両外部の交流電源6aからワイヤレスで充電電力を電動車両Vへ送電し、車両に搭載された蓄電装置8を充電することができる。そして、送電コイル1と受電コイル2との送電距離Z又はズレXが大きくなっても中継コイル3の作用によって送電効率の低下を抑制することができる。換言すれば、中継コイル3を設けることによって送電距離を長く設定することができる。また、給電場所において電動車両Vの駐車位置が多少ずれて、X−Y平面上のズレXが変動したり、あるいは車両の仕様によって送電距離Zが変動したりしても、送電効率を維持することができ、その結果、充電時間を短縮又は維持することができる。   Therefore, according to the power supply device 10 of this example, charging power can be transmitted wirelessly from the AC power supply 6a outside the vehicle to the electric vehicle V, and the power storage device 8 mounted on the vehicle can be charged. And even if the power transmission distance Z or gap | deviation X of the power transmission coil 1 and the receiving coil 2 becomes large, the fall of power transmission efficiency can be suppressed by the effect | action of the relay coil 3. FIG. In other words, the transmission distance can be set longer by providing the relay coil 3. Moreover, even if the parking position of the electric vehicle V is slightly shifted at the power feeding place, the displacement X on the XY plane fluctuates, or even if the power transmission distance Z varies depending on the vehicle specifications, the power transmission efficiency is maintained. As a result, the charging time can be shortened or maintained.

上記送電コイルは本発明に係る送電用共振手段に相当し、上記受電コイルは本発明に係る受電用共振手段に相当し、上記高周波交流電源が本発明に係る電源に相当し、上記給電場所が本発明に係る給電位置に相当し、上記送電距離Zが本発明に係る所定距離に相当し、上記中継コイルが本発明に係る中継用共振手段に相当し、上記電動車両が本発明に係る車両に相当し、上記整流器が本発明に係る整流手段に相当し、上記蓄電装置が本発明に係る蓄電手段に相当する。   The power transmission coil corresponds to power transmission resonance means according to the present invention, the power reception coil corresponds to power reception resonance means according to the present invention, the high-frequency AC power supply corresponds to the power supply according to the present invention, and the power feeding place is The power transmission distance Z corresponds to the predetermined distance according to the present invention, the relay coil corresponds to the relay resonance means according to the present invention, and the electric vehicle corresponds to the vehicle according to the present invention. The rectifier corresponds to the rectifying means according to the present invention, and the power storage device corresponds to the power storage means according to the present invention.

10…給電装置
1…送電コイル
2…受電コイル
3,3a,3b…中継コイル
4…一次コイル
5…二次コイル
6…高周波交流電源
6a…交流電源
6b…電力変換器
7…整流器
8…蓄電装置
V…電動車両
M…駆動用電動機
DESCRIPTION OF SYMBOLS 10 ... Feeding device 1 ... Power transmission coil 2 ... Power receiving coil 3, 3a, 3b ... Relay coil 4 ... Primary coil 5 ... Secondary coil 6 ... High frequency alternating current power supply 6a ... AC power supply 6b ... Power converter 7 ... Rectifier 8 ... Power storage device V ... Electric vehicle M ... Electric motor for driving

Claims (5)

車両の外部に設置されるとともに交流電源からの電力が入力される、所定の共振周波数に設定された送電用共振手段との磁場の共鳴による磁気的結合により、前記電源からの電力を受電する非接触給電装置であって、
前記所定の共振周波数と同じ共振周波数に設定された受電用共振手段を前記車両に備え、
前記送電用共振手段に対して前記受電用共振手段を所定距離に位置させた給電位置における、前記送電用共振手段と前記受電用共振手段との磁場の共鳴による磁気的結合により、前記電源から前記送電用共振手段を介して前記受電用共振手段へ電力を供給する非接触給電装置において、
前記給電位置における、前記送電用共振手段から前記所定距離以内の範囲であって前記受電用共振手段から前記所定距離以内の範囲の前記車両の車輪のタイヤ内部に、前記所定の共振周波数と同じ共振周波数に設定された中継用共振手段が設けられていることを特徴とする非接触給電装置。
Non-electric power is received from the power source by magnetic coupling due to magnetic field resonance with a power transmission resonance unit that is installed outside the vehicle and receives power from an AC power source and set to a predetermined resonance frequency. A contact power feeder,
The vehicle is provided with power receiving resonance means set to the same resonance frequency as the predetermined resonance frequency,
From the power supply by the magnetic coupling due to the resonance of the magnetic field between the power transmission resonance means and the power reception resonance means at the power feeding position where the power reception resonance means is located at a predetermined distance from the power transmission resonance means. In the non-contact power feeding device that supplies power to the power receiving resonance means via the power transmission resonance means,
In the power feeding position, within the predetermined distance from the power transmission resonance means and within the predetermined distance from the power reception resonance means, the same resonance as the predetermined resonance frequency is provided in the tire of the vehicle wheel. A non-contact power feeding apparatus comprising a relay resonance unit set to a frequency.
請求項1に記載の非接触給電装置において、
前記受電用共振手段が受電した電力を整流する整流手段と、
前記整流手段により整流された電力を蓄電する蓄電手段と、をさらに備えることを特徴とする非接触給電装置。
The contactless power supply device according to claim 1 ,
Rectifying means for rectifying the power received by the power receiving resonance means;
The non-contact power feeding apparatus further comprising: a power storage unit that stores the power rectified by the rectification unit.
請求項1又は2に記載の非接触給電装置において、
前記中継用共振手段が、複数設けられていることを特徴とする非接触給電装置。
In the non-contact electric power feeder of Claim 1 or 2 ,
A non-contact power feeding apparatus comprising a plurality of relay resonance means.
請求項1〜のいずれか一項に記載の非接触給電装置において、
前記送電用共振手段は、前記所定の共振周波数に設定された送電コイルと、当該送電コイルに対して電磁誘導により前記電源からの電力を給電する一次コイルとを含み、
前記受電用共振手段は、前記所定の共振周波数に設定された受電コイルと、当該受電コイルに対して電磁誘導により前記電源からの電力を受電する二次コイルとを含み、
前記中継用共振手段は、前記所定の共振周波数に設定された中継コイルを含むことを特徴とする非接触給電装置。
In the non-contact electric power feeder as described in any one of Claims 1-3 ,
The power transmission resonance means includes a power transmission coil set to the predetermined resonance frequency, and a primary coil that supplies power from the power source by electromagnetic induction to the power transmission coil,
The power receiving resonance means includes a power receiving coil set to the predetermined resonance frequency, and a secondary coil that receives power from the power source by electromagnetic induction with respect to the power receiving coil,
The contactless power feeding device, wherein the relay resonance means includes a relay coil set to the predetermined resonance frequency.
請求項に記載の非接触給電装置において、
前記送電コイルのコイル中心軸と前記中継コイルのコイル中心軸とのなす角度が90度以外の角度になるように、前記中継コイルが配置されていることを特徴とする非接触給電装置。
In the non-contact electric power feeder of Claim 4 ,
The non-contact power feeding device, wherein the relay coil is arranged such that an angle formed between a coil central axis of the power transmission coil and a coil central axis of the relay coil is an angle other than 90 degrees.
JP2009288057A 2009-12-18 2009-12-18 Non-contact power feeding device Active JP5487944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009288057A JP5487944B2 (en) 2009-12-18 2009-12-18 Non-contact power feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009288057A JP5487944B2 (en) 2009-12-18 2009-12-18 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2011130614A JP2011130614A (en) 2011-06-30
JP5487944B2 true JP5487944B2 (en) 2014-05-14

Family

ID=44292552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009288057A Active JP5487944B2 (en) 2009-12-18 2009-12-18 Non-contact power feeding device

Country Status (1)

Country Link
JP (1) JP5487944B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9065302B2 (en) 2010-12-24 2015-06-23 Semiconductor Energy Laboratory Co., Ltd. Wireless power feeding system
KR20120084659A (en) 2011-01-20 2012-07-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power feeding device and wireless power feeding system
US9325205B2 (en) 2011-03-04 2016-04-26 Semiconductor Energy Laboratory Co., Ltd. Method for driving power supply system
WO2013024652A1 (en) * 2011-08-12 2013-02-21 シャープ株式会社 Electrical power transmission apparatus and electrical power transmission method
US9697952B2 (en) * 2011-10-27 2017-07-04 Toyota Jidosha Kabushiki Kaisha Non-contact electric power reception device, non-contact electric power transmission device, and non-contact electric power transmission and reception system
WO2013065277A1 (en) * 2011-10-31 2013-05-10 日本電気株式会社 Wireless power supply device and coil usage method
WO2013080468A1 (en) * 2011-12-01 2013-06-06 パナソニック 株式会社 Non-contact power transmission device
JP5984106B2 (en) * 2011-12-01 2016-09-06 パナソニックIpマネジメント株式会社 Non-contact power transmission device
US9385561B2 (en) * 2011-12-22 2016-07-05 Koninklijke Philips N.V. Charging coil system for a drop-in target device such as a toothbrush
JP5844662B2 (en) * 2012-03-07 2016-01-20 日立マクセル株式会社 Non-contact power transmission system and non-contact power transmission method
JP5991054B2 (en) * 2012-07-17 2016-09-14 株式会社デンソー Non-contact power feeding device
JP6089330B2 (en) * 2012-08-10 2017-03-08 パナソニックIpマネジメント株式会社 Small electric device and non-contact power transmission device having the same
US9441603B2 (en) * 2012-09-05 2016-09-13 Lear Corporation Apparatus for providing concentrated inductive power transfer
JP2014143836A (en) * 2013-01-24 2014-08-07 Panasonic Corp Non-contact power transmission system
JP2014193031A (en) * 2013-03-27 2014-10-06 Panasonic Corp Non-contact charger
CN103248094A (en) * 2013-05-08 2013-08-14 上海安费诺永亿通讯电子有限公司 Enhanced wireless charging system
JP6291860B2 (en) * 2014-01-21 2018-03-14 株式会社Ihi Non-contact power supply system and magnetic flux recovery device
JP2015162948A (en) * 2014-02-27 2015-09-07 Ihi運搬機械株式会社 Non-contact power supply system and vehicle power supply apparatus
JP6297863B2 (en) * 2014-03-03 2018-03-20 Ihi運搬機械株式会社 Non-contact power feeding system and vehicle power feeding device
JP2017130996A (en) * 2016-01-18 2017-07-27 パナソニックIpマネジメント株式会社 Power transmission device, power reception device and power transmission/reception system
JP7172900B2 (en) * 2019-07-26 2022-11-16 株式会社デンソー Power supply system while driving
JP7057326B2 (en) 2019-07-26 2022-04-19 株式会社デンソー Power supply system while driving
JP7447457B2 (en) 2019-12-12 2024-03-12 株式会社デンソー Contactless power supply system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1010229A4 (en) * 1997-05-06 2001-02-14 Auckland Uniservices Ltd Inductive power transfer across an extended gap
KR20040072581A (en) * 2004-07-29 2004-08-18 (주)제이씨 프로텍 An amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the above device
JP4453741B2 (en) * 2007-10-25 2010-04-21 トヨタ自動車株式会社 Electric vehicle and vehicle power supply device
EP2410630B1 (en) * 2009-03-17 2016-09-28 Fujitsu Limited Wireless power supply system
JP2010263690A (en) * 2009-05-01 2010-11-18 Panasonic Electric Works Co Ltd Transmission system
JP2011061942A (en) * 2009-09-09 2011-03-24 Showa Aircraft Ind Co Ltd Contactless power supply apparatus of relay system

Also Published As

Publication number Publication date
JP2011130614A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP5487944B2 (en) Non-contact power feeding device
US9142986B2 (en) Coil unit, non-contact power transmitting apparatus, non-contact power receiving apparatus, vehicle, and non-contact power supply system
KR101438298B1 (en) Noncontact power feeding apparatus and noncontact power feeding method
JP5848359B2 (en) Vehicle power receiving device, power transmitting device, and non-contact power transmitting / receiving system
US20160241061A1 (en) Clover leaf and butterfly coil structures for flat wireless coupling profiles in wireless power transfer applications
JP5077340B2 (en) Non-contact power receiving apparatus and manufacturing method thereof
JP5016069B2 (en) Power transmission system and vehicle power supply device
JP5506327B2 (en) Non-contact power supply device
JP5083413B2 (en) Electric vehicle
WO2012067184A1 (en) Coil unit, non-contact electric power transmission apparatus, vehicle and non-contact power supply system
EP2671749B1 (en) Vehicle and external power-feeding apparatus
WO2010038297A1 (en) Self-resonant coil, contactless power transferring apparatus, and vehicle
JP5884830B2 (en) Non-contact power receiving device, non-contact power transmission device and non-contact power transmission / reception system
WO2011001524A1 (en) Coil unit, noncontact power receiving device, noncontact power feeding device, noncontact power feeding system, and vehicle
WO2013042229A1 (en) Contactless power transmission device, contactless power receiving device and contactless power transceiver system
JP5625263B2 (en) Coil unit, non-contact power transmission device, non-contact power supply system, and electric vehicle
JP2010098807A (en) Noncontact power supply system
JP2011167036A (en) Electric power feed device for vehicle, and electric power reception device
JP2011061942A (en) Contactless power supply apparatus of relay system
CN104426247A (en) Power reception device, power transmission device and power transfer system
JP2010073885A (en) Resonance coil and non-contact feeding system
JP2015047046A (en) Non-contact power transmission system
JP2015027224A (en) Non-contact power-receiving device
JP2015115579A (en) Power transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R151 Written notification of patent or utility model registration

Ref document number: 5487944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151