JP5497604B2 - Manufacturing method of medical guide wire - Google Patents
Manufacturing method of medical guide wire Download PDFInfo
- Publication number
- JP5497604B2 JP5497604B2 JP2010221675A JP2010221675A JP5497604B2 JP 5497604 B2 JP5497604 B2 JP 5497604B2 JP 2010221675 A JP2010221675 A JP 2010221675A JP 2010221675 A JP2010221675 A JP 2010221675A JP 5497604 B2 JP5497604 B2 JP 5497604B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- metal
- heat treatment
- core wire
- temperature heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 39
- 229910052751 metal Inorganic materials 0.000 claims description 251
- 239000002184 metal Substances 0.000 claims description 251
- 238000010438 heat treatment Methods 0.000 claims description 189
- 238000005491 wire drawing Methods 0.000 claims description 108
- 238000000034 method Methods 0.000 claims description 100
- 230000009467 reduction Effects 0.000 claims description 79
- 230000008569 process Effects 0.000 claims description 73
- 238000005304 joining Methods 0.000 claims description 62
- 239000000463 material Substances 0.000 claims description 61
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims description 49
- 238000012545 processing Methods 0.000 claims description 24
- 238000002844 melting Methods 0.000 claims description 22
- 239000006104 solid solution Substances 0.000 claims description 2
- 239000011162 core material Substances 0.000 description 223
- 230000014509 gene expression Effects 0.000 description 49
- 238000005452 bending Methods 0.000 description 28
- 230000005855 radiation Effects 0.000 description 23
- 230000008018 melting Effects 0.000 description 20
- 230000005540 biological transmission Effects 0.000 description 19
- 230000003902 lesion Effects 0.000 description 19
- 230000000694 effects Effects 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 16
- 239000002436 steel type Substances 0.000 description 15
- 239000006023 eutectic alloy Substances 0.000 description 14
- 229910001220 stainless steel Inorganic materials 0.000 description 14
- 238000003825 pressing Methods 0.000 description 13
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 230000002093 peripheral effect Effects 0.000 description 11
- 210000004204 blood vessel Anatomy 0.000 description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 10
- 229910052737 gold Inorganic materials 0.000 description 10
- 239000010931 gold Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 9
- 230000002966 stenotic effect Effects 0.000 description 9
- 239000010410 layer Substances 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 230000004927 fusion Effects 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 229910052718 tin Inorganic materials 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 230000002792 vascular Effects 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000002526 effect on cardiovascular system Effects 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 210000003141 lower extremity Anatomy 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 208000031481 Pathologic Constriction Diseases 0.000 description 3
- 206010070834 Sensitisation Diseases 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 230000008313 sensitization Effects 0.000 description 3
- 230000036262 stenosis Effects 0.000 description 3
- 208000037804 stenosis Diseases 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 239000012780 transparent material Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910001111 Fine metal Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical group [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 231100000216 vascular lesion Toxicity 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 206010057469 Vascular stenosis Diseases 0.000 description 1
- 229910052946 acanthite Inorganic materials 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 229940100890 silver compound Drugs 0.000 description 1
- 150000003379 silver compounds Chemical class 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- XUARKZBEFFVFRG-UHFFFAOYSA-N silver sulfide Chemical compound [S-2].[Ag+].[Ag+] XUARKZBEFFVFRG-UHFFFAOYSA-N 0.000 description 1
- 229940056910 silver sulfide Drugs 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 210000002465 tibial artery Anatomy 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Media Introduction/Drainage Providing Device (AREA)
- Metal Extraction Processes (AREA)
- Materials For Medical Uses (AREA)
Description
この発明は、ステンレス鋼線から成る芯線の金属素線に強加工の伸線加工を行い、又は伸線加工後に一定の温度範囲の低温加熱処理を加えることにより芯線の金属素線の機械的強度特性と直線性等を向上させた医療用ガイドワイヤとその製造方法に関する。 In the present invention, the mechanical strength of the metal wire of the core wire is obtained by subjecting the metal wire of the core wire made of stainless steel wire to a high-strength wire drawing process or applying a low-temperature heat treatment in a certain temperature range after the wire drawing process. The present invention relates to a medical guide wire with improved characteristics, linearity, and the like, and a method for manufacturing the same.
血管内へ挿入する医療用ガイドワイヤは細線、極細線である為、機械的強度特性を考慮して人体への安全確保を満たさなければならず、この為種々の提案がなされている。 Since the medical guide wire inserted into the blood vessel is a thin wire or an extra fine wire, it is necessary to satisfy safety ensuring for the human body in consideration of mechanical strength characteristics, and various proposals have been made.
特許文献1には、高珪素ステンレス鋼(Si:3.0%から5%)を用いて所定の加工度と低温熱処理条件等が記載され、芯材のトルク伝達性向上を目的としている。
しかし、この文献は高珪素ステンレス鋼を用いることに対して、本発明は高珪素ステンレス鋼を用いなくても従来のオーステナイト系ステンレス鋼線(SUS304等)を用いて、芯線の引張破断強度を向上させ、かつ直線性等を向上させた医療用ガイドワイヤを得ることを目的とし、本発明とは技術思想が相違する。
Patent Document 1 describes a predetermined degree of processing and low-temperature heat treatment conditions using high silicon stainless steel (Si: 3.0% to 5%), and aims to improve torque transmission of the core material.
However, while this document uses high silicon stainless steel, the present invention improves the tensile strength of the core wire by using a conventional austenitic stainless steel wire (such as SUS304) without using high silicon stainless steel. The technical idea is different from the present invention for the purpose of obtaining a medical guide wire having improved linearity and the like.
特許文献2には、2800MPa以上の高強度を備えた芯材から成る医療用ガイドワイヤが示され、前記特許文献1と同様に芯材のトルク伝達性の向上を目的としている。
しかし、この芯材は前記同様、高珪素ステンレス鋼から成り、本発明を用いた鋼材(ステンレス鋼SUS304、SUS316等)とは異なり、かつ本発明の芯線の金属素線の引張破断強度を向上させ、かつ直線性等を向上させる技術思想とは相違する。
Patent Document 2 discloses a medical guide wire made of a core material having a high strength of 2800 MPa or more, and aims to improve the torque transmission performance of the core material as in Patent Document 1.
However, this core material is made of high silicon stainless steel as described above, and is different from steel materials using the present invention (stainless steel SUS304, SUS316, etc.), and improves the tensile breaking strength of the metal wire of the core wire of the present invention. This is different from the technical idea of improving linearity and the like.
特許文献3には、金属素線に引張荷重を付与しながら一次捻回加工と二次捻回加工に差を設け、前記捻回加工と同時に電気抵抗加熱により回転操作性の向上を目的としている。 しかしこの製造方法は、金属細線の表面上に滑り線(リューダース線)が発生する近傍までの過捻回加工を意味し、これに対して本発明は、過捻回加工を意味するのではない。 又、引張荷重と捻回数との相関関係における直線性等に関しては何ら解明されていなく、さらに又、金属細線の伸線の総減面率と低温加熱処理による引張破断強度との相関性については何ら記載されていない。 Patent Document 3 aims to improve the rotational operability by applying electrical resistance heating at the same time as the twisting while providing a difference between the primary twisting and the secondary twisting while applying a tensile load to the metal wire. . However, this manufacturing method means over-twisting up to the vicinity where slip lines (Ludders lines) are generated on the surface of the fine metal wire, whereas the present invention does not mean over-twisting. Absent. In addition, the linearity in the correlation between the tensile load and the number of twists has not been elucidated, and the correlation between the total area reduction of the wire drawing of the fine metal wire and the tensile fracture strength by the low temperature heat treatment It is not described at all.
従来の医療用ガイドワイヤにおいて、芯線の金属素線にステンレス鋼線を用いて強加工の伸線加工と低温加熱処理を繰り返して強加工した金属素線と、この強加工した金属素線の熱影響による機械的強度特性向上効果に着目して、強加工の金属素線の引張破断強度が急傾斜増大する温度域で鋼種に適した低温加熱処理を伸線後に加えることにより、芯線の金属素線の引張破断強度を向上させる技術思想に関しては、存在していない。
そしてさらに、高強度の引張破断強度を有する金属素線を用いて金属素線の引張破断強度が急傾斜増大する温度域で鋼種に適した低温加熱処理下での所定条件での捻回加工、又所定条件下での捻回加工後の低温加熱処理により、直線性等を向上させた医療用ガイドワイヤとその製造方法の技術思想に関しては、何ら存在していない。
In a conventional medical guide wire, a stainless steel wire is used as the metal wire of the core wire, and a metal wire that is strongly processed by repeated strong wire drawing and low-temperature heat treatment, and the heat of the strongly processed metal wire Focusing on the effect of improving the mechanical strength characteristics due to the influence, by applying low-temperature heat treatment suitable for the steel type after drawing in a temperature range where the tensile breaking strength of the hard-worked metal wire steeply increases, There is no technical idea to improve the tensile breaking strength of the wire.
And furthermore, twisting under predetermined conditions under low-temperature heat treatment suitable for the steel type in a temperature range in which the tensile breaking strength of the metal strand is steeply increased using a metal strand having a high strength tensile breaking strength, In addition, there is no technical guide wire for improving the linearity and the like by a low-temperature heat treatment after twisting under a predetermined condition and the technical idea of the manufacturing method.
この発明の目的は、芯線に金属素線を用いて、前記金属素線はオーステナイト系ステンレス鋼線の強加工の伸線加工により、又伸線加工と低温加熱処理を累積して、強加工伸線の金属素線の熱的特性を利用して鋼種に適した温度域での低温加熱処理を伸線後に加えることにより、前記金属素線の引張破断強度を向上させ、さらに金属素線の引張破断強度が急傾斜増大する温度域で鋼種に適した低温熱処理下での所定条件下での捻回加工、又は所定条件下での捻回加工後の低温熱処理により、直線性等向上させる技術を開示することにより、耐繰り返し曲げ疲労特性が高く、術者が安全に操作できる医療用ガイドワイヤを提供することにある。 An object of the present invention is to use a metal wire as a core wire, and the metal wire is obtained by a strong wire drawing of an austenitic stainless steel wire, or by accumulating wire drawing and low-temperature heat treatment. By applying a low-temperature heat treatment in a temperature range suitable for the steel type using the thermal characteristics of the metal strand of the wire after drawing, the tensile breaking strength of the metal strand is improved, and the tensile strength of the metal strand is further increased. Technology to improve linearity, etc. by twisting under specified conditions under low-temperature heat treatment suitable for steel types in a temperature range where the breaking strength steeply increases, or by low-temperature heat treatment after twisting under specified conditions Disclosed is to provide a medical guide wire that has high resistance to repeated bending fatigue and can be operated safely by an operator.
請求項1記載の発明は、可とう性細長体から成る芯線と、前記芯線の先端部に前記芯線を貫挿したコイルスプリング体を装着し、前記芯線と前記コイルスプリング体とを接合部材を用いて部分的に接合した医療用ガイドワイヤの製造方法において、前記芯線は金属素線から成り、前記金属素線は、固溶化処理したオーステナイト系ステンレス鋼線の再溶解材を用いて、伸線工程と伸線工程後の低温加熱処理工程とを1セットとして少なくとも1セット以上繰り返した後に、最終伸線工程と最終伸線工程後の低温加熱処理工程とを設けて、
前記最終伸線工程までの総減面率を90%から99.5%とし、前記伸線工程後の低温加熱処理工程及び前記最終伸線工程後の低温加熱処理工程が、300℃から495℃で10分から180分とし、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、300℃から525℃で10分から180分とし、前記最終伸線工程までの前記伸線工程後の低温加熱処理工程による前記金属素線の引張破断強度の増加率の合計が8%以上とし、前記最終伸線工程後の低温加熱処理工程の後に、前記金属素線に、前記金属素線の一端に捻回加工前の前記金属素線の引張破断力の5%から30%の負荷加重を加えた状態で、他端を100回/mから275回/mの捻回加工工程とし、その後、前記金属素線の温度が300℃から495℃で30秒から180分、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、300℃から525℃で30秒から180分の低温加熱処理工程とする、前記捻回加工工程後の前記低温加熱処理工程とし、前記金属素線の引張破断強度をY(kgf/mm2 )とし、総減面率をX(%)とした場合に、450≧Y≧2.150X+70の関係式を満たし、前記金属素線を用いた前記芯線から成ることを特徴とする医療用ガイドワイヤの製造方法である。
この構成により、芯線の破断強度の増加率をより高めて、細線化された芯線を安定的に製造でき、且つ、引張破断強度が急傾斜増大する温度域での鋼種に適した低温熱処理下で、最終伸線工程後の低温加熱処理を施した芯線に捻回加工後の低温加熱処理工程とすることにより、熱間状態で捻回加工を行うよりも冷間状態で捻回加工を行うことのほうが結晶粒の微細化をより促進させ、その後引張破断強度が急傾斜増大する温度域で鋼種に適した低温加熱処理工程とすることにより、より高い直線性・回転伝達性と、より高い引張破断強度の芯線から成る医療用ガイドワイヤを製造することができる。
According to the first aspect of the present invention, a core wire made of a flexible slender body, a coil spring body in which the core wire is inserted into a tip portion of the core wire, are mounted, and the core wire and the coil spring body are used as a joining member. In the manufacturing method of the partially joined medical guide wire, the core wire is composed of a metal wire, and the metal wire is a wire drawing process using a remelted material of austenitic stainless steel wire that has been subjected to a solution treatment. and a low-temperature heat treatment step after the drawing step was repeated at least one or more sets as a set, provided the final drawing step and the final drawing step after the low temperature heat treatment step,
The total area reduction ratio until the final wire drawing step is 90% to 99.5%, and the low temperature heat treatment step after the wire drawing step and the low temperature heat treatment step after the final wire drawing step are performed at 300 ° C. to 495 ° C. 10 minutes to 180 minutes, or when the metal strand is an austenitic stainless steel wire containing Mo, the temperature is from 300 ° C. to 525 ° C. for 10 minutes to 180 minutes, and the low temperature after the wire drawing step until the final wire drawing step The total increase rate of the tensile breaking strength of the metal wire by the heat treatment step is 8% or more, and after the low-temperature heat treatment step after the final wire drawing step , the metal wire is attached to one end of the metal wire. In a state where a load load of 5% to 30% of the tensile breaking force of the metal wire before twisting is applied, the other end is set to a twisting process of 100 times / m to 275 times / m, The temperature of the metal wire is from 300 ° C The twisting step, which is a low-temperature heat treatment step at 495 ° C. for 30 seconds to 180 minutes, or when the metal strand is an austenitic stainless steel wire containing Mo at 300 ° C. to 525 ° C. for 30 seconds to 180 minutes. In the subsequent low-temperature heat treatment step, when the tensile breaking strength of the metal wire is Y (kgf / mm @ 2) and the total area reduction is X (%), 450.gtoreq.Y.gtoreq.2. 15 satisfy the relation of 0X + 70, a medical guide wire manufacturing method which is characterized in that it consists the core wire using the metal wire.
With this configuration, the rate of increase in the breaking strength of the core wire can be further increased, and a thinned core wire can be stably manufactured, and under low temperature heat treatment suitable for steel types in a temperature range where the tensile breaking strength increases steeply. By performing a low-temperature heat treatment step after twisting on a core wire that has been subjected to low-temperature heat treatment after the final wire drawing step , twisting in a cold state is performed rather than twisting in a hot state By further promoting the refinement of crystal grains, and by adopting a low-temperature heat treatment process suitable for the steel type in the temperature range where the tensile fracture strength increases steeply thereafter, higher linearity / rotational transferability and higher tensile strength are achieved. A medical guide wire made of a core wire having a breaking strength can be manufactured.
請求項2記載の発明は、請求項1に記載の医療用ガイドワイヤの製造方法において、前記捻回加工工程が、前記金属素線の一端に捻回加工前の前記金属素線の引張破断力の5%から30%の負荷加重を加えた状態で、他端を100回/mから200回/mの捻回加工工程とし、前記金属素線を用いた前記芯線から成ることを特徴とする医療用ガイドワイヤの製造方法である。
この構成により、低温加熱処理工程が芯線の引張破断強度がより急傾斜増大する温度域で鋼種に適した低温加熱処理条件とし、かつ捻回加工工程が芯線の表層部と内層部の硬度分布の不均質を極めて少なくして均質化させる捻回加工条件とすることにより、芯線の直線性・回転伝達性が極めて高く、先端側の曲がり癖がなく、かつ耐繰り返し曲げ疲労特性をさらに向上させた芯線から成る医療用ガイドワイヤを製造することができる。
According to a second aspect of the invention, the medical guide wire The method according to claim 1, before Symbol twisting processing step, tension of the metal wire before twisting process to one end of the metal wire break It is characterized by comprising the core wire using the metal element wire, with the other end being a twisting process of 100 times / m to 200 times / m with a load applied of 5% to 30% of the force. This is a method for manufacturing a medical guide wire.
With this configuration, the low-temperature heat treatment process is a low-temperature heat treatment condition suitable for the steel type in a temperature range where the tensile breaking strength of the core wire increases more steeply, and the twisting process has a hardness distribution of the surface layer portion and the inner layer portion of the core wire. By adopting the twisting process conditions that homogenize with extremely little inhomogeneity, the core wire has extremely high linearity and rotational transmission, no bending at the tip, and further improved resistance to repeated bending fatigue. A medical guide wire made of a core wire can be manufactured.
請求項3記載の発明は、請求項1又は2に記載の医療用ガイドワイヤの製造方法において、前記捻回加工工程が、前記金属素線の一端に負荷加重を加えた状態で他端を捻回し、前記金属素線の捻回加工前の引張破断力P(kgf)に対する負荷加重W(kgw)の割を負荷加重比X(%)とし、前記負荷加重比X(%)はW÷P×100の関係とした場合に、捻回数N(回/m)は、−0.8X+124≦N≦−1.8X+284の関係式を満たし、前記金属素線を用いた前記芯線から成ることを特徴とする医療用ガイドワイヤの製造方法である。
この構成により、捻回加工工程後の低温加熱処理工程における、前記捻回加工工程の負荷加重と捻回数との相関関係を明確にして、高度の直線性・回転伝達性と高度の引張破断強度特性の双方備えた芯線を用いて成る医療用ガイドワイヤを製造することができる。
According to a third aspect of the invention, the medical guide wire The method according to claim 1 or 2, before Symbol twisting processing step, the other while applying a load weight on one end of the metal filaments Twisting the load weight W (kgw) to the tensile breaking force P (kgf) before twisting of the metal wire is defined as a load weight ratio X (%), and the load weight ratio X (%) is W ÷ In the case of the relationship of P × 100, the number N of twists (times / m) satisfies the relational expression of −0.8X + 124 ≦ N ≦ −1.8X + 284 and is composed of the core wire using the metal strand. It is the manufacturing method of the medical guide wire characterized.
With this configuration, the low-temperature heat processing step after twisting processing step, clarified and a high degree of linearity, the rotation transmission properties and high tensile strength at break the correlation between the number of twist and the load weight of the twisting processing step A medical guide wire using a core wire having both characteristics can be manufactured.
請求項4記載の発明は、請求項3に記載の医療用ガイドワイヤにおいて、前記捻回加工工程が、前記金属素線の一端に負荷加重を加えた状態で他端を捻回し、前記金属素線の捻回加工前の引張破断力P(kgf)に対する負荷加重W(kgw)の割合を負荷加重比X(%)とし、前記負荷加重比X(%)はW÷P×100の関係とした場合に、捻回数N(回/m)は、−0.8X+124≦N≦−2.8X+264の関係式を満たし、前記金属素線を用いた前記芯線から成ることを特徴とする医療用ガイドワイヤの製造方法である。
この構成により、捻回加工工程後の低温加熱処理工程における、前記捻回加工工程の負荷加重と捻回数との相関関係をより明確にして、より高度の直線性・回転伝達性と、より高度の引張破断強度特性の双方備えた芯線を用いて成る医療用ガイドワイヤを製造することができる。
According to a fourth aspect of the present invention, in the medical guidewire according to the third aspect , in the twisting process, the other end is twisted with a load applied to one end of the metal strand, The ratio of the load weight W (kgw) to the tensile breaking force P (kgf) before the wire twisting process is defined as a load weight ratio X (%), and the load weight ratio X (%) is expressed as W ÷ P × 100. In this case, the medical guide is characterized in that the number N of twists (times / m) satisfies the relational expression of −0.8X + 124 ≦ N ≦ −2.8X + 264 and is composed of the core wire using the metal strand. It is a manufacturing method of a wire.
With this configuration, the low-temperature heat processing step after twisting processing step, and a correlation between the number of twist and the load weight of the twist processing steps clearer, and higher degree of linearity-rotation transmission, more sophisticated It is possible to manufacture a medical guide wire using a core wire having both of the tensile rupture strength characteristics.
この発明の最良の実施形態を図に示すとともに説明する。 The best embodiment of the present invention will be described with reference to the drawings.
図1は、本発明の実施例1の医療用ガイドワイヤ(以下ガイドワイヤという)1Aを示し、芯線2の芯線先端部21には、同軸的に外嵌めされたコイルスプリング体(以下コイル体)3を有し、コイル体3の先端側には金、白金、タングステン等の放射線不透過材コイル31と、後端側にはステンレス鋼線の線直径d0 が0.050mmから0.095mmの金属素線を巻回成形した放射線透過材コイル32から成り、そして芯線2の芯線先端部21には、中間接合部である中間前側接合部41と中間後側接合部42、及び後端接合部43により、芯線2と放射線不透過材コイル31、又は放射線透過材コイル32とが接合部材4を用いてそれぞれ部分的に接合され、又芯線2の先端端部に先丸形状の円柱状の先導栓5が接合部材4により部分的に接合され、芯線2と線直径が0.050mmから0.095mmの金属線を巻回成形した放射線不透過材コイル31とを接合している。
尚、中間前側接合部41は、放射線不透過材コイル31の片端と放射線透過材コイル32の片端とが当接し、又はねじ込まれて異種金属どうしが一体化接合され、かつ芯線先端部21と接合部材4を用いて部分的に接合している。
FIG. 1 shows a medical guide wire (hereinafter referred to as a guide wire) 1A according to a first embodiment of the present invention, and a coil spring body (hereinafter referred to as a coil body) that is coaxially fitted around the core wire tip 21 of the core wire 2. 3, a radiopaque coil 31 made of gold, platinum, tungsten or the like on the front end side of the coil body 3 and a metal having a wire diameter d0 of stainless steel wire on the rear end side of 0.050 mm to 0.095 mm. The core wire 2 includes a radiation transmitting material coil 32 formed by winding a strand, and the core wire tip 21 of the core wire 2 includes an intermediate front joint 41, an intermediate rear joint 42, and a rear joint 43, which are intermediate joints. Accordingly, the core wire 2 and the radiopaque material coil 31 or the radiopaque material coil 32 are partially joined by using the joining member 4, and a rounded cylindrical lead plug at the tip end portion of the core wire 2. 5 is joined by the joining member 4 Manner is joined to, and bonding the core wire 2 and the radiopaque material coil 31 the line diameter is wound forming a metal wire 0.095mm from 0.050 mm.
The intermediate front side joining portion 41 has one end of the radiopaque material coil 31 and one end of the radiation transmissible material coil 32 abutting or screwed together so that dissimilar metals are integrally joined and joined to the core wire tip 21. The members 4 are partially joined.
そして放射線透過材コイル32は、コイル線の金属素線の線直径d が0.050mmから0.095mmで、コイル体3の外径D1 、D2 が概ね0.228mmから0.457mmで、長手方向の長さは30mmから300mmのオーステナイト系ステンレス鋼線から成っている。又、芯線2の芯線先端部21の先端から長手方向の約300mmは、概ね0.060mmから0.200mmの細径の線で、残りの芯線手元部22は、長手方向に約1200mmから約2700mmで、外径D7 が0.228mmから0.457mmから成る太径の線から成っている。芯線先端部21の細径部分は、先端側へ徐変縮径し、その断面形状は円形断面、又は矩形断面(図示(ニ))いずれの形状であってもよい。又、芯線2及びコイル体3の外周部にふっ素樹脂、又はウレタン樹脂等の樹脂被膜6が形成され、その外周部には、湿潤時に潤滑特性を示すポリビニルピロリドン等の親水性被膜7が形成され、コイル体3は外周を直接接触する前記樹脂被膜6と、前記親水性被膜7との二層構造により密閉状に包被されている。尚、図示(ハ)は、中間後側接合部42のA- A断面図を示す。 The radiation transmitting material coil 32 has a coil wire having a wire diameter d 1 of 0.050 mm to 0.095 mm, and outer diameters D 1 and D 2 of the coil body 3 of approximately 0.228 mm to 0.457 mm. The length is made of an austenitic stainless steel wire of 30 mm to 300 mm. Further, about 300 mm in the longitudinal direction from the distal end of the core wire tip 21 of the core wire 2 is a thin wire having a diameter of about 0.060 mm to 0.200 mm, and the remaining core wire proximal portion 22 is about 1200 mm to about 2700 mm in the longitudinal direction. Thus, the outer diameter D7 consists of a thick line consisting of 0.228 mm to 0.457 mm. The small-diameter portion of the core wire tip 21 gradually changes and contracts toward the tip, and the cross-sectional shape thereof may be either a circular cross-section or a rectangular cross-section (shown (D)). In addition, a resin film 6 such as a fluorine resin or a urethane resin is formed on the outer periphery of the core wire 2 and the coil body 3, and a hydrophilic film 7 such as polyvinyl pyrrolidone that exhibits lubricating characteristics when wet is formed on the outer periphery. The coil body 3 is hermetically encapsulated by a two-layer structure of the resin coating 6 and the hydrophilic coating 7 that directly contact the outer periphery. In addition, illustration (C) shows an AA cross-sectional view of the intermediate rear joint 42.
そして芯線2は、金属素線から成り、前記金属素線は、固溶化処理したオーステナイト系ステンレス鋼線を用いて、総減面率が90%から99.5%の伸線加工を行い、引張破断強度が250kgf/mm2 以上450kgf/mm2 以下であることを特徴とする。 尚、ここいう総減面率とは、固溶化処理した線材を用いて線材(例えば1050℃の熱処理により引張破断強度が60kgf/mm2 から80kgf/mm2 の性質をもつ線材)の伸線前の線径と、複数のダイスを用いた伸線工程を経て最終伸線の仕上がりの線径との間の断面積差を減少率で表したものをいい、後述する表1〜3内において、複数のダイスを用いて伸線しても一伸線工程を経た場合を減面率とし、全伸線工程(表内では一次伸線、又は一次伸線から二次伸線まで等の伸線工程)を経た減面率を総減面率として説明上区分する。又、引張破断強度とは、線材に引張力を加えて破断した時の値を線材の断面積で除した値のことをいい、引張破断力とは、線材に引張力を加えて破断した時の値のことをいう。又、ここでいう「低温加熱処理」は、引張破断強度の低下、及び硬度を低下させて鋼線を軟化させる焼きなまし、又は低温焼きなまし、並びに変態点以上(例Ac3 約730℃以上)で加熱する焼きならしとは異なり、引張破断強度が増大して機械的性質を向上させる熱処理、と位置づけて「低温加熱処理」と呼称し区別する。 The core wire 2 is composed of a metal strand, and the metal strand is drawn using a solution-treated austenitic stainless steel wire with a total area reduction of 90% to 99.5%. The breaking strength is 250 kgf / mm 2 or more and 450 kgf / mm 2 or less. Here, the total area reduction ratio means a wire before drawing of a wire using a solid solution-treated wire (for example, a wire having a property of tensile fracture strength of 60 kgf / mm 2 to 80 kgf / mm 2 by heat treatment at 1050 ° C.). The cross-sectional area difference between the diameter and the finished wire diameter of the final wire drawn through a wire drawing process using a plurality of dies is referred to as a reduction rate. Even if the wire is drawn using a die, the area is reduced after the first wire drawing step, and the entire wire drawing step (in the table, the primary wire drawing, or the wire drawing step from the primary wire to the secondary wire) is performed. The reduction in area is classified as the total reduction in area for explanation. In addition, the tensile breaking strength is a value obtained by dividing the value obtained when a tensile force is applied to a wire by the sectional area of the wire, and the tensile breaking force is a value obtained when a tensile force is applied to the wire. Means the value of In addition, the “low temperature heat treatment” referred to here is annealing that lowers the tensile strength at break and softens the steel wire by reducing the hardness, or low temperature annealing, and heats above the transformation point (eg, Ac3 about 730 ° C. or higher). Unlike normalizing, it is called “low temperature heat treatment” and distinguished from heat treatment in which the tensile strength at break increases and mechanical properties are improved.
そして前記金属素線を「固溶化処理したオーステナイト系ステンレス鋼線の伸線加工」としたのは、加工性のよいオーステナイト組織を得る為であり、オーステナイト系ステンレス鋼線は変態点を利用した熱処理による結晶粒の微細化ができず、冷間加工によってのみ結晶粒の微細化が可能で、伸線加工により顕著な加工硬化性を示して引張強度を向上させることができるからである。又オーステナイト系ステンレス鋼線を用いる理由は、マルテンサイト系ステンレス鋼線では熱処理による焼入硬化性を示して熱影響を受け易く、析出硬化系ステンレス鋼線(SUS630等)では靭性が不足してコイル成形加工時に断線が発生し易く、又フェライト系ステンレス鋼線では温度脆性(シグマ脆性)の問題があるからである。 And, the above-mentioned metal element wire was made into “solution-drawn austenitic stainless steel wire drawing” in order to obtain an austenitic structure with good workability, and the austenitic stainless steel wire was heat-treated using a transformation point. This is because the crystal grains cannot be refined by the above-described method, the crystal grains can be refined only by cold working, and the tensile strength can be improved by exhibiting remarkable work-hardness by the wire drawing. Also, the reason for using austenitic stainless steel wire is that martensitic stainless steel wire shows quench hardenability by heat treatment and is easily affected by heat, and precipitation hardened stainless steel wire (SUS630 etc.) has insufficient toughness and is a coil. This is because breakage is likely to occur during forming, and the ferritic stainless steel wire has a problem of temperature brittleness (sigma brittleness).
そして芯線2とコイル体3とを、はんだ付け、又はろう付けとして接合部材4を用いて接合する中間前側接合部41では、線直径0.050mmから0.095mmの放射線不透過材コイル31と、金属線の線直径d0 が0.050mmから0.095mmの放射線透過材コイル32との端部が当接し、又はねじ込まれて、この当接部又はねじ込み部と線直径が0.060mmから0.150mmの芯線2との接合で、又中間後側接合部42では、前記同様の金属線の線直径の放射線透過材コイル32と、金属素線の線直径が0.100mmから0.200mm程度の芯線2との接合で、前記中間前側接合部41と前記中間後側接合部42の芯線2との接合形状は幅L1 、L2 が約0.3mmから1.5mm程度で、外径D3 、D4 が0.232mmから0.480mm程度のいずれもドーナツ状の略円筒形状であり、又後端接合部43は、前記同様の金属線の線直径d0 の放射線透過コイル材32と、金属素線の線直径0.200mmから0.345mm程度の芯線2との接合で、その接合形状は、幅L3 が約0.3mmから3mm程度で外径D5 が0.232mm程度から0.480mm程度の円筒状、又は手元側が先細りの略円錐形状である。 And in the intermediate front side joining part 41 which joins the core wire 2 and the coil body 3 using the joining member 4 as soldering or brazing, the radiopaque material coil 31 having a wire diameter of 0.050 mm to 0.095 mm, An end of the metal wire with a radiation transmitting material coil 32 having a wire diameter d0 of 0.050 mm to 0.095 mm comes into contact with or is screwed, and the wire diameter ranges from 0.060 mm to 0.005 mm. In the joining with the core wire 2 of 150 mm, and in the intermediate rear side joining portion 42, the radiation transmitting material coil 32 having the same metal wire diameter as described above and the wire diameter of the metal strand is about 0.100 mm to 0.200 mm. In the joining with the core wire 2, the joining shape of the intermediate front side joining portion 41 and the core wire 2 of the intermediate rear side joining portion 42 is such that the widths L1 and L2 are about 0.3 mm to 1.5 mm and the outer diameters D3 and D4. Is 0.232 Each of mm to 0.480 mm has a substantially cylindrical shape like a donut, and the rear end joint 43 includes a radiation transmitting coil material 32 having a wire diameter d0 of the same metal wire as described above and a wire diameter 0 of the metal strand. In the joining with the core wire 2 of about 200 mm to 0.345 mm, the joining shape is a cylindrical shape having a width L3 of about 0.3 mm to about 3 mm and an outer diameter D5 of about 0.232 mm to about 0.480 mm, or at hand It has a substantially conical shape with a tapered side.
又、先導栓5は、接合部材4を用いて前記同様の金属線の線直径の放射線不透過材コイル31と、金属素線の線直径が0.060mmから0.100mm程度の円形断面形状、又は矩形断面形状23(図示(ニ))の芯線2との接合で、その接合形状は、幅L4 が0.2mmから1.5mm程度で外径D が0.232mmから0.480mm程度の先端側が先丸形状の略円柱状の先導栓5を示し、この形状は先丸形状でなくとも円筒、半球状、先端側へ円錐形状のいずれでもよい。尚、ここでいう接合部材4を用いて部分的に接合するとは、前記実施例1で接合部材4を用いて接合する中間接合部(符号41、42)、後端接合部43、及び先導栓5のコイル体3と芯線2との接合形態のことをいう。
従って、中間接合部(符号41、42)が無く、先導栓5と後端接合部43のみであってもよい。尚、コイル体3は、後述する放射線不透過材の金属線と、放射線透過材の金属線との異種金属のそれぞれの端部を溶接接合した後、伸線加工を行った線材をコイル状に巻回成形したコイル体構造としてもよい。
Further, the leading plug 5 is composed of a radiopaque material coil 31 having the same metal wire diameter as described above using the joining member 4 and a circular cross-sectional shape having a wire diameter of about 0.060 mm to 0.100 mm. Alternatively, it is joined to the core wire 2 having a rectangular cross-sectional shape 23 (shown (D)), and the joined shape is a tip having a width L4 of about 0.2 mm to 1.5 mm and an outer diameter D of about 0.232 mm to 0.480 mm. A substantially cylindrical lead plug 5 having a rounded tip side is shown, and this shape may be any of a cylindrical shape, a hemispherical shape, and a conical shape toward the distal end side, even if it is not a rounded shape. The partial joining using the joining member 4 here means that the intermediate joining portion (reference numerals 41 and 42), the rear end joining portion 43, and the leading plug that are joined using the joining member 4 in the first embodiment. 5 is a joining form of the coil body 3 and the core wire 2.
Therefore, there is no intermediate joint (reference numerals 41 and 42), and only the leading plug 5 and the rear end joint 43 may be provided. In addition, the coil body 3 welds and joins each end part of the dissimilar metal of the metal wire of the radiopaque material and the metal wire of the radiopaque material, which will be described later, and then wire-drawn the wire into a coil shape. A coil body structure formed by winding may be used.
次に、表1〜2は、本発明の芯線2に用いる金属素線を示し、又表3は比較例を示す。 Next, Tables 1-2 show the metal strands used for the core wire 2 of the present invention, and Table 3 shows a comparative example.
表1、2は、本発明の芯線2に用いる金属素線を示し、固溶化処理したオーステナイト系ステンレス鋼線の引張破断強度が70kgf/mm2 の線材(母線)の線直径1.080mmを用いて減面率が87.6%として線直径が0.380mmの一次伸線加工を行い、その後420℃、75分で一次低温加熱処理を行い、その後減面率を19.9%として二次伸線加工を行い、総減面率が90%で線直径が0.340mmで引張破断強度を252kgf/mm2 とした金属素線1a、又同様に線材(母線)の線直径1.390mmを用いて、一次伸線、一次低温加熱処理、二次伸線を行い、総減面率が94.0%として線直径が0.340mmで引張破断強度を267kgf/mm2 とした金属素線1c、又同様に線材(母線)の線直径1.320mmを用いて、一次伸線、一次低温加熱処理、二次伸線を行い、総減面率が97.0%として線直径が0.228mm(0.009インチ)で引張破断強度を296kgf/mm2 とした金属素線1eである。 Tables 1 and 2 show the metal wires used for the core wire 2 of the present invention, using a wire diameter (1.080 mm) of a wire rod (bus wire) having a tensile breaking strength of 70 kgf / mm @ 2 for a solution treated austenitic stainless steel wire. The primary drawing was performed with a reduction in area of 87.6% and a wire diameter of 0.380 mm, followed by primary low-temperature heat treatment at 420 ° C. for 75 minutes, and then secondary reduction with an area reduction of 19.9%. Using wire processing, a metal strand 1a having a total area reduction of 90%, a wire diameter of 0.340 mm and a tensile breaking strength of 252 kgf / mm 2, and a wire diameter (bus wire) of 1.390 mm is also used. , Primary wire drawing, primary low-temperature heat treatment, secondary wire drawing, a metal wire 1c having a total area reduction rate of 94.0%, a wire diameter of 0.340 mm, and a tensile breaking strength of 267 kgf / mm 2, or the like The wire diameter of the wire (bus) is 1.3 Using 0 mm, primary wire drawing, primary low-temperature heat treatment, and secondary wire drawing were performed, the total area reduction rate was 97.0%, the wire diameter was 0.228 mm (0.009 inch), and the tensile strength at break was 296 kgf / This is a metal wire 1e of mm2.
そして、金属素線1b、1d、1fはそれぞれ金属素線1a 、1c、1e の最終伸線後に二次低温加熱処理を加えて引張破断強度を向上させて257kgf/mm2 から321kgf/mm2 としたものである。又金属素線1gは、再溶解材を用いた金属素線の実施例を示し、固溶化処理したオーステナイト系ステンレス鋼線の引張破断強度が70kgf/mm2 の線材(母線)の線直径が3.230mmを用いて総減面率を99.5%として、金属素線の線直径が0.228mmで引張破断強度を400kgf/mm2 としたものであり、金属素線1hは、前記金属素線1gの最終伸線後(三次伸線後)に、三次低温加熱処理を加えて引張破断強度を424kgf/mm2 としたものである。
そして、表3は、総減面率が80.8%の場合の一次伸線のものを比較例1とし、比較例1に対して一次低温熱処理したもの比較例2として加えた。尚、前記金属素線1a〜1dは、SUS304材を用い、又金属素線1e〜1hは、Moを2重量%から3重量%を含むSUS316材を用い、そのうち金属素線1g、1hは後述する再溶解材のSUS316材を用いた。
The metal strands 1b, 1d, and 1f are subjected to secondary low-temperature heat treatment after the final drawing of the metal strands 1a, 1c, and 1e, respectively, to improve the tensile breaking strength to 257 kgf / mm 2 to 321 kgf / mm 2. It is. Further, 1 g of a metal wire represents an example of a metal wire using a remelted material. The wire diameter of a wire material (bus wire) having a tensile breaking strength of 70 kgf / mm 2 of a solidified austenitic stainless steel wire is 3. 230 mm is used, the total area reduction rate is 99.5%, the wire diameter of the metal strand is 0.228 mm, and the tensile breaking strength is 400 kgf / mm 2. The metal strand 1h is the metal strand 1g After the final wire drawing (after the third wire drawing), a third low-temperature heat treatment is applied to obtain a tensile breaking strength of 424 kgf / mm 2.
In Table 3, Comparative Example 1 is the primary wire drawing when the total area reduction is 80.8%, and Comparative Example 2 is added as a comparative low temperature heat treatment for Comparative Example 1. The metal strands 1a to 1d are made of SUS304 material, and the metal strands 1e to 1h are made of SUS316 material containing 2 to 3% by weight of Mo, of which the metal strands 1g and 1h are described later. The re-melting material SUS316 was used.
表1〜3によれば、総減面率が90%、94.0%の実施例1b、1 dは、金属素線1a、1cの最終伸線後(二次伸線後)に温度範囲が180℃から495℃で二次低温加熱処理(本実施例では420℃、75分)を加えることにより、引張破断強度の増加率は、それぞれ14.1.%、17.5%となり総減面率80. 8%の比較例2に対して約4.4倍から約5.5倍向上する。
そして総減面率が97.0%の金属素線1fは、金属素線1e の一次伸線後に前記同様の一次低温加熱処理を行い、その後最終伸線(二次伸線)を行ったものに前記同様の二次低温加熱処理を加えることにより、引張破断強度の増加率の合計は、21.7%となり前記総減面率が80.8%の比較例2に対して約6.8倍向上する。
そして、又総減面率が99.5%の金属素線1hの引張破断強度は424kgf/mm2 となって実施例の中で最も高い値を示し、総減面率99.5%で引張破断強度は400kgf/mm2 以上を確保することができ、そして引張破断強度の増加率の合計は38.1%となり、比較例2に対して約11.9倍向上している。
According to Tables 1 to 3, Examples 1b and 1d having a total area reduction of 90% and 94.0% are in the temperature range after the final wire drawing (after the secondary wire drawing) of the metal strands 1a and 1c. Is subjected to secondary low-temperature heat treatment (420 ° C., 75 minutes in this example) at 180 to 495 ° C., the increase rate of the tensile strength at break is 14.1. %, And 17.5%, which is an improvement of about 4.4 to 5.5 times that of Comparative Example 2 having a total area reduction rate of 80.8%.
The metal wire 1f having a total area reduction rate of 97.0% was subjected to the same primary low-temperature heat treatment as described above after the primary wire drawing of the metal wire 1e, and then the final wire drawing (secondary wire drawing). By adding the same secondary low-temperature heat treatment to the above, the total increase rate of the tensile strength at break is 21.7%, which is about 6.8 compared to Comparative Example 2 in which the total area reduction rate is 80.8%. Double the improvement.
Further, the tensile strength at break of metal wire 1h having a total area reduction of 99.5% was 424 kgf / mm @ 2, the highest value in the examples, and the tensile break at a total area reduction of 99.5%. The strength can be ensured to be 400 kgf / mm 2 or more, and the total increase rate of the tensile strength at break is 38.1%, which is about 11.9 times higher than that of Comparative Example 2.
そして補足すれば、表1、2によれば金属素線1a〜1fの最終伸線(二次伸線)までの低温加熱処理(一次低温加熱処理)の引張破断強度の増加率は12.1%から13.3%となり8%以上であり、又金属素線1g〜1hの最終伸線(三次伸線)までの低温加熱処理(一次、二次低温加熱処理)の引張破断強度の増加率の合計は、32.1%となって8%を大きく超えて10%以上である。 In addition, according to Tables 1 and 2, according to Tables 1 and 2, the rate of increase in tensile fracture strength of the low-temperature heat treatment (primary low-temperature heat treatment) until the final wire drawing (secondary wire drawing) of the metal strands 1a to 1f is 12.1. % To 13.3%, which is 8% or more, and the rate of increase in tensile fracture strength of low-temperature heat treatment (primary and secondary low-temperature heat treatment) until the final wire drawing (tertiary wire drawing) of the metal wire 1g to 1h. The total of 32.1% is well over 8% and 10% or more.
そして図2は、前記表1〜3の最終伸線後に低温加熱処理を加えた各実施例(金属素線1b、1d、1f、1h)及び比較例2の総減面率(%)と引張破断強度(kgf/mm2 )との関係を示した図で、総減面率が90%近傍を境にして引張破断強度がより増大する変曲点が存在し、さらに総減面率94%近傍と97%近傍では急激に増大する変曲ポイントとなっている。
つまり、総減面率90%の金属素線1bの低温加熱処理による引張破断強度の増加率の合計は、14.1%で、同様に総減面率94%の金属素線1dは17.5%となって、総減面率90%の金属素線1bよりも3.4%増大し、同様に総減面率97%の金属素線1fは、21.7%となって総減面率94%の金属素線1dよりも4.2%増大し、総減面率99.5%の金属素線1hに至っては、総減面率97%の金属素線1fよりも16.4%増大している。
以上のことから明らかに、芯線2に用いる金属素線の伸線の総減面率が90%から99.5%において引張破断強度は急激に増大し、そして前記金属素線を伸線加工後の所定条件で低温加熱処理を加えることにより、前記金属素線の引張破断強度はさらに増大する。 そして本発明の金属素線の各実施例における最終伸線までの低温加熱処理の引張破断強度の増加率の合計は、少なくとも8%を超えて10%以上であることを示し、その結果引張破断強度は250kgf/mm2 を超え、252kgf/mm2 から424kgf/mm2 の金属素線から成る芯線2を得ることができる。
FIG. 2 shows the total area reduction ratio (%) and tension of each Example (metal strands 1b, 1d, 1f, 1h) and Comparative Example 2 in which low-temperature heat treatment was applied after the final wire drawing in Tables 1 to 3 above. The figure shows the relationship with the breaking strength (kgf / mm2), where there is an inflection point where the tensile breaking strength increases further when the total area reduction is about 90%, and the total area reduction is about 94%. In the vicinity of 97%, the inflection point increases rapidly.
That is, the total increase rate of the tensile breaking strength by low-temperature heat treatment of the metal strand 1b having a total area reduction of 90% is 14.1%, and similarly, the metal strand 1d having a total area reduction of 94% is 17. 5%, a 3.4% increase over the metal wire 1b with a total surface reduction rate of 90%, and similarly, the metal wire 1f with a total surface reduction rate of 97% has a total decrease of 21.7%. It increases by 4.2% compared to the metal wire 1d having a surface area of 94%, and the metal wire 1h having a total surface area reduction of 99.5% is 16. 4% increase.
From the above, it is clear that the tensile breaking strength sharply increases when the total area reduction ratio of the metal strand used for the core wire 2 is 90% to 99.5%, and after drawing the metal strand By applying a low-temperature heat treatment under the predetermined conditions, the tensile strength at break of the metal strand is further increased. And the total of the increase rate of the tensile fracture strength of the low-temperature heat treatment until the final wire drawing in each Example of the metal strand of the present invention shows that it exceeds 10% and at least 8%, and as a result, tensile fracture The strength exceeds 250 kgf / mm @ 2, and a core wire 2 made of metal strands of 252 kgf / mm @ 2 to 424 kgf / mm @ 2 can be obtained.
そして又、芯線2に用いる金属素線の伸線加工における総減面率は、90%から99.5%が望ましく、より好ましくは94%以上99.5%で、さらに好ましくは97%以上99.5%以下で、総減面率の上限は99%以下がより好ましい。
そして、総減面率が90%以上としたのは、総減面率が80%(ばね第3版丸善株式会社63頁、図2.82参照)を超えて、90%以上を境にして、さらに引張破断強度が増大する変曲ポイントを見出したからである。(図2)
そして又、より好ましくは94%以上で、さらに好ましくは97%以上99.5%以下とした理由は、総減面率が94%、97%に至っては、前記したように引張破断強度がより飛躍的に増大する変曲ポイントを見出したからであり、そして総減面率が99.5%以下としたのは、これを超える伸線加工の強い加工度では、金属組織内に空隙が生じはじめて脆化が著しく、金属素線の断線が発生し易くなるからである。
そしてさらに又、最も好ましい態様として総減面率の上限を99%としたのは、特に芯線2の芯線先端部21は、押圧加工により矩形断面形状とする場合が多く(図1図示(ニ))、かかる場合に前記高強度の引張破断強度を有する金属素線は、押圧加工時に伸びが不足している為、芯線先端部21の外側外周部の表面に割れが発生し易く、所定寸法の押圧加工が困難となるからである。
Further, the total area reduction ratio in the wire drawing of the metal wire used for the core wire 2 is desirably 90% to 99.5%, more preferably 94% or more and 99.5%, and still more preferably 97% or more and 99. More preferably, the upper limit of the total area reduction is 99% or less.
And the total area reduction rate is set to 90% or more because the total area reduction rate exceeds 80% (see page 3 of Spring 3rd edition Maruzen Co., Ltd., page 2.82), and 90% or more is the boundary. This is because an inflection point where the tensile strength at break is further increased was found. (Figure 2)
Further, it is more preferably 94% or more, and further preferably 97% or more and 99.5% or less. When the total area reduction is 94% or 97%, as described above, the tensile fracture strength is higher. This is because an inflection point that dramatically increases was found, and the total area reduction rate was set to 99.5% or less. With a high degree of wire drawing that exceeds this, voids began to form in the metal structure. This is because the embrittlement is remarkable and the disconnection of the metal element wire is likely to occur.
Furthermore, the most preferable aspect is that the upper limit of the total area reduction rate is 99%, in particular, the core wire tip 21 of the core wire 2 is often formed into a rectangular cross-sectional shape by pressing (see FIG. 1 (D)). In such a case, since the metal strand having the high tensile breaking strength is insufficiently stretched during the pressing process, the surface of the outer peripheral portion of the core wire tip 21 is likely to crack, and has a predetermined dimension. This is because pressing becomes difficult.
そして補足すれば、芯線先端部21は、芯線2の先端部の外周に研削加工を行って先端側へ徐変縮径させ、又最先端部に押圧加工を行い、矩形断面形状(図1、符号(ニ))とする為、研削加工、又は押圧加工により局部的に集中応力、残留歪が発生している。
芯線先端部21の押圧加工は、前記金属素線の最終低温加熱処理を行った後に押圧加工をしてもよいが、最終伸線後(前記金属素線1a〜1fでは二次伸線、金属素線1g、1hでは三次伸線)に押圧加工を行い、その後所定条件での低温加熱処理を施すことが望ましい。
この理由は、最終伸線後に低温加熱処理を行い、その後高強度の引張破断強度を有する金属素線に押圧加工を行うよりも、高強度の金属素線の伸び不足による芯線先端部21の外表面の傷、割れの発生がなく、そして押圧加工後に低温加熱処理を施すことのほうが押圧加工による局部的に発生した集中応力を除去して均質化させ、残留歪を除去して耐繰り返し疲労特性の高い芯線2を得ることができるからである。
In addition, the tip end portion 21 of the core wire is ground on the outer periphery of the tip end portion of the core wire 2 so as to be gradually changed and reduced in diameter toward the tip end, and pressed on the most distal end portion to obtain a rectangular cross-sectional shape (FIG. 1, Therefore, concentrated stress and residual strain are locally generated by grinding or pressing.
The pressing process of the core wire tip 21 may be performed after the final low-temperature heat treatment of the metal strand, but after the final drawing (secondary drawing, metal in the metal strands 1a to 1f). It is desirable to perform pressing on the strands 1g and 1h (third wire drawing) and then perform low-temperature heat treatment under predetermined conditions.
The reason for this is that the low-temperature heat treatment is performed after the final wire drawing and then the metal wire having a high strength tensile breaking strength is pressed, and the outside of the core wire tip 21 due to insufficient elongation of the high strength metal wire. No scratches or cracks on the surface, and low-temperature heat treatment after pressing removes localized stress generated by pressing and homogenizes, removes residual strain and repeats fatigue resistance This is because a high core wire 2 can be obtained.
そしてさらに補足すれば、芯線先端部21と放射線透過材コイル32との双方を接合部材4を用いて部分的に接合して、後述する接合部材4の溶融熱を利用することにより、組付け後であっても各金属素線の引張破断強度を向上させ、かつ芯線先端部21全体にわたって局部的に発生した集中応力、残留歪を同時に除去して、耐繰り返し曲げ疲労特性の高い芯線2から成るガイドワイヤ1Aを得ることができる。 If further supplemented, both the core wire tip portion 21 and the radiation transmitting material coil 32 are partially joined using the joining member 4 and the heat of fusion of the joining member 4 described later is utilized, so that after assembly. Even so, the tensile breaking strength of each metal element wire is improved, and concentrated stress and residual strain that are locally generated over the entire core wire tip 21 are simultaneously removed, so that the core wire 2 having high repeated bending fatigue resistance is formed. A guide wire 1A can be obtained.
そして表1〜2によれば、金属素線1a〜1hにみられるように伸線工程と伸線工程後に所定条件の低温加熱処理工程を設けて、前記伸線工程と前記低温熱処理工程を1セットとして少なくとも1セット以上各工程を繰り返した後に最終伸線工程を設けて、前記最終伸線工程までの総減面率が90.0%から99.5%のときには、前記最終伸線までの前記低温加熱処理による前記金属素線の引張破断強度の増加率の合計は12.1%から32.1%となって8%を大きく超え、又同様に総減面率が94.0%から99.5%のときには12.1%から32.1%となり、前記同様に総減面率が97.0%から99.5%のときには13.3%から32.1%となって10%以上であることを示している。
又、金属素線の線直径が0.228mmの金属素線1hは、固溶化処理したオーステナイト系ステンレス鋼線でMoを2重量%から3重量%含むSUS316材の、後述する再溶解材で、引張破断強度が70kgf/mm2 の線材(母線)の線直径3.230mmを用いて、一次伸線後180℃から525℃で10分から180分の熱処理炉を用いた炉内での雰囲気加熱による一次低温加熱処理(本実施例では450℃で30分)を行い、その後二次伸線を行い、さらに前記一次低温加熱処理と同条件で二次低温加熱処理を行い、その後三次伸線(本実施例では最終伸線)を行い、総減面率を99.5%として引張破断強度を400kgf/mm2 とし、さらに前記一次、二次低温加熱処理と同条件で三次低温加熱処理を行った金属素線1hは、引張破断強度が424kgf/mm2 となり、前記各実施例の中で最も高い値を示す。従って、総減面率が99.5%で引張破断強度は400kgf/mm2 を確保することができる。
そしてこのように伸線と低温加熱処理を1セットとして、このセット回数を増やすことにより、又後述する製造方法を用いることにより金属素線の引張破断強度を450kgf/mm2 に向上させることができる。
And according to Tables 1-2, the low temperature heat treatment process of a predetermined condition is provided after a wire drawing process and a wire drawing process so that metal strands 1a-1h may be seen, and the wire drawing process and the low temperature heat treatment process are 1 A final wire drawing step is provided after repeating each step at least one set as a set, and when the total area reduction ratio until the final wire drawing step is 90.0% to 99.5%, The total increase rate of the tensile strength at break of the metal wire due to the low-temperature heat treatment is 12.1% to 32.1%, greatly exceeding 8%. Similarly, the total area reduction rate is 94.0%. When it is 99.5%, it is 12.1% to 32.1%. Similarly, when the total area reduction is 97.0% to 99.5%, it is 13.3% to 32.1% and 10%. It is shown above.
Further, the metal strand 1h having a wire diameter of 0.228 mm is a remelted material, which will be described later, of a SUS316 material containing 2 to 3% by weight of Mo with a solution-treated austenitic stainless steel wire. Primary by heating in a furnace using a heat treatment furnace at 180 ° C. to 525 ° C. for 10 minutes to 180 minutes after primary wire drawing using a wire diameter of 3.230 mm of a wire rod (bus wire) having a tensile breaking strength of 70 kgf / mm 2 Perform low-temperature heat treatment (in this embodiment, at 450 ° C. for 30 minutes), then perform secondary wire drawing, further perform secondary low-temperature heat treatment under the same conditions as the primary low-temperature heat treatment, and then perform tertiary wire drawing (this embodiment) In the example, the final wire drawing was performed, the total area reduction was 99.5%, the tensile strength at break was 400 kgf / mm @ 2, and the metal element was subjected to the third low temperature heat treatment under the same conditions as the first and second low temperature heat treatment. Line 1h is The tensile breaking strength is 424 kgf / mm @ 2, which is the highest value in each of the above examples. Accordingly, it is possible to ensure a total area reduction of 99.5% and a tensile breaking strength of 400 kgf / mm @ 2.
In this way, the drawing and low-temperature heat treatment are set as one set, and the number of times of setting is increased, and the tensile breaking strength of the metal strand can be improved to 450 kgf / mm @ 2 by using the manufacturing method described later.
そして芯線2に用いる金属素線の引張破断強度の上限は450kgf/mm2 以下が好ましく、より好ましくは400kgf/mm2 以下である。
この理由は、伸線の総減面率の上限を設けたことと同様に、前記上限を超えると高強度の引張破断強度を有する金属素線は伸びが不足している為、芯線2の芯線先端部21の断面形状を矩形断面(図1、図示(ニ))とする際の押圧加工により、割れが発生し易くなり、所定寸法の押圧加工が困難となるからである。
The upper limit of the tensile breaking strength of the metal wire used for the core wire 2 is preferably 450 kgf / mm 2 or less, more preferably 400 kgf / mm 2 or less.
The reason for this is that, similarly to the provision of the upper limit of the total area reduction ratio of the wire drawing, the metal wire having a high strength tensile rupture strength is insufficient in elongation if the upper limit is exceeded. This is because cracking is likely to occur due to pressing when the cross-sectional shape of the tip 21 is a rectangular cross-section (FIG. 1, illustrated (D)), and pressing with a predetermined dimension becomes difficult.
そして、金属素線の製造段階で前記各実施例に用いる金属素線の引張破断強度を向上させる為には、前述のように伸線の総減面率(%)を90%以上とし、伸線工程後に引張破断強度が急傾斜増大する温度域で低温加熱処理工程を設け、又より金属素線の引張破断強度を向上させる為には、伸線工程と低温加熱処理工程を1セットとして5セット以上繰り返してもよいが生産性等の観点から少なくと1セット以上3セット以下が望ましい。 In order to improve the tensile breaking strength of the metal wires used in each of the above-described examples in the production stage of the metal wires, the total area reduction (%) of the wire drawing is set to 90% or more as described above. In order to improve the tensile break strength of the metal strands in a temperature range where the tensile break strength increases steeply after the wire process, the wire drawing process and the low temperature heat treatment process are combined as a set. It may be repeated more than one set, but at least 1 set and 3 sets or less are desirable from the viewpoint of productivity and the like.
次に、強加工の伸線加工したオーステナイト系ステンレス鋼線の鋼種差を含む低温加熱処理下での引張破断強度特性について、以下に述べる。 Next, the tensile fracture strength characteristics under low temperature heat treatment including the steel type difference of the austenitic stainless steel wire that has been subjected to strong wire drawing will be described below.
図3は、一般に金属素線の母線にオーステナイト系ステンレス鋼線を用いて総減面率が90%以上の最終伸線加工後の金属素線を熱影響下(各温度30分)での引張破断強度特性を示した図で、SUS304材のときは図示イを、SUS316材のときは図示ロを示す。これによるとSUS304材は180℃の熱影響により引張破断強度が上昇し始めて急傾斜し、概ね450℃近傍で最高の引張破断強度特性を示し、495℃まで引張破断強度特性向上効果が顕著にみられ、そして520℃を超えると常温(20℃)よりも引張破断強度が低下する。又、Moを含むSUS316材は、低温側でSUS304材と同様な傾向を示すが高温側では概ね480℃近傍で最高の引張破断強度特性を示し、525℃まで引張破断強度特性向上効果が顕著にみられ、そして540℃を超えると常温(20℃)よりも引張破断強度が低下する。
この引張破断強度特性が急激に低下する理由は、前述のように、この固溶化処理したオーステナイト系ステンレス鋼線は、前記520℃、540℃を超える温度から800℃に加熱されると、カーボンの析出、クロムの移動の為のエネルギーを必要とし、鋭敏化現象を生じて、特にカーボンが0.08%以下の通常のSUS304のオーステナイト系ステンレス鋼線では、700℃4分から5分程度で、この鋭敏化現象が現れ、引張破断強度が極端に低下するからである。
Fig. 3 shows that the austenitic stainless steel wire is generally used as the bus bar of the metal wire, and the metal wire after the final wire drawing with a total area reduction of 90% or more is pulled under the influence of heat (each temperature is 30 minutes). In the figure which shows the breaking strength characteristic, in the case of SUS304 material, illustration A is shown, and in the case of SUS316 material, illustration B is shown. According to this, SUS304 material begins to increase in tensile rupture strength due to the heat effect at 180 ° C and steeply slopes, and shows the highest tensile rupture strength property in the vicinity of 450 ° C. When the temperature exceeds 520 ° C., the tensile strength at break is lower than that at room temperature (20 ° C.). The SUS316 material containing Mo shows the same tendency as the SUS304 material on the low temperature side, but shows the highest tensile rupture strength characteristics at about 480 ° C. on the high temperature side, and the effect of improving the tensile rupture strength properties to 525 ° C. is remarkable. When the temperature exceeds 540 ° C., the tensile strength at break is lower than that at room temperature (20 ° C.).
The reason why the tensile strength at break is abruptly decreased is that, as described above, when the austenitic stainless steel wire subjected to the solution treatment is heated from 800 ° C. to 800 ° C., the carbon This requires energy for precipitation and migration of chromium, causing a sensitization phenomenon. In particular, in an ordinary SUS304 austenitic stainless steel wire having a carbon content of 0.08% or less, the temperature is about 700 ° C. for about 4 to 5 minutes. This is because a sensitization phenomenon appears and the tensile strength at break is extremely reduced.
このような引張破断強度特性を有する為、SUS304材の金属素線の低温加熱処理の温度範囲は、引張破断強度が急傾斜増大する温度域である180℃から495℃が望ましく、又Moを含む例えばSUS316材(Moが2重量%〜3重量%)の金属素線の低温加熱処理の温度範囲は180℃から525℃が望ましい。尚、前記金属素線の伸線加工における前記低温加熱処理のより望ましい温度範囲は、300℃から495℃であり、又Moを含むオーステナイト系ステンレス鋼線の金属素線のときには、300℃から525℃である。この理由は、より高い引張破断強度の金属素線が得られる温度範囲であるからである。(図3)
このように本発明は、強加工の伸線加工して総減面率の高いオーステナイト系ステンレス鋼線の温度による引張破断強度特性に着目して、かつ鋼種差に適した温度範囲に着目して芯線2の金属素線に低温加熱処理を加えることにより、引張破断強度特性を飛躍的に向上させた芯線2から成る医療用ガイドワイヤの新たな技術思想を提供するものである。
Since it has such tensile breaking strength characteristics, the temperature range of the low-temperature heat treatment of the metal wire of SUS304 material is desirably a temperature range of 180 ° C. to 495 ° C. in which the tensile breaking strength increases sharply, and includes Mo. For example, the temperature range of the low-temperature heat treatment of the metal strand of SUS316 material (Mo is 2 wt% to 3 wt%) is preferably 180 ° C. to 525 ° C. The more preferable temperature range of the low-temperature heat treatment in the wire drawing of the metal strand is 300 ° C. to 495 ° C., and 300 ° C. to 525 for a metal strand of an austenitic stainless steel wire containing Mo. ° C. This is because the temperature range is such that a metal strand having a higher tensile breaking strength can be obtained. (Figure 3)
As described above, the present invention focuses on the tensile rupture strength characteristics depending on the temperature of the austenitic stainless steel wire having a high total area reduction rate after the strong wire drawing, and also on the temperature range suitable for the steel type difference. The present invention provides a new technical idea of a medical guide wire composed of the core wire 2 that has drastically improved the tensile strength at break by applying a low-temperature heat treatment to the metal wire of the core wire 2.
そして、本各実施例に用いる金属素線のオーステナイト系ステンレス鋼線の化学成分は、重量%でC:0.15%以下、Si:1%以下、Mn:2%以下、Ni:6%〜16%、Cr:16%〜20%、P:0.045%以下、S:0.030%以下、Mo:3%以下、残部が鉄及び不可避的不純物から成る。このように高珪素ステンレス鋼(Si:3.0%〜5.0%)、又析出硬化系ステンレス鋼線(SUS630等)を用いなくても前記工法を用いることにより、高強度のオーステナイト系ステンレス鋼線の金属素線を得ることができる。尚、Cは引張破断強度向上の為には、0.005%以上が望ましく、粒界腐食抑制の観点から0.15%以下が望ましい。 And the chemical component of the austenitic stainless steel wire of the metal strand used for each of these Examples is C: 0.15% or less, Si: 1% or less, Mn: 2% or less, Ni: 6% ~ 16%, Cr: 16% to 20%, P: 0.045% or less, S: 0.030% or less, Mo: 3% or less, the balance being iron and inevitable impurities. Thus, high strength austenitic stainless steel can be obtained by using the above method without using high silicon stainless steel (Si: 3.0% to 5.0%) or precipitation hardening stainless steel wire (SUS630 or the like). A metal wire of a steel wire can be obtained. C is preferably 0.005% or more for improving the tensile strength at break, and is preferably 0.15% or less from the viewpoint of suppressing intergranular corrosion.
本発明の芯線2に用いる金属素線は、線直径D7 が0.228mmから0.457mmのオーステナイト系ステンレス鋼線で、特に金属素線の引張破断強度が270kgf/mm2 以上で、総減面率が94%以上の伸線加工を容易とし、かつ低温加熱処理による引張破断強度の増加率をより高めて0.300mm以下の細線化を可能として安定生産する為には、再溶解材を用いたSUS304材、又はSUS316材が望ましい。
この理由は、ステンレス鋼線の伸線時の断線原因は、表面疵もさることながら酸化物系介在物であることが最も多く、細線化するほどこの傾向が著しい。
そしてその化学成分は、介在物生成元素であるAl,Ti,Ca,Oの成分は低く、又硫化物の作用で伸線低下を引き起こすSも低く抑える。具体的なオーステナイト系ステンレス鋼線の化学成分は、重量%で、C:0.08%以下、Si:0.10%以下、Mn:2%以下、P:0.045%以下、S:0.010%以下、Ni:8%〜12%、Cr:16%〜20%、Mo:3%以下、Al:0.0020%以下、Ti:0.10%以下、Ca:0.005%以下、O:0.0020%以下、で残部がFeと不可避的不純物から成る。
そして再溶解材の製造方法としては、ステンレス鋼の溶製後のインゴットにフラックスを用いたエレクトロスラグ再溶解の製造方法等である。トリプル溶解材を用いても前記同様の効果が得られる。
The metal wire used for the core wire 2 of the present invention is an austenitic stainless steel wire having a wire diameter D7 of 0.228 mm to 0.457 mm, particularly when the tensile strength at break of the metal wire is 270 kgf / mm 2 or more, and the total area reduction rate. In order to facilitate the wire drawing process of 94% or more and to increase the rate of increase in tensile breaking strength by low-temperature heat treatment and to enable the thinning of 0.300 mm or less and to produce stably, a remelted material was used. SUS304 material or SUS316 material is desirable.
The reason for this is that the cause of disconnection when drawing a stainless steel wire is most often oxide inclusions as well as surface flaws, and this tendency becomes more pronounced as the wire becomes thinner.
And the chemical component is low in the components of Al, Ti, Ca, O, which are inclusion generation elements, and also suppresses S that causes a reduction in wire drawing due to the action of sulfide. The specific chemical components of the austenitic stainless steel wire are, by weight, C: 0.08% or less, Si: 0.10% or less, Mn: 2% or less, P: 0.045% or less, S: 0 0.010% or less, Ni: 8% to 12%, Cr: 16% to 20%, Mo: 3% or less, Al: 0.0020% or less, Ti: 0.10% or less, Ca: 0.005% or less , O: 0.0020% or less, with the balance being Fe and inevitable impurities.
And as a manufacturing method of a remelting material, it is the manufacturing method etc. of the electroslag remelting which used the flux for the ingot after melting of stainless steel. Even when a triple melting material is used, the same effect as described above can be obtained.
そして図2、図3を用いて述べたように、強加工の伸線加工(総減面率が90%以上)したオーステナイト系ステンレス鋼線は、低温加熱処理により引張破断強度が向上する特性を有する為、引張破断強度を向上させる為には、例えばSUS304材のときの低温加熱処理の温度範囲は、引張破断強度が急傾斜増大する温度域である180℃から495℃が望ましく、又Moを含む例えばSUS316材(Moが2重量%〜3重量%)の低温加熱処理の温度範囲は、180℃から525℃が望ましい。 As described with reference to FIGS. 2 and 3, the austenitic stainless steel wire that has been subjected to strong wire drawing (total reduction in area of 90% or more) has a characteristic that tensile fracture strength is improved by low-temperature heat treatment. Therefore, in order to improve the tensile strength at break, for example, the temperature range of the low-temperature heat treatment in the case of SUS304 material is desirably 180 ° C. to 495 ° C., which is a temperature range in which the tensile strength at break increases sharply, and Mo is added. The temperature range of the low-temperature heat treatment of, for example, SUS316 material (Mo is 2 wt% to 3 wt%) is preferably 180 ° C. to 525 ° C.
そして表1〜3において、伸線と伸線後の低温加熱処理を少なくとも1セット以上繰り返した後に最終伸線を設けて、最終伸線までの総減面率を90%から99.5%とし、最終伸線後に前記金属素線から成る芯線に低温加熱処理を行う各実施例の金属素線1b、1d、1f、1h、及び比較例について、以下説明する。 And in Tables 1-3, after drawing at least one set of wire drawing and low-temperature heat treatment after wire drawing, the final wire drawing is provided, and the total area reduction until the final wire drawing is changed from 90% to 99.5%. The metal wires 1b, 1d, 1f, 1h, and comparative examples of the examples in which the core wire made of the metal wires is subjected to low-temperature heat treatment after the final wire drawing will be described below.
表1〜3の芯線に用いる各実施例の総減面率を90%以上とした金属素線1b、1d、1f、1hは、総減面率をX(%)とすると、金属素線の引張破断強度Y(kgf/mm2 )との関係式は、下記(1)となる。
関係式:450≧Y≧2.000X+70 ・・・(1)
前記関係式(1)において、例えば金属素線1bの総減面率Xは90%であることから、引張破断強度Yは250kgf/mm2 以上450kgf/mm2 以下となり、前記金属素線1bの引張破断強度は257kgf/mm2 で前記関係式(1)を満たし、同様に前記他の実施例も前記関係式(1)を満たしている。又金属素線1b、1d、1f、1hの最終伸線(二次伸線、又は三次伸線)までの低温加熱処理による引張破断強度の増加率の合計は12.1%から32.1%となり、いずれも8%以上である。
しかし比較例2は前記関係式(1)を満たしていなく、かつ最終伸線までの低温熱処理の引張破断強度の増加率の合計は3.2%で8%を大きく下回っている。
The metal strands 1b, 1d, 1f, and 1h in which the total area reduction rate of each example used for the core wires in Tables 1 to 3 is 90% or more are given by assuming that the total area reduction rate is X (%). The relational expression with the tensile breaking strength Y (kgf / mm @ 2) is (1) below.
Relational expression: 450 ≧ Y ≧ 2.000X + 70 (1)
In the relational expression (1), for example, the total area reduction ratio X of the metal strand 1b is 90%, so that the tensile breaking strength Y is 250 kgf / mm 2 or more and 450 kgf / mm 2 or less, and the tensile breaking strength of the metal strand 1b is The strength is 257 kgf / mm @ 2 and satisfies the relational expression (1). Similarly, the other embodiments also satisfy the relational expression (1). Also, the total increase rate of tensile breaking strength by low-temperature heat treatment until the final drawing (secondary drawing or tertiary drawing) of the metal strands 1b, 1d, 1f, and 1h is 12.1% to 32.1% And both are 8% or more.
However, Comparative Example 2 does not satisfy the relational expression (1), and the total increase rate of the tensile fracture strength of the low-temperature heat treatment up to the final wire drawing is 3.2%, which is much lower than 8%.
そして補足すれば、前記金属素線を用いて芯線2と放射線透過材コイル32とを接合部材4を用いて部分的に接合した後に、前記放射線透過材コイル32体内の先端部を押圧加工等を行った芯線先端部21に180℃から495℃で低温加熱処理を行い、又は前記芯線がMoを含むオーステナイト系ステンレス鋼線のときには、180℃から525℃で低温加熱処理を行うことにより、芯線先端部21の引張破断強度を向上させて、さらに研削加工、及び押圧加工した芯線先端部21の局部的に発生した集中応力、及び残留歪を除去して耐繰り返し曲げ疲労特性の高いガイドワイヤを得ることができる。
このことは、例えば前記金属素線1aと1b、又1cと1d等とを比較すれば明白である。尚、放射線透過材コイル32体内の芯線先端部21を低温加熱処理する方法は、引張破断強度が急傾斜増大する温度域と合致する前記鋼種に適した温度範囲での熱処理炉を用いた低温加熱処理、又不活性ガス中での光輝熱処理を用いる低温加熱処理、高周波電流加熱による低温加熱処理、そしてさらに、後述する接合部材4の溶融熱の利用による低温加熱処理等である。
In addition, after supplementarily joining the core wire 2 and the radiation transmissive material coil 32 using the joining member 4 using the metal element wire, the tip of the radiation transmissive material coil 32 is pressed. The core wire tip 21 is subjected to low-temperature heat treatment at 180 ° C. to 495 ° C., or when the core wire is an austenitic stainless steel wire containing Mo, by performing low-temperature heat treatment at 180 ° C. to 525 ° C. The guide wire having a high resistance to repeated bending fatigue is obtained by improving the tensile breaking strength of the portion 21 and further removing the concentrated stress and residual strain generated in the ground wire tip portion 21 subjected to grinding and pressing. be able to.
This is apparent when, for example, the metal strands 1a and 1b, 1c and 1d, and the like are compared. In addition, the method of carrying out the low temperature heat processing of the core wire front-end | tip part 21 in the radiation transparent material coil 32 is the low temperature heating using the heat processing furnace in the temperature range suitable for the said steel grade corresponding with the temperature range where tensile fracture strength increases steeply. A low-temperature heat treatment using bright heat treatment in an inert gas, a low-temperature heat treatment by high-frequency current heating, and a low-temperature heat treatment by using the fusion heat of the joining member 4 described later.
次に、表1〜3、及び図3より金属素線の引張破断強度がより急傾斜増大する温度域(300℃から495℃、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには300℃から525℃)で低温加熱処理を行い、総減面率を90%以上とした金属素線1d、1f、1hは、総減面率をX(%)とすると、金属素線の引張破断強度Y(kgf/ mm )との関係式は、下記(2)となる。
関係式:450≧Y≧2.150X+70 ・・・(2)
前記関係式(2)において、例えば金属素線1dの一次、二次低温加熱処理は300℃から525℃の温度域(実施例は420℃、75分)であり、又総減面率Xは94%であることから、引張破断強度Yは272.1kgf/mm2 以上450kgf/mm2 以下となり、前記金属素線1dの引張破断強度は280kgf/mm2 で前記関係式(2)を満たし、同様に前記他の実施例も前記関係式(2)を満たしている。又金属素線1d、1f、1hの最終伸線(二次伸線、又は三次伸線)までの低温加熱処理による引張破断強度の増加率の合計は12.6%から32.1%となり、いずれも10%以上である。
しかし比較例2は前記関係式(2)を満たしていなく、かつ最終伸線までの低温熱処理の引張破断強度の増加率の合計は3.2%で10%を大きく下回っている。
Next, from Tables 1 to 3 and FIG. 3, the temperature range in which the tensile breaking strength of the metal strand increases more steeply (from 300 ° C. to 495 ° C., or when the metal strand is an austenitic stainless steel wire containing Mo) The metal strands 1d, 1f, and 1h, which are subjected to low-temperature heat treatment at 300 to 525 ° C. and have a total area reduction rate of 90% or more, are as follows: The relational expression with the breaking strength Y (kgf / mm) is the following (2).
Relational expression: 450 ≧ Y ≧ 2.150X + 70 (2)
In the relational expression (2), for example, the primary and secondary low-temperature heat treatment of the metal wire 1d is in the temperature range of 300 ° C. to 525 ° C. (example is 420 ° C., 75 minutes), and the total area reduction rate X is Therefore, the tensile breaking strength Y is 272.1 kgf / mm 2 or more and 450 kgf / mm 2 or less, and the tensile breaking strength of the metal wire 1d is 280 kgf / mm 2 and satisfies the relational expression (2). Other examples also satisfy the relational expression (2). Moreover, the total increase rate of the tensile fracture strength by the low-temperature heat treatment until the final drawing (secondary drawing or tertiary drawing) of the metal strands 1d, 1f, and 1h is 12.6% to 32.1%, Both are 10% or more.
However, Comparative Example 2 does not satisfy the relational expression (2), and the total increase rate of the tensile fracture strength of the low-temperature heat treatment until the final wire drawing is 3.2%, which is significantly lower than 10%.
次に、表1〜3の金属素線のうち総減面率を94.0%から99.5%とした金属素線1d、1f、1hは、総減面率をX(%)とすると、金属素線の引張破断強度Y(kgf/mm2 )との関係式は、下記(3)となる。
関係式:450≧Y≧2.200X+70 ・・・(3)
前記関係式(3)において、例えば金属素線1dの総減面率Xは94.0%であることから、引張破断強度Yは276.8kgf/mm2 以上450kgf/mm2 以下となり、前記金属素線1dの引張破断強度は280kgf/mm2 で前記関係式(3)を満たし、同様に前記他の実施例も前記関係式(3)を満たしている。又金属素線1d、1f、1hの最終伸線(二次伸線、又は三次伸線)までの低温加熱処理による引張破断強度の増加率の合計は12.6%から32.1%となり、いずれも10%以上である。
しかし比較例2については、前記同様関係式(3)を満たしていない。
Next, of the metal strands in Tables 1 to 3, the metal strands 1d, 1f, and 1h having a total area reduction rate of 94.0% to 99.5% are assumed to have a total area reduction rate of X (%). The relational expression with the tensile breaking strength Y (kgf / mm @ 2) of the metal wire is as follows (3).
Relational expression: 450 ≧ Y ≧ 2.200X + 70 (3)
In the relational expression (3), for example, the total area reduction ratio X of the metal wire 1d is 94.0%, so that the tensile strength at break Y is 276.8 kgf / mm 2 or more and 450 kgf / mm 2 or less. The tensile fracture strength of 1d is 280 kgf / mm @ 2 and satisfies the relational expression (3). Similarly, the other examples also satisfy the relational expression (3). Moreover, the total increase rate of the tensile fracture strength by the low-temperature heat treatment until the final drawing (secondary drawing or tertiary drawing) of the metal strands 1d, 1f, and 1h is 12.6% to 32.1%, Both are 10% or more.
However, Comparative Example 2 does not satisfy the relational expression (3) as described above.
次に、表2〜3の金属素線のうち総減面率を97.0%から99.5%とした金属素線1f、1hは、総減面率をX(%)とすると、金属素線の引張破断強度Y(kgf/mm2 )との関係式は、下記(4)となる。
関係式:450≧Y≧2.300X+70 ・・・(4)
前記関係式(4)において、例えば金属素線1fの総減面率Xは97.0%であることから、引張破断強度Yは293.1kgf/mm2 以上450kgf/mm2 以下となり、前記金属素線1fの引張破断強度は321kgf/mm2 で前記関係式(4)を満たし、同様に前記他の実施例も前記関係式(4)を満たしている。又金属素線1f、1hの最終伸線(二次伸線、又は三次伸線)までの低温加熱処理による引張破断強度の増加率の合計は13.3%から32.1%となり、いずれも10%以上である。
しかし比較例2については、前記同様関係式(3)を満たしていない。
Next, of the metal strands in Tables 2 to 3, the metal strands 1f and 1h having a total area reduction rate of 97.0% to 99.5% are assumed to be X (%). The relational expression with the tensile breaking strength Y (kgf / mm @ 2) of the strand is as follows (4).
Relational expression: 450 ≧ Y ≧ 2.300X + 70 (4)
In the relational expression (4), for example, the total area reduction ratio X of the metal wire 1f is 97.0%, so that the tensile strength at break Y is 293.1 kgf / mm 2 or more and 450 kgf / mm 2 or less, and the metal strand The tensile breaking strength of 1f is 321 kgf / mm @ 2 and satisfies the relational expression (4). Similarly, the other examples also satisfy the relational expression (4). In addition, the total increase rate of tensile breaking strength by low-temperature heat treatment until the final drawing (secondary drawing or tertiary drawing) of the metal strands 1f and 1h was changed from 13.3% to 32.1%. 10% or more.
However, Comparative Example 2 does not satisfy the relational expression (3) as described above.
そして補足すれば、芯線2と放射線透過材コイル32とを接合部材4を用いて部分的に接合した後に、前記放射線透過材コイル32体内の芯線先端部21を低温加熱処理する方法は、前記金属素線の関係式(1)で説明したのと同様である。 In addition, in addition, the method in which the core wire 2 and the radiation transmitting material coil 32 are partially bonded using the bonding member 4 and then the core wire tip 21 in the radiation transmitting material coil 32 is subjected to low temperature heat treatment is described above. This is the same as described in the relational expression (1) for the strands.
次に、金属素線の引張破断強度Y(kgf/mm2 )と総減面率X(%)との関係を図4に示す。尚、図中符号イは関係式(1)を、符号ロは関係式(2)を、符号ハは関係式(3)を、符号ニは関係式(4)を、又符号ホは比較例1を、符号へは比較例2をそれぞれ示す。 Next, FIG. 4 shows the relationship between the tensile breaking strength Y (kgf / mm @ 2) of the metal wire and the total area reduction ratio X (%). In the figure, symbol i represents relational expression (1), code b represents relational expression (2), code c represents relational expression (3), code d represents relational expression (4), and code ho represents a comparative example. Reference numeral 1 indicates a comparative example 2 for the reference numerals.
次に最終伸線加工後の所定の総減面率を有する金属素線から成る芯線2に「低温加熱処理下での捻回加工」、又は「捻回加工後の低温加熱処理」を行ったときの芯線2の引張破断強度と曲げ残留角度に関して、「低温加熱処理は電気抵抗加熱を用いた低温加熱処理下での捻回加工」の実施例について、以下説明する。 Next, “twisting under low-temperature heat treatment” or “low-temperature heat treatment after twisting” was performed on the core wire 2 made of a metal wire having a predetermined total area reduction after the final wire drawing. Regarding the tensile breaking strength and bending residual angle of the core wire 2 at that time, an example of “twisting under low temperature heat treatment using electrical resistance heating as the low temperature heat treatment” will be described below.
図8は、前記実施例の金属素線1cを用いて、芯線2(金属素線1c)の温度が180℃から495℃で30秒から180分(本実施例では450℃で3分)の電気抵抗加熱を用いた低温加熱処理下で捻回回数を変化させたときの引張破断強度を試料数各50個のバラツキを含め上下限の範囲を示したものであり、又図9は、前記図8と同様に前記金属素線1cを用いて、芯線2(金属素線1c)の温度条件が前記同様の電気抵抗加熱を用いた低温加熱処理下で捻回回数を変化させたときの曲げ試験後の曲げ残留角度を試料数各50個のバラツキを含め上下限の範囲を示したものである。尚、ここでいう曲げ試験後での曲げ残留角度とは、芯線2を外径15mmの丸棒に180度曲げ、500gの負荷を20秒間保持した後、負荷を解除して芯線2の長軸方向に対する残留角度、つまり塑性変形した傾斜角度のことをいう。 FIG. 8 shows that the temperature of the core wire 2 (metal wire 1c) is from 180 ° C. to 495 ° C. for 30 seconds to 180 minutes (in this embodiment, 450 ° C. for 3 minutes) using the metal wire 1c of the above embodiment. FIG. 9 shows the upper and lower limits of the tensile breaking strength when the number of twists is changed under low-temperature heat treatment using electric resistance heating, including variations of 50 samples. As in FIG. 8, bending is performed when the temperature of the core wire 2 (metal wire 1 c) is changed in the number of twists under a low-temperature heat treatment using electric resistance heating as described above, using the metal wire 1 c. The range of the upper and lower limits of the residual bending angle after the test including the variation of 50 samples each is shown. The bending residual angle after the bending test mentioned here means that the core wire 2 is bent 180 degrees into a round bar having an outer diameter of 15 mm, a load of 500 g is held for 20 seconds, the load is released, and the long axis of the core wire 2 is released. It refers to the residual angle with respect to the direction, that is, the tilt angle that is plastically deformed.
図8、9によれば、引張破断強度は捻回数が100回/mから275回/mの間ではその変動幅は比較的小さく、この範囲を逸脱すると変動幅が大きくなり、つまり安定した品質を得ることはできなくなる。又、曲げ残留角度は、捻回数が100回/mから275回/mの間で小さく、この範囲を逸脱すると変動幅が大きくなる。この理由は、100回/mを下回ると捻回数が不足して芯線2の長軸方向に不均質な部分が残留していて、又275回/m〜325回/mを超えると逆に、芯線の長軸方向に概ね45度の傾きを成す滑り線(リューダース線)が発生する過捻回状態となって局部的に過捻回による不均質部分が散在発生する、と考えられるからである。従って、本発明の捻回は前記滑り線が発生するような過捻回を意味するものではない。
そして100回/mから200回/mの間で曲げ残留角度は最も小さくなって安定し、より好ましくは、120回/mから180回/mであり、さらに好ましくはこの捻回数の10%から30%、そして最も好ましくは、15%から25%%逆捻回させることが望ましい。具体的には、例えば120回/m一方向へ捻回後、逆方向へ12回/mから36回/m、最も好ましくは18回/mから30回/m逆方向へ捻回加工を行なう。これが望ましい理由は、一方向へ強加工捻回後の逆捻回により強加工捻回の捻り方向の応力を、逆捻回させて一時的に開放することにより低温加熱処理効果を高め、より直線性・回転伝達性の高い芯線2を得ることができる、と考えられるからである。
According to FIGS. 8 and 9, the tensile fracture strength has a relatively small fluctuation range when the number of twists is between 100 times / m and 275 times / m, and the fluctuation range becomes large when deviating from this range, that is, stable quality. You will not be able to get. In addition, the bending residual angle is small when the number of twists is between 100 times / m and 275 times / m, and if the deviation is outside this range, the fluctuation range becomes large. The reason for this is that when the rotation speed is less than 100 turns / m, the number of twists is insufficient, and the inhomogeneous portion remains in the major axis direction of the core wire 2, and conversely, when it exceeds 275 times / m to 325 times / m, Because it is considered that a slip line (Ludders line) with an inclination of approximately 45 degrees in the major axis direction of the core wire is generated, and an inhomogeneous portion due to the over twist is locally scattered. is there. Therefore, the twisting of the present invention does not mean an overtwisting in which the slip line is generated.
The residual bending angle becomes the smallest and stable between 100 times / m and 200 times / m, more preferably from 120 times / m to 180 times / m, and even more preferably from 10% of the number of twists. It is desirable to reverse twist 30%, and most preferably 15% to 25%. Specifically, for example, after twisting in one direction at 120 times / m, twisting is performed in the reverse direction from 12 times / m to 36 times / m, most preferably from 18 times / m to 30 times / m. . The reason why this is desirable is that the stress in the twist direction of the strong work twist is reversed by the reverse twist after the strong work twist in one direction, and the effect of low-temperature heat treatment is increased by releasing the twist temporarily to reverse the twist. It is because it is thought that the core wire 2 with high property and rotation transmission property can be obtained.
そして図10は、前記金属素線を用いた芯線2に捻回加工と電気抵抗加熱を行なう装置図である。芯線2が巻かれたボビン13から送りローラー14Aを介して保温ケース16内へ芯線2を通過させて、芯線2を回転チャック9と芯線2の長軸方向へ移動可能な固定チャック10で固定し、電流発生器8より通電可能状態にしてウエイト12を負荷した状態で移動可能な固定チャック10で芯線2を固定したまま回転チャック9にて芯線2を所定量一方向、又は逆方向へ捻回させる。具体的には、芯線2の外径が0.340mmでチャック間9、10の固定スパン間(図示L)が4000mmのとき、ウエイト12を芯線2に負荷した状態で400回から800回一方向へ捻回加工を行なう。より好ましくは、逆方向へ前記捻回数の10%から30%、つまり40回から240回逆方向へ捻回を加える。
そしてその電気抵抗加熱による低温加熱処理下で捻回加工を行なった後、芯線2を回転チャック9と固定チャック10からの固定を開放して、そして送りローラー14A、14Bにて芯線2を図示左側へ送り出し、切断刃15にて切断し、以後これを繰り返して連続的に直線性・回転伝達性の優れた芯線2を得ることができる。尚、芯線2に通電させて捻回数の増大に伴って徐変昇温させて電気抵抗加熱を行なってもよい。
FIG. 10 is an apparatus diagram for performing twisting and electrical resistance heating on the core wire 2 using the metal element wire. The core wire 2 is passed from the bobbin 13 around which the core wire 2 is wound into the heat retaining case 16 through the feed roller 14A, and the core wire 2 is fixed by the rotary chuck 9 and the fixed chuck 10 that can move in the long axis direction of the core wire 2. The core wire 2 is twisted in a predetermined amount in one direction or in the reverse direction by the rotary chuck 9 while the core wire 2 is fixed by the fixed chuck 10 which can be energized by the current generator 8 and loaded with the weight 12. Let Specifically, when the outer diameter of the core wire 2 is 0.340 mm and the fixed span between the chucks 9 and 10 (L in the drawing) is 4000 mm, the weight 12 is loaded on the core wire 2 in one direction from 400 to 800 times. Perform twisting. More preferably, 10 to 30% of the number of twists is applied in the reverse direction, that is, 40 to 240 times.
Then, after twisting under a low temperature heat treatment by electric resistance heating, the core wire 2 is unfixed from the rotary chuck 9 and the fixed chuck 10, and the core wire 2 is shown on the left side in the drawing by the feed rollers 14A and 14B. The core wire 2 having excellent linearity and rotational transmission can be obtained continuously by repeating this process thereafter. The electrical resistance heating may be performed by energizing the core wire 2 and gradually increasing the temperature as the number of twists increases.
つまりこの工程は、ボビン13に巻かれた芯線2を送りローラー14A、14Bを介して電気抵抗加熱による保温ケース16内へ送り出す(図示左側)工程と、送り出した後芯線2を回転チャック9と固定チャック10で固定する工程と、ウエイト12を連結させた固定チャック10のストッパー17を解除して固定チャック10を長軸方向へ移動可能状態として芯線2に負荷荷重(ウエイト12)を加える工程と、一定温度に保つ保温ケース16内の芯線2に電流発生器8により電流を加えて通電する工程と、通電状態のままで回転チャック9により所定方向へ所定量の捻回加工する工程と、又は所定量の捻回加工中に徐変昇温させ芯線2に電流発生器8により電流を加えて通電する工程と、固定チャック10の芯線2の固定を解除することによるウエイト12側への移動( 図示右側) を阻止する為、捻回加工後にストッパー17を作動させた後に、回転チャック9と固定チャック10の芯線2の固定を解除する工程と、送りローラー14A,14Bで芯線2を送り出す(図示左側)工程と、芯線2を所定量送り出した後、切断刃15にて芯線2の片端を切断する工程から成り、捻回して電気抵抗加熱による低温加熱処理した芯線2を連続して生産できる工程である。又、芯線2を予め、所定長に切断後各チャックで固定して、電気抵抗加熱による低温加熱処理下で前記同様の捻回加工を行なってもよい。 That is, in this process, the core wire 2 wound around the bobbin 13 is sent out into the heat retaining case 16 by electric resistance heating through the feed rollers 14A and 14B (the left side in the figure), and the core wire 2 after feeding is fixed to the rotary chuck 9 A step of fixing with the chuck 10, a step of releasing the stopper 17 of the fixed chuck 10 to which the weight 12 is connected and making the fixed chuck 10 movable in the long axis direction and applying a load (weight 12) to the core wire 2; A step of applying current by applying current to the core wire 2 in the heat retaining case 16 kept at a constant temperature by the current generator 8, and a step of twisting a predetermined amount in a predetermined direction by the rotary chuck 9 while being energized, or During the constant twisting process, the temperature is gradually changed and the current is applied to the core wire 2 by the current generator 8, and the fixing of the core wire 2 of the fixed chuck 10 is released. In order to prevent the movement to the side of the weight 12 (right side in the figure) due to rotation, after the stopper 17 is actuated after twisting, the process of releasing the fixation of the core wire 2 between the rotary chuck 9 and the fixed chuck 10, and the feed roller 14A, 14B includes a step of feeding the core wire 2 (left side in the figure) and a step of cutting the core wire 2 with a cutting blade 15 after feeding the core wire 2 by a predetermined amount. It is the process which can produce 2 continuously. Alternatively, the core wire 2 may be preliminarily cut to a predetermined length and fixed with each chuck, and the twisting process similar to the above may be performed under a low temperature heat treatment by electric resistance heating.
そして、電気抵抗加熱による低温加熱処理の温度は、芯線2の温度が300℃から495℃で、加熱時間は30秒から180分(本実施例では450℃、3分)とし、又は前記芯線がオーステナイト系ステンレス鋼線のときには300℃から525℃で、加熱時間は30秒から180分(本実施例では450℃、3分)である。又ウエイト12は、最終伸線工程後の捻回加工前における前記金属素線を用いた芯線2の引張破断力の5%から30%が好ましく、より好ましくは8%から27%で、さらに好ましくは10%から24%である。
具体的には、金属素線1fのとき、線直径が0.228mmで最終伸線工程(二次伸線)後の捻回加工前の引張破断強度が296kgf/mm2 であることから前記金属素線1fを用いた芯線2の引張破断力は12.08kgf(π×0.228×296÷4)となり、このときウエイト12は2.42kgf(20%のとき)が好ましい。
そしてこの5%から30%の範囲を逸脱すると、ウエイト12が軽いときにはうねりが発生したり、又重いときには捻回中に断線が発生したりして直線性の優れた芯線2を得ることができず、又生産性を高めることはできない。つまり、芯線2の捻回加工前の引張破断強度による引張破断力に応じてウエイト12の重さを変化させることが重要である。
以上述べたように、電気抵抗加熱と捻回加工条件は、電気抵抗加熱による低温熱処理条件として、380℃〜495℃で30秒から180分、そして捻回数は100回/mから275回/mで、好ましくは100回/mから200回/mで、より好ましくは120回/mから180回/mであり、さらに好ましくは、逆方向へ前記捻回数の10%から30%、そしてウエイト12は捻回加工前の芯線2の引張破断力の5%から30%が好ましい。
The temperature of the low-temperature heat treatment by electric resistance heating is such that the temperature of the core wire 2 is 300 ° C. to 495 ° C., the heating time is 30 seconds to 180 minutes (450 ° C., 3 minutes in this embodiment), or the core wire is In the case of an austenitic stainless steel wire, the heating time is 300 ° C. to 525 ° C., and the heating time is 30 seconds to 180 minutes (450 ° C., 3 minutes in this embodiment). Further, the weight 12 is preferably 5% to 30%, more preferably 8% to 27% of the tensile breaking force of the core wire 2 using the metal element wire before the twisting after the final wire drawing step, and more preferably Is from 10% to 24%.
Specifically, in the case of the metal strand 1f, since the wire diameter is 0.228 mm and the tensile breaking strength before twisting after the final wire drawing step (secondary wire drawing) is 296 kgf / mm 2, The tensile breaking force of the core wire 2 using the wire 1f is 12.08 kgf (π × 0.228 × 296/4), and the weight 12 is preferably 2.42 kgf (20%).
And if it deviates from the range of 5% to 30%, undulation occurs when the weight 12 is light, and breakage occurs during twisting when the weight 12 is heavy, so that the core wire 2 having excellent linearity can be obtained. In addition, productivity cannot be increased. That is, it is important to change the weight of the weight 12 in accordance with the tensile breaking force due to the tensile breaking strength before twisting of the core wire 2.
As described above, the electrical resistance heating and twisting conditions are low-temperature heat treatment conditions by electrical resistance heating at 380 ° C. to 495 ° C. for 30 seconds to 180 minutes, and the number of twists is 100 times / m to 275 times / m. And preferably 100 times / m to 200 times / m, more preferably 120 times / m to 180 times / m, and still more preferably 10% to 30% of the number of twists in the reverse direction, and weight 12 Is preferably 5% to 30% of the tensile breaking force of the core wire 2 before twisting.
そして捻回数と負荷荷重(ウエイト)との関係において高度の直線性・回転伝達性を備えた最適条件を見出した。図11は、横軸に芯線の捻回前の引張破断力P(kgf)に対する負荷荷重W(kgw)の割合を負荷荷重比X(%)とし、負荷荷重比X(%)はW÷P×100の関係を示し、又縦軸に捻回数N(回/m)を示し、図示符号イとハで囲まれる範囲が高度の直線性を得る条件であり、さらに図示符号ロとハで囲まれる範囲が、より好ましい条件である。
そして捻回数が上限範囲の傾き線(図示符号イ)を数式で表すと、負荷加重比が5%で捻回数は275回/mであり、又負荷荷重比が30%で捻回数は230回/mであることから、この傾き線(図示符号イ)は、下記関係式(5)で表すことができる。同様に下限範囲の傾き線(図示符号ハ)を数式で表すと、負荷加重比が5%で捻回数は120回/mであり、又負荷荷重比が30%で捻回数は100回/mであることから、この傾き線(図示符号イ)は、下記関係式(6)でそれぞれ表すことができる。
関係式:N=−1.8X+284 ・・・(5)
関係式:N=−0.8X+124 ・・・(6)
そしてこの上下限範囲の二つの関係式(5)(6)から高度の直線性・回転伝達性を備えた芯線を得る為の捻回数N(回/m)は、下記関係式(7)を満たすことが必要となる。
関係式:−0.8X+124≦N≦−1.8X+284 ・・・(7)
N:捻回数(回/m)
X:負荷荷重比(%)
And the optimum condition with high linearity and rotation transmission was found in the relation between the number of twists and the applied load (weight). In FIG. 11, the ratio of the load W (kgw) to the tensile breaking force P (kgf) before twisting of the core wire on the horizontal axis is the load ratio X (%), and the load ratio X (%) is W ÷ P. The relationship of × 100 is shown, the number of twists N (times / m) is shown on the vertical axis, and the range surrounded by the reference symbols A and C is the condition for obtaining a high degree of linearity, and further surrounded by the reference symbols B and C The range is more preferable conditions.
An inclination line (indicated by the symbol a) shown in the upper limit of the number of twists is expressed by a mathematical expression. Since this is / m, this inclination line (indicated by symbol a) can be expressed by the following relational expression (5). Similarly, when the slope line of the lower limit range (symbol C) is expressed by a mathematical formula, the load weight ratio is 5% and the number of twists is 120 times / m, and the load ratio is 30% and the number of twists is 100 times / m. Therefore, this inclination line (indicated by symbol a) can be represented by the following relational expression (6).
Relational expression: N = −1.8X + 284 (5)
Relational expression: N = −0.8X + 124 (6)
The number of twists N (times / m) for obtaining a core wire having a high degree of linearity and rotation transmission from the two relational expressions (5) and (6) in the upper and lower limit range is expressed by the following relational expression (7). It is necessary to satisfy.
Relational expression: −0.8X + 124 ≦ N ≦ −1.8X + 284 (7)
N: Number of twists (times / m)
X: Load ratio (%)
そして又、図示符号ロは、負荷加重比5%で捻回数は250回/mであり、又負荷荷重比が30%で捻回数は180回/mであることから、この傾き線(図示符号ロ)は、下記関係式(8)で表すことができ、又下限範囲の傾き線(図示符号ハ)は前記関係式(8)で表すことができる。
関係式:N=−2.8X+264 ・・・(8)
そしてこの好ましい上下限の範囲は、図示符号ロとハで囲まれた範囲であることから、好ましい高度の直線性を備えた芯線を得る為の捻回数は、下記関係式(9)を満たすことが必要となる。
関係式:−0.8X+124≦N≦−2.8X+264 ・・・(9)
Further, since the symbol B in the figure is a load weight ratio of 5% and the number of twists is 250 times / m, and the load ratio is 30% and the number of twists is 180 times / m, (B) can be represented by the following relational expression (8), and the lower limit range of the slope line (symbol C) can be represented by the relational expression (8).
Relational expression: N = −2.8X + 264 (8)
Since the preferable upper and lower limit range is a range surrounded by the reference symbols B and C, the number of twists for obtaining a core wire having a preferable high linearity satisfies the following relational expression (9). Is required.
Relational expression: −0.8X + 124 ≦ N ≦ −2.8X + 264 (9)
そして、捻回数N(回/m)が前記関係式(7)を満たす範囲内であれば、一定の角度を設けて高い方から低い方へ芯線を転がしたとき、芯線の両端部の回転が同期して蛇行、うねり回転を発生することはなく、又前記芯線が転がる毎に両端部の回転に速度差が生じて徐徐に傾斜が増大して、最も低い位置へ転がった到達時に両端部のいずれか一方が早く到達することはなく、概ね同時に到達して高度の直線性を備えた芯線を得ることができる。又、さらに好ましいのは前記関係式(9)を満たす範囲である。
そして、これらの全ての条件を満たすことにより医療用ガイドワイヤとして要求される高強度の引張破断強度特性、残留角度の少ない高度の直線性、先端側への高度の回転伝達性等の品質を満足させることができる。
尚補足すれば、特許文献3には過捻回加工による捻回加工が記載されているが、本発明は過捻回加工を意味するのではなく、又特許文献3には前記捻回数と負荷荷重比との相関関係については、何ら解析されていない。
If the number of twists N (turns / m) is within a range satisfying the relational expression (7), when the core wire is rolled from the higher side to the lower side by providing a certain angle, the rotation of both ends of the core wire is performed. There is no meandering or swell rotation in synchronism, and each time the core wire rolls, a speed difference occurs in the rotation of both ends, the slope gradually increases, and when it reaches the lowest position, it reaches the lowest position. Either one does not reach quickly, but can reach almost the same time to obtain a core wire with a high degree of linearity. Further, a range satisfying the relational expression (9) is more preferable.
By satisfying all of these conditions, it satisfies the quality required for medical guidewires, such as high strength tensile strength at break, high linearity with few residual angles, and high rotational transmission to the tip side. Can be made.
In addition, although Patent Document 3 describes twisting by overtwisting, the present invention does not mean overtwisting, and Patent Document 3 describes the number of twists and load. No correlation has been analyzed for the correlation with the load ratio.
そして、前記実施例では低温加熱処理として電気抵抗加熱を用いた「低温加熱処理下での捻回加工」を説明したが、電気抵抗加熱以外の低温加熱処理としては、加熱ヒーターを内蔵した熱処理炉を用いた低温加熱処理、又不活性ガス中での光輝熱処理の低温加熱処理、又高周波電流加熱による低温加熱処理等いずれを用いてもよい。
又ここでいう「低温加熱処理下での捻回加工」は、「芯線を所定温度に昇温させた状態での捻回加工」、又「常温で捻回を開始させた後、捻回させながら芯線を所定温度に昇温させる徐変昇温による捻回加工等」いずれの場合も含まれる。
そして前記「芯線を所定温度に昇温させた状態での捻回加工」は、加工度のより高い芯線(総減面率が94%から99.5%)での捻回時の断線を抑制する効果が高く、又「前記「常温で捻回を開始させた後、捻回させながら芯線を所定温度に昇温させる徐変昇温による捻回加工」は冷間状態での捻回加工による芯線の結晶粒の微細化を促進させ、引張破断強度が高く、かつ捻回数の増大に伴って局部的に増大する残留応力を徐変昇温により徐変除去し、さらに芯線の表層部と内層部の硬度分布の不均質性を一定範囲で均質化させて、高度の直線性を有する芯線を得ることができる。
And in the said Example, although the "twisting process under low-temperature heat processing" using electrical resistance heating as low-temperature heat processing was demonstrated, as low-temperature heat processing other than electrical resistance heating, the heat processing furnace which incorporated the heater Any of a low-temperature heat treatment using a heat treatment, a low-temperature heat treatment of bright heat treatment in an inert gas, or a low-temperature heat treatment by high-frequency current heating may be used.
Also, “twisting under low temperature heat treatment” here means “twisting with the core wire heated to a predetermined temperature” or “twisting after starting twisting at room temperature” In any case, the twisting process is performed by gradually increasing the temperature of the core wire to a predetermined temperature.
And the above-mentioned “twisting with the core wire heated to a predetermined temperature” suppresses the disconnection at the time of twisting with a core wire having a higher degree of processing (total surface reduction rate is 94% to 99.5%). In addition, the above-mentioned “twisting by gradually changing temperature rise in which the core wire is heated to a predetermined temperature while being twisted after starting twisting at normal temperature” is performed by twisting in a cold state. Promotes refinement of core crystal grains, has high tensile fracture strength, and gradually removes residual stress that increases locally as the number of twists increases. It is possible to obtain a core wire having a high degree of linearity by homogenizing the inhomogeneity of the hardness distribution of the part within a certain range.
そして又「芯線の捻回加工後に低温加熱処理」を施してもよく、前記「芯線の捻回加工後の低温加熱処理」は、捻回時の芯線の断線を防ぐ効果は乏しいが、より引張破断強度の高い芯線を得る点で望ましい。
この理由は、常温で、つまり冷間状態で捻回加工を行うことにより、熱間状態での捻回加工よりも結晶粒の微細化をより促進させて、その後の低温加熱処理による結晶粒の成長を抑止して、局部的に発生した残留応力を除去することにより、より引張破断強度の高い芯線を得ることができるからである。
従って、「前記低温加熱処理下での捻回加工」は、芯線の総減面率が高い場合(総減面率が94%以上99.5%以下)が望ましく、又「前記捻回加工後の低温加熱処理」は、芯線の総減面率が比較的低い場合(総減面率が90%以上97%以下)が望ましい。いずれを選択するかは、ガイドワイヤに要求される優先特性(引張破断強度、直線性・回転伝達性等)により決定する。
In addition, “low temperature heat treatment after twisting of the core wire” may be performed, and the above “low temperature heat treatment after twisting of the core wire” has a poor effect of preventing the breakage of the core wire during twisting. This is desirable in terms of obtaining a core wire having a high breaking strength.
The reason for this is that the twisting process is performed at room temperature, that is, in the cold state, thereby further promoting the refinement of the crystal grains as compared with the twisting process in the hot state. This is because a core wire with higher tensile fracture strength can be obtained by suppressing the growth and removing the locally generated residual stress.
Therefore, the “twisting under the low-temperature heat treatment” is preferably performed when the total area reduction of the core wire is high (the total area reduction is 94% or more and 99.5% or less). The “low temperature heat treatment” is preferably performed when the total area reduction of the core wire is relatively low (the total area reduction is 90% or more and 97% or less). Which one to select is determined by the priority properties (tensile breaking strength, linearity, rotational transmission, etc.) required for the guide wire.
次に、図5は他の実施例2のガイドワイヤ1 Bを示し、芯線2は前記実施例1Aで述べた金属素線1a〜1hの金属素線を用い、前記実施例1と異なるところは、コイル体3の先端から所定位置(図示D寸法、例えば50mm)より手元側に接合部材4を用いた前記実施例1と同様の中間接合部411、412、413、・・・420が例えば10mmの等間隔(図示符号C)で10個配置(例えば長さ90mm)した構造体である。
この構成により、芯線2が高強度の引張破断強度を有する金属素線から成り、病変部にて屈曲変形させたときに先端側の曲がり癖がなく、かつ耐繰り返し曲げ疲労特性を向上させたガイドワイヤ1Bを得ることができる。
そして又、この構造体では、放射線不透過材から成る接合部材4(後述する表4、符号A―1等)を用いて放射線透過材コイル32の複数箇所の所定間隔の中間接合部(符号411、412、413、・・・)の配置とすることにより、狭窄病変長の計測が可能となる測長メジャーとしての機能を併せもつことができる。尚、前記中間接合部411、412、413、・・・の各間隔は、等間隔、等差級数、等比級数の規則的な所定間隔を有する形態であればいずれであっても測長メジャーとして機能する。
Next, FIG. 5 shows a guide wire 1B of another embodiment 2, and the core wire 2 uses the metal strands 1a to 1h described in the embodiment 1A, and differs from the embodiment 1. The intermediate joints 411, 412, 413,... 10 structures (for example, 90 mm in length) are arranged at equal intervals (indicated by C in the figure).
With this configuration, the core wire 2 is made of a metal wire having a high tensile breaking strength, and there is no bending flaw on the distal end side when bent at a lesion, and the guide has improved repeated bending fatigue resistance. Wire 1B can be obtained.
In addition, in this structure, a joining member 4 made of a radiopaque material (Table 4, which will be described later, reference numeral A-1 and the like) is used, and intermediate joining portions (reference numeral 411) at a plurality of locations of the radiation transmitting material coil 32 are provided. , 412, 413,...)), It is possible to have a function as a length measuring measure that enables measurement of the stenotic lesion length. The intermediate joints 411, 412, 413,... Can be measured in any length as long as they have regular predetermined intervals such as an equal interval, a difference series, and a geometric series. Function as.
そして補足すれば、前記接合部を複数個所の配置とすることにより、後述する接合部材4の接合時の溶融熱を利用して芯線先端部21、及び放射線透過材コイル32のコイル線の長尺位置にわたって芯線先端部21とコイル体3全体に低温加熱処理を行うのと同様な効果を得ることができ、その結果、長尺位置にわたって芯線先端部21の引張破断強度特性を高めることができ、そして芯線先端部21の耐繰り返し曲げ疲労特性を向上させることができる。
そしてこの方法により、全体加熱する熱処理炉を用いなくても、部分的に、かつ任意な所望位置で、芯線2の各金属素線の引張破断強度特性を向上させて、特に曲げ応力が過大に加わり易い接合部の芯線2の耐繰り返し曲げ疲労特性を同時に向上させたガイドワイヤを得ることができる。
And if it supplements, the length of the coil wire end part 21 and the coil wire of the radiation transparent material coil 32 will be utilized by making use of the fusion heat at the time of joining of the joining member 4 which will be described later, by arranging the joining parts at a plurality of locations. It is possible to obtain the same effect as the low-temperature heat treatment on the core wire tip 21 and the entire coil body 3 over the position, and as a result, the tensile breaking strength characteristic of the core wire tip 21 can be enhanced over the long position, And the resistance to repeated bending fatigue of the core wire tip 21 can be improved.
And by this method, even if it does not use the heat treatment furnace which heats the whole, the tensile breaking strength characteristic of each metal strand of the core wire 2 is improved partially and in arbitrary desired positions, and especially bending stress is excessive. It is possible to obtain a guide wire that simultaneously improves the resistance to repeated bending fatigue of the core wire 2 of the joined portion that is easily applied.
次に、図6は他の実施例3のガイドワイヤ1Cを示し、芯線2の金属素線は、前記実施例1Aで述べた金属素線1a〜1hの金属素線を用い、かつ芯線2の手元側外周部に所定長(例えば約900mmから約2400mm)の前記放射線透過材コイル32のコイル線と同一材料を用いて複数本の細線を撚り合わせたコイル体321の形態にして、その芯線2の先端部約300mm長は前記図1実施例1と同様の構造体である。
そして、図7は他の実施例4のガイドワイヤ1Dを示し、芯線2の先端部に短小の放射線不透過材コイル31、又は放射線透過材コイル322を単数、又は複数所定間隔にて接合部材4を用いて放射線不透過材コイル31、又は放射線透過材コイル322の端部を芯線2と接合し、その外周部には樹脂被膜6を形成し、芯線2が前記樹脂被膜6と直接接触している構造体を示す。尚、芯線2の金属素線は、前記金属素線1a〜1hと同様の製造工程を経た同一材料を用いる。
Next, FIG. 6 shows a guide wire 1C of another embodiment 3, and the metal wires of the core wire 2 are the same as the metal wires 1a to 1h described in the embodiment 1A, and The core wire 2 is formed in the form of a coil body 321 formed by twisting a plurality of thin wires using the same material as the coil wire of the radiation transmitting material coil 32 having a predetermined length (for example, about 900 mm to about 2400 mm) on the outer peripheral portion on the hand side. The length of the tip portion of about 300 mm is the same as that of the first embodiment in FIG.
FIG. 7 shows a guide wire 1D according to another embodiment 4 in which a single or a plurality of short radiopaque material coils 31 or radiopaque material coils 322 are provided at the distal end portion of the core wire 2 at a predetermined interval. The end portion of the radiopaque material coil 31 or the radiopaque material coil 322 is joined to the core wire 2 using a wire, and the resin coating 6 is formed on the outer periphery thereof, and the core wire 2 is in direct contact with the resin coating 6 Indicates the structure. In addition, the metal strand of the core wire 2 uses the same material which passed through the manufacturing process similar to the said metal strand 1a-1h.
このような構造体においても、前記実施例1のガイドワイヤ1Aで述べた金属素線1a〜1hを芯線2に用いることにより引張破断強度が高く、高度の直線性・回転伝達性を備え、かつ耐繰り返し曲げ疲労特性が高いガイドワイヤ1C、1Dを得ることができる。 Even in such a structure, by using the metal wires 1a to 1h described in the guide wire 1A of the first embodiment for the core wire 2, the tensile breaking strength is high, and high linearity and rotational transmission are provided. Guide wires 1C and 1D having high resistance to repeated bending fatigue can be obtained.
次に、高強度の引張破断強度と高度の直線性・回転伝達性を備えた金属素線を用いた芯線2から成るガイドワイヤの製造方法について、以下説明する。 Next, a method for manufacturing a guide wire composed of the core wire 2 using a metal wire having a high tensile breaking strength and a high degree of linearity / rotational transmission will be described below.
可とう性細長体から成る芯線と、前記芯線の先端部に前記芯線を貫挿したコイルスプリング体を装着し、前記芯線と前記コイルスプリング体とを接合部材を用いて部分的に接合した医療用ガイドワイヤの製造方法において、
前記芯線は金属素線から成り、
前記金属素線は、固溶化処理したオーステナイト系ステンレス鋼線を用いて、伸線工程と伸線工程後の低温加熱処理を1セットとして少なくとも1セット以上繰り返した後に最終伸線工程を設けて、
前記最終伸線工程までの総減面率を90%から99.5%とし、
前記低温加熱処理工程が、180℃から495℃で10分から180分とし、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、180℃から525℃で10分から180分とし、
前記最終伸線工程までの前記低温加熱処理工程による前記金属素線の引張破断強度の増加率の合計が8%以上とし、
その後、前記最終伸線後の前記金属素線に、前記金属素線の温度が180℃から495℃で30秒から180分、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、180℃から525℃で30秒から180分の低温加熱処理工程下で、
前記金属素線の一端に捻回加工前の前記金属素線の引張破断力の5%から30%の負荷加重を加えた状態で、他端を100回/mから275回/mの捻回加工工程とする、前記低温加熱処理下での前記捻回加工工程とし、
前記金属素線の引張破断強度をY(kgf/mm2 )とし、総減面率をX(%)とした場合に、
450≧Y≧2.000X+70の関係式を満たし、
前記金属素線を用いた前記芯線から成ることを特徴とする医療用ガイドワイヤの製造方法である。
A medical wire in which a core wire made of a flexible elongated body and a coil spring body having the core wire inserted through the tip of the core wire are attached, and the core wire and the coil spring body are partially joined using a joining member. In the guide wire manufacturing method,
The core wire is made of a metal wire,
The metal element wire is a solution-treated austenitic stainless steel wire, and after the wire drawing step and the low-temperature heat treatment after the wire drawing step are repeated as at least one set, a final wire drawing step is provided.
The total area reduction until the final wire drawing step is 90% to 99.5%,
When the low-temperature heat treatment step is 180 to 495 ° C. for 10 to 180 minutes, or when the metal strand is an austenitic stainless steel wire containing Mo, the temperature is 180 to 525 ° C. for 10 to 180 minutes,
The total increase rate of the tensile breaking strength of the metal strand by the low-temperature heat treatment step until the final wire drawing step is 8% or more,
Then, when the temperature of the metal strand is 180 ° C. to 495 ° C. for 30 seconds to 180 minutes, or when the metal strand is an austenitic stainless steel wire containing Mo, Under a low-temperature heat treatment process at 180 to 525 ° C. for 30 seconds to 180 minutes,
With one end of the metal wire being subjected to a load load of 5% to 30% of the tensile breaking force of the metal wire before twisting, the other end is twisted from 100 times / m to 275 times / m. As the processing step, the twisting step under the low-temperature heat treatment,
When the tensile strength at break of the metal wire is Y (kgf / mm @ 2) and the total area reduction is X (%),
Satisfies the relational expression of 450 ≧ Y ≧ 2.000X + 70,
A medical guide wire manufacturing method comprising the core wire using the metal element wire.
ここで、前記金属素線の伸線工程における前記低温加熱処理工程で、温度と時間を前記条件としたのは、前記温度範囲が前述の図3において、強加工の伸線加工での金属素線の引張破断強度が急傾斜増大する鋼種に適した温度範囲であり、又加熱時間が10分を下回れば引張破断強度向上効果が乏しく、180分を超えれば、さらに向上する効果は期待できず、経済性、生産性の観点からである。
そして又、伸線工程と低温加熱処理工程を1セットとして5セット以上設けてもよいが、経済性、生産性等の観点から3セット以下が望ましいことは、前記同様である。
又、前記最終伸線工程後の前記金属素線から成る前記芯線の低温加熱処理工程で180℃から495℃で30秒から180分とし、又は前記芯線がMoを含むオーステナイト系ステンレス鋼線のときには、180℃から525℃で30秒から180分としたのは、前記金属素線の伸線工程における前記低温加熱処理工程と同様の理由である。
この構成により、引張破断強度が急傾斜増大する温度域での鋼種に適した低温熱処理下で、最終伸線後の芯線に所定条件下での捻回加工を行うことにより、総減面率の高い強加工した芯線の捻回加工工程での断線を防いで、芯線の表層部と内層部の硬度分布の不均質を極めて少なくして均質化させ、引張破断強度が高く、かつ直線性・回転伝達性が向上した芯線から成る医療用ガイドワイヤを製造することができる。
Here, in the low-temperature heat treatment step in the wire drawing process of the metal wire, the temperature and time are set as the above conditions because the temperature range is the same as that in FIG. It is a temperature range suitable for steel grades where the tensile breaking strength of the wire increases steeply, and if the heating time is less than 10 minutes, the effect of improving the tensile breaking strength is poor, and if it exceeds 180 minutes, the effect of further improvement cannot be expected. From the viewpoint of economy and productivity.
Further, five sets or more may be provided as one set of the wire drawing step and the low-temperature heat treatment step, but it is the same as described above that three sets or less are desirable from the viewpoint of economy, productivity, and the like.
In addition, when the core wire made of the metal wire after the final wire drawing step is at a low temperature heat treatment step of 180 ° C. to 495 ° C. for 30 seconds to 180 minutes, or when the core wire is an austenitic stainless steel wire containing Mo The reason why the temperature is changed from 180 ° C. to 525 ° C. for 30 seconds to 180 minutes is the same reason as in the low-temperature heat treatment step in the wire drawing step.
With this configuration, the total area reduction rate is reduced by twisting the core wire after the final wire drawing under a predetermined condition under a low temperature heat treatment suitable for a steel type in a temperature range where the tensile breaking strength increases steeply. Prevents breakage in the twisting process of high-strength core wire, homogenizes the hardness distribution of the surface layer and inner layer of the core wire with extremely low inhomogeneity, high tensile breaking strength, linearity and rotation A medical guide wire made of a core wire with improved transmissibility can be manufactured.
そして、前記記載の医療用ガイドワイヤの製造方法において、
前記最終伸線工程後の前記金属素線に、前記金属素線の一端に捻回加工前の前記金属素線の引張破断力の5%から30%の負荷加重を加えた状態で、他端を100回/mから275回/mの捻回加工工程とし、
その後、前記金属素線の温度が180℃から495℃で30秒から180分、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、180℃から525℃で30秒から180分の低温加熱処理工程とする、前記捻回加工工程後の前記低温加熱処理工程とし、前記金属素線を用いた前記芯線から成ることを特徴とする医療用ガイドワイヤの製造方法である。
ここで芯線の低温加熱処理工程で金属素線の温度が180℃から495℃で30秒から180分、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、180℃から525℃で30秒から180分としたのは、前記温度範囲が前述の図3において、強加工の伸線加工での芯線の引張破断強度が急傾斜増大する鋼種に適した温度範囲であり、加熱時間が30秒を下回れば捻回加工による直線性効果は乏しく、180分を超えれば、さらに直線性・回転伝達性を向上させる効果は期待できず、経済性、生産性の観点からである。
この構成により、特に捻回加工後の低温加熱処理工程とすることにより、熱間状態で捻回加工を行うよりも冷間状態で捻回加工を行うことのほうが金属素線の結晶粒の微細化をより促進させ、その後引張破断強度が急傾斜増大する温度域で鋼種に適した低温加熱処理工程とすることにより、より高い直線性・回転伝達性と、より高い引張破断強度の芯線から成る医療用ガイドワイヤを製造することができる。
And in the manufacturing method of the medical guide wire as described above,
The other end of the metal wire after the final wire drawing step is subjected to a load load of 5% to 30% of the tensile breaking force of the metal wire before twisting to one end of the metal wire. Is a twisting process of 100 times / m to 275 times / m,
Thereafter, the temperature of the metal strand is 180 ° C. to 495 ° C. for 30 seconds to 180 minutes, or when the metal strand is an austenitic stainless steel wire containing Mo, 180 ° C. to 525 ° C. for 30 seconds to 180 minutes. The medical guide wire manufacturing method is characterized in that the low-temperature heat treatment step is the low-temperature heat treatment step after the twisting step, and the core wire using the metal strand is used.
Here, in the low temperature heat treatment process of the core wire, the temperature of the metal strand is 180 ° C. to 495 ° C. for 30 seconds to 180 minutes, or when the metal strand is an austenitic stainless steel wire containing Mo, the temperature is 180 ° C. to 525 ° C. The temperature range from 30 seconds to 180 minutes is a temperature range suitable for a steel type in which the tensile rupture strength of the core wire in the strong wire drawing in FIG. If it is less than 30 seconds, the linearity effect by twisting is poor, and if it exceeds 180 minutes, the effect of further improving the linearity / rotational transferability cannot be expected, from the viewpoint of economy and productivity.
With this configuration, it is possible to perform the twisting process in the cold state rather than performing the twisting process in the hot state, particularly by performing the low-temperature heat treatment process after the twisting process. It is made of a core wire with higher linearity and rotational transmission and higher tensile breaking strength by adopting a low-temperature heat treatment process suitable for the steel type in a temperature range where the tensile breaking strength increases sharply thereafter. A medical guidewire can be manufactured.
そして又、前記記載の医療用ガイドワイヤの製造方法において、
前記最終伸線工程後の前記金属素線に、前記低温加熱処理工程下での前記捻回加工工程、又は前記捻回加工工程後の前記低温加熱処理工程における、前記低温加熱処理工程が、 前記金属素線の温度が300℃から495℃で30秒から180分、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、300℃から525℃で30秒から180分の電気抵抗加熱とし、
前記捻回加工工程が、前記金属素線の一端に捻回加工前の前記金属素線の引張破断力の5%から30%の負荷加重を加えた状態で、他端を100回/mから200回/mの捻回加工工程とし、
前記金属素線を用いた前記芯線から成ることを特徴とする医療用ガイドワイヤの製造方法である。
ここで、金属素線の低温加熱処理工程で、前記金属素線の温度範囲としたのは、前述の図3において、強加工の伸線加工での金属素線の引張破断強度が、より急傾斜増大する鋼種に適した温度範囲であり、又電気抵抗加熱としたのは、芯線の表層部と内層部の硬度分布の不均質性があっても内層部まで均一加熱することにより捻回加工を容易とする為であり、そして前記捻回条件としたのは、前述の図8、9において、より残留角度が少ない直線性・回転伝達性の高い芯線を得ることができるからである。
この構成により、低温加熱処理工程が芯線の引張破断強度がより急傾斜増大する温度域で鋼種に適した低温加熱処理条件とし、かつ捻回加工工程が芯線の表層部と内層部の硬度分布の不均質を極めて少なくして均質化させる捻回加工条件とすることにより、芯線の直線性・回転伝達性が極めて高く、先端側の曲がり癖がなく、かつ耐繰り返し曲げ疲労特性をさらに向上させた芯線から成る医療用ガイドワイヤを製造することができる。
In addition, in the method for manufacturing the medical guide wire described above,
The low-temperature heat treatment step in the twisting step under the low-temperature heat treatment step or the low-temperature heat treatment step after the twisting step is performed on the metal wire after the final wire drawing step, Electric resistance heating when the temperature of the metal strand is 300 ° C. to 495 ° C. for 30 seconds to 180 minutes, or when the metal strand is an austenitic stainless steel wire containing Mo, 300 ° C. to 525 ° C. for 30 seconds to 180 minutes age,
In the state in which the twisting step is applied with a load load of 5% to 30% of the tensile breaking force of the metal strand before twisting to one end of the metal strand, the other end is started from 100 times / m. A twisting process of 200 times / m,
A medical guide wire manufacturing method comprising the core wire using the metal element wire.
Here, the temperature range of the metal element wire in the low-temperature heat treatment process of the metal element wire is that the tensile breaking strength of the metal element wire in the strong wire drawing process in FIG. The temperature range is suitable for steel grades with increasing inclination, and electrical resistance heating is performed by twisting by heating uniformly to the inner layer even if the hardness distribution of the surface layer and inner layer of the core wire is inhomogeneous. The reason why the twisting condition is used is that in FIG. 8 and FIG. 9 described above, it is possible to obtain a core wire with less residual angle and high linearity / rotational transmission.
With this configuration, the low-temperature heat treatment process is a low-temperature heat treatment condition suitable for the steel type in a temperature range where the tensile breaking strength of the core wire increases more steeply, and the twisting process has a hardness distribution of the surface layer portion and the inner layer portion of the core wire. By adopting the twisting process conditions that homogenize with extremely little inhomogeneity, the core wire has extremely high linearity and rotational transmission, no bending at the tip, and further improved resistance to repeated bending fatigue. A medical guide wire made of a core wire can be manufactured.
そしてさらに又、前記記載の医療用ガイドワイヤの製造方法において、
前記最終伸線工程後の前記金属素線に、前記低温加熱処理工程下での前記捻回加工工程、又は前記捻回加工工程後の前記低温加熱処理工程における、前記捻回加工工程が、
前記金属素線の一端に負荷加重を加えた状態で他端を捻回し、
前記金属素線の捻回加工前の引張破断力P(kgf)に対する負荷加重W(kgw)の割合を負荷加重比X(%)とし、前記負荷加重比X(%)はW÷P×100の関係とした場合に、捻回数N(回/m)は、
−0.8X+124≦N≦−1.8X+284の関係式を満たし、
前記金属素線を用いた前記芯線から成ることを特徴とする医療用ガイドワイヤの製造方法である。
さらにより好ましい前記記載の医療用ガイドワイヤの製造方法は、
前記捻回加工工程が、前記金属素線の一端に負荷加重を加えた状態で他端を捻回し、
前記金属素線の捻回加工前の引張破断力P(kgf)に対する負荷加重W(kgw)の割合を負荷加重比X(%)とし、前記負荷加重比X(%)はW÷P×100の関係とした場合に、捻回数N(回/m)は、
−0.8X+124≦N≦−2.8X+264の関係式を満たし、
前記金属素線を用いた前記芯線から成ることを特徴とする医療用ガイドワイヤの製造方法である。
この構成により、「低温熱処理下での捻回加工工程」又は「捻回加工工程後の低温加熱処理工程」における、前記捻回加工工程の負荷加重と捻回数との相関関係を明確にして、高度の直線性・回転伝達性と高度の引張破断強度特性を備えた芯線を用いて成る医療用ガイドワイヤを製造することができる。
In addition, in the method for manufacturing a medical guide wire as described above,
The twisting process in the twisting process under the low-temperature heat treatment process or the low-temperature heat treatment process after the twisting process on the metal wire after the final wire drawing process,
Twist the other end with load applied to one end of the metal strand,
The ratio of the load weight W (kgw) to the tensile breaking force P (kgf) before twisting of the metal element wire is defined as a load weight ratio X (%), and the load weight ratio X (%) is W ÷ P × 100. In the case of the relationship, the number of twists N (times / m) is
-0.8X + 124 ≦ N ≦ −1.8X + 284 is satisfied,
A medical guide wire manufacturing method comprising the core wire using the metal element wire.
More preferably, the method for producing a medical guidewire according to the above description,
The twisting process is to twist the other end with a load applied to one end of the metal wire,
The ratio of the load weight W (kgw) to the tensile breaking force P (kgf) before twisting of the metal element wire is defined as a load weight ratio X (%), and the load weight ratio X (%) is W ÷ P × 100. In the case of the relationship, the number of twists N (times / m) is
−0.8X + 124 ≦ N ≦ −2.8X + 264 is satisfied,
A medical guide wire manufacturing method comprising the core wire using the metal element wire.
With this configuration, in the “twisting process step under low-temperature heat treatment” or “low-temperature heat treatment process after the twisting process step”, the correlation between the load load and the number of twists in the twisting process step is clarified, A medical guide wire using a core wire having a high degree of linearity / rotational transferability and a high tensile breaking strength characteristic can be manufactured.
次に、前記実施例1〜5のガイドワイヤ1(符号1A〜1D)を用いて狭窄病変部における好適治療用具の組立体例を以下説明する。 Next, an example of an assembly of a suitable treatment tool in a stenotic lesion using the guide wires 1 (reference numerals 1A to 1D) of Examples 1 to 5 will be described below.
図12は、下肢血管狭窄病変部治療におけるガイドワイヤ1の狭窄病変部への進行状態図を示し、例えば前脛骨動脈90Bの閉塞病変部90Cへガイドワイヤ1を素早く到達させる為には、比較的屈曲蛇行の少ない概ねストレート状の浅大腿動脈90A部分はガイドワイヤ1の先端部はU字状に折れ曲がった状態(図示(ロ)符号U)であっても、折れ曲がった状態のまま分岐部90Dまで推し進め、その後一度手元側へ引いて先端部をストレート状(符号S1)にした後、閉塞病変部90Cへガイドワイヤ1を導いている。(符号S2) FIG. 12 shows a progress diagram of the guide wire 1 to the stenotic lesion in the treatment of the vascular stenosis lesion of the lower limb. For example, in order to quickly reach the obstruction lesion 90C of the anterior tibial artery 90B, Even in a state where the distal portion of the guide wire 1 is bent in a U shape (reference symbol (B) in the drawing (B)), the portion of the generally straight superficial femoral artery 90A with few bending meanders is bent to the branch portion 90D. The guide wire 1 is then guided to the occluded lesioned part 90C after it is pulled to the proximal side once to make it straight (symbol S1). (Code S2)
かかる場合において、本発明のガイドワイヤ1の芯線2の金属素線は、強加工して引張破断強度を高め、かつ高度の直線性・回転伝達性を備えている為、分岐部90Dにおいて曲がり癖をつけることなくストレート状の復元力を高めることができる特段の作用効果がある。尚、下肢血管病変部治療におけるガイドワイヤ1のコイル体3の外径(D1 、D2 )、及び先導栓5の外径(D6 )は概ね、0.457mm(0.018インチ)であり、又ガイドワイヤ1との組立体としては、前記ガイドワイヤ1を貫挿させて、前記ガイドワイヤを前進しようとする反力を強く支える構造体としての外周部に凸凹状を有する中空状の多条線から成るコイル体構造のマイクロカテーテル100を用いる。
そして又、前記ガイドワイヤ1と前記マイクロカテーテル100との双方を貫挿させて、双方の反力を同時に支える構造体としての内径が1.91mmから2.67mmのガイディングカテーテル110を用い、前記ガイドワイヤ1と前記マイクロカテーテル100と前記ガイディングカテーテル110との組立体が好適な治療用具の組立体例である。
In such a case, the metal wire of the core wire 2 of the guide wire 1 of the present invention is strongly processed to increase the tensile breaking strength, and has a high degree of linearity and rotational transmission. There is a special effect that can increase the restoring force of a straight shape without attaching. The outer diameter (D1, D2) of the coil body 3 of the guide wire 1 and the outer diameter (D6) of the leading plug 5 in the treatment of the vascular lesion part of the lower limb are approximately 0.457 mm (0.018 inch), and As an assembly with the guide wire 1, a hollow multi-filament having an irregular shape on the outer peripheral portion as a structure that strongly supports a reaction force that penetrates the guide wire 1 and advances the guide wire. A microcatheter 100 having a coil body structure is used.
Further, using the guiding catheter 110 having an inner diameter of 1.91 mm to 2.67 mm as a structure for inserting both the guide wire 1 and the microcatheter 100 and supporting both reaction forces at the same time, An assembly of the guide wire 1, the microcatheter 100, and the guiding catheter 110 is an example of a suitable treatment tool assembly.
そして引張破断強度を向上させ、かつ高度の直線性・回転伝達性を備えた金属素線を用いた芯線2から成る本発明のガイドワイヤ1を用いることにより、心臓血管治療用のガイドワイヤの細径化を図ることができる。例えば、ガイドワイヤ1のコイル体3の外径が0.355mmから0.228mm(0.014インチから0.009インチ)へ、細径化できる。
そしてガイドワイヤ1をマイクロカテーテル100内へ挿入し、かつ、ガイディングカテーテル110内へ前記ガイドワイワイヤ1と前記マイクロカテーテル100とを挿入する。かかる場合において、ガイドワイヤ1の細径化に追従してガイディングカテーテル110は7F〜8Fから6F(内径2.3mm〜2.7mmから内径1.91mm〜2.00mm)となり、この中に挿入するマイクロカテーテル100(内径0.28mmから内径0.90mm)とともに細径化することができる。
そして又、下肢血管治療用ガイドワイヤについては、心臓血管径に対して概ね2倍から5倍以上と血管径が太く、かつ狭窄病変長は3倍以上と長く、この為強く押し進んでいく前進力が要求され、その外径(D1 、D2 、D6 、D7 )は概ね0.457mm(0.018インチ)で、かつ強く押し進んでいく前進力を得る為には、この前進力を支える反力が必要である。
Further, by using the guide wire 1 of the present invention comprising the core wire 2 using a metal wire with improved tensile strength and high linearity and rotational transmission, the guide wire for cardiovascular treatment can be thinned. Diameter can be achieved. For example, the outer diameter of the coil body 3 of the guide wire 1 can be reduced from 0.355 mm to 0.228 mm (0.014 inch to 0.009 inch).
Then, the guide wire 1 is inserted into the microcatheter 100, and the guide wire 1 and the micro catheter 100 are inserted into the guiding catheter 110. In such a case, following the narrowing of the guide wire 1, the guiding catheter 110 is changed from 7F to 8F to 6F (inner diameter 2.3 mm to 2.7 mm to inner diameter 1.91 mm to 2.00 mm). The diameter of the microcatheter 100 (with an inner diameter of 0.28 mm to an inner diameter of 0.90 mm) can be reduced.
In addition, the lower limb vascular treatment guide wire has a large vascular diameter of approximately 2 to 5 times the cardiovascular diameter and a stenotic lesion length of more than 3 times. Force is required, and the outer diameter (D1, D2, D6, D7) is approximately 0.457 mm (0.018 inch), and in order to obtain an advancing force that is strongly pushed forward, Power is needed.
そしてこの強く押し進んでいく前進力を支える反力を受けるマイクロカテーテル100としては、多層樹脂管(内層PTFE,外層ポリアミド等)構造、又前記多層樹脂管体内に金属線の編組を介在させた構造の他、特に先端部が金属、又は合成樹脂製の略円錐形状の先端チップ100Bが固着されて、複数の金属線の丸線を多条コイル体に成形した螺旋条管体からなり、病変内の穿孔を可能とした金属性先端チップ、又は屈曲蛇行病変部への高い侵入性を有する先細円錐形状の樹脂製先端チップを備えた前記螺旋条管体から成る可とう性中空管体が望ましい。 The microcatheter 100 that receives the reaction force that supports this strongly advancing force includes a multilayer resin tube (inner layer PTFE, outer layer polyamide, etc.) structure, and a structure in which a braid of metal wires is interposed in the multilayer resin tube body. In addition, the tip portion 100B having a substantially conical shape made of a metal or a synthetic resin is fixed, and a plurality of metal wire round wires are formed into a multi-strand coil body, It is desirable to use a flexible hollow tube made of the above-mentioned spiral tube body provided with a metal tip that can be perforated, or a tapered cone-shaped resin tip having high penetration into a bent meandering lesion. .
そしてさらに、心臓血管治療の手技対応においては、血管径が小さく、かつ屈曲蛇行が激しく、又下肢血管治療の手技対応においては、血管径は太いが狭窄、又は完全閉塞病変長が心臓血管に比べて3倍以上と長く、この閉塞部をガイドワイヤ1とともに穿孔していく為には、外周部が丸線の凸凹状を形成する金属線の丸線を用いた多条コイル体の螺旋条管体が望ましく、さらに望ましいのは、図13に示すように、多条線のうち、例えば線直径が0.11mmから0.18mmの太線100Cが1〜2本と、線直径が0.06mmから0.10mmの細線100Dが2〜8本を巻回成形、又は撚合構成し、若しくは太線1本に対して細線を2本から4本を一組として二組以上設けて各金属線を隣接接触させて巻回成形、又は撚合構成して中空状で外周部が凸凹状の螺旋条管体100Aの構造である。 Furthermore, in the case of cardiovascular treatment procedures, the vessel diameter is small and the meandering is severe, and in the case of lower limb vessel treatment procedures, the vessel diameter is thick but stenosis or completely occluded lesion length is longer than that of cardiovascular. In order to perforate the closed portion with the guide wire 1 in a length of three times or more, the spiral strip of a multi-strand coil body using a round wire of a metal wire whose outer peripheral portion forms a rounded irregular shape. As shown in FIG. 13, the body is more desirable, and among the multiple filaments, for example, one or two thick lines 100C having a diameter of 0.11 to 0.18 mm and a diameter of 0.06 mm are used. 0.10 mm fine wire 100D is formed by winding or twisting 2 to 8 wires, or two or more fine wires are set as one set with respect to one thick wire, and each metal wire is adjacent to each other. In contact with winding or twisting composition The outer peripheral portion at Jo has the structure of the corrugated spiral strip tube 100A.
前記螺旋条管体100Aを用いる理由は、血管壁と多条線の外周部の凸凹部が接触して滑り移動を防いで、推し進めようとするガイドワイヤ1の反力を支える力が高いからであり、又、病変内での穿孔能力を併せもち、かつ、太線のほうが早く血管壁と接触し、その状態で一回転させると太線の撚りピッチのみで移動し、一回転での進行距離は長くなり、その結果ガイドワイヤ1を含む組立体としての進退操作が早くなるからである。尚、外周部の先端部、又は全体に前記凸凹状を形成する構造、又は狭窄部血管内挿入時に血管壁等の外部からの圧迫・押圧作用により外周部の少なくとも一部(先端から300mm以内)に前記凸凹状を形成する構造であれば、外周部に薄膜の樹脂チューブ体100E、又内側に同様の樹脂チューブ体100Fを設けた構造の可とう性中空管体であってもよい。 The reason for using the spiral tubular body 100A is that the blood vessel wall and the convex and concave portions of the outer peripheral portion of the multi-filament are in contact with each other to prevent sliding movement, and the force that supports the reaction force of the guide wire 1 to be pushed forward is high. Yes, it also has the ability to perforate within the lesion, and the thick line comes into contact with the blood vessel wall faster, and if it rotates once in that state, it moves only with the twisted pitch of the thick line, and the travel distance per rotation is longer. As a result, the advance / retreat operation of the assembly including the guide wire 1 is accelerated. In addition, at least a part of the outer peripheral portion (within 300 mm from the distal end) due to the external compression or pressing action of the blood vessel wall or the like during insertion into the blood vessel wall or the like during the insertion into the blood vessel at the distal end portion of the outer peripheral portion or the entire structure If it is the structure which forms the said unevenness | corrugation, the flexible hollow tube body of the structure which provided the resin tube body 100E of the thin film in the outer peripheral part, and the same resin tube body 100F inside may be sufficient.
そして又、血管分岐部の双方の血管内に狭窄部が形成され、この狭窄部を拡張する為の血管分岐病変部の手技におけるバルーンカテーテル等との組立体において、血管分岐病変部のそれぞれの病変部の手前でバルーンカテーテルのバルーン部を拡張させて血管壁へ当接させ、前進しようとするガイドワイヤ1の反力を支えることによりガイドワイヤ1の前方への推進力を発揮させ、ガイドワイヤ1とバルーンカテーテル(図示せず)とを一組として二組前記ガイディングカテーテル110内へ挿入してキッシング手技を容易に行なうことができる。尚、ここでいうキッシング手技とは、ガイドワイヤとバルーンカテーテルとを一組として二組ガイディングカテーテル110内へ挿入して血管の分岐病変部における二本のバルーンカテーテルのバルーン部を同時拡張させ、分岐している二箇所の狭窄病変部の血管内径を同時拡張させる手技のことをいう。
かかる場合の組立体としては、ガイドワイヤ1の外径が0.228mmから0.457mmでガイドワイヤ1を内径が0.28mmから0.90mmのバルーンカテーテル内へ挿入して一組とし、内径が1.91mmから2.67mmのガイディングカテーテル内へ、前記ガイドワイヤと前記バルーンカテーテルとを一組とする二組を挿入してキッシング手技を容易とすることを特徴とする組立体である。
In addition, a stenosis is formed in both blood vessels of the vascular bifurcation, and each lesion of the vascular bifurcation lesion is an assembly with a balloon catheter or the like in the procedure of the vascular bifurcation lesion for expanding the stenosis. The balloon part of the balloon catheter is expanded in front of the part and brought into contact with the blood vessel wall to support the reaction force of the guide wire 1 to be advanced, thereby exerting a propulsive force forward of the guide wire 1. A pair of catheters and balloon catheters (not shown) can be inserted into the guiding catheter 110 to facilitate the kissing procedure. The kissing technique referred to here is a guide wire and a balloon catheter that are inserted into two sets of guiding catheters 110 as a set to simultaneously expand the balloon portions of the two balloon catheters in the bifurcation lesion of the blood vessel, This refers to a technique that simultaneously expands the blood vessel inner diameter of two branching stenotic lesions.
As an assembly in such a case, the guide wire 1 is inserted into a balloon catheter having an outer diameter of 0.228 mm to 0.457 mm and an inner diameter of 0.28 mm to 0.90 mm. The assembly is characterized by facilitating a kissing procedure by inserting two pairs of the guide wire and the balloon catheter into a guiding catheter of 1.91 mm to 2.67 mm.
そして次に、固溶化処理したオーステナイト系ステンレス鋼線を伸線加工して低温熱処理を加えたときの引張強度特性が図3に示す特性を有することから、低温熱処理効果を高める別に方法について、以下補足説明する。 And then, because the tensile strength characteristics when the solution-treated austenitic stainless steel wire is drawn and subjected to low-temperature heat treatment have the characteristics shown in FIG. Supplementary explanation.
図3に示すように、低温加熱処理温度が180℃から525℃で金属素線の引張破断強度の向上効果が得られることから、芯線2と放射線透過材コイル32から成るコイル体3とを部分的に接合する接合部材41、42、43又は先導栓5を形成する接合部材4に、前記金属素線の引張破断強度が急傾斜増大する温度範囲と合致する温度範囲(180℃から525℃)の溶融温度を持つ共晶合金を用いることによっても芯線の金属素線の引張破断強度を向上させることができる。
具体的には、接合部材41、42は前記所定寸法の略円筒形状であり、又後端接合部材43は、前記所定寸法の前記放射線透過コイル材32と芯線2との接合で、その接合形状は、円筒状、又は手元側が先細りの略円錐形状である。(図1)尚、ここでいう接合部材4を用いて部分的に接合するとは、前記実施例で各接合部材41〜43の芯線2と放射線透過材コイル32との接合形態、及び先導栓5の芯線とコイル体3との接合形態のことをいう。
As shown in FIG. 3, when the low-temperature heat treatment temperature is 180 ° C. to 525 ° C., the effect of improving the tensile breaking strength of the metal strand can be obtained. Therefore, the coil body 3 composed of the core wire 2 and the radiation transmitting material coil 32 is partially Temperature range (180 ° C. to 525 ° C.) that coincides with the temperature range in which the tensile breaking strength of the metal element wire steeply increases on the joining members 41, 42, 43 to be joined together or the joining member 4 forming the leading plug 5. The tensile fracture strength of the metal wire of the core wire can also be improved by using a eutectic alloy having a melting temperature of.
Specifically, the joining members 41 and 42 have a substantially cylindrical shape with the predetermined dimension, and the rear end joining member 43 is a joint between the radiation transmissive coil member 32 and the core wire 2 with the predetermined dimension. Is a cylindrical shape or a substantially conical shape with a tapered side. (FIG. 1) In addition, joining partially using the joining member 4 here means the joining form of the core wire 2 and the radiation transmitting material coil 32 of each joining member 41-43 and the leading plug 5 in the said Example. The core wire and the coil body 3 are joined together.
そして放射線透過材コイル32、及び芯線2の前記金属素線と直接接合する接合部材4は、溶融温度が前記金属素線の引張破断強度が急傾斜増大する温度範囲と合致する温度範囲(180℃から525℃)が望ましく、この温度範囲で溶融する共晶合金を用いることにより、接合部の前記金属素線の引張破断強度を向上させながら、かつ強固接合することができる。
そして接合部材4は、溶融温度が180℃から495℃の共晶合金、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには180℃から525℃の共晶合金を用いる。ここでいう共晶合金とは、合金の成分比を変更することにより得られる最低融点(溶融温度)を有する特殊な合金のことをいい、具体的には、金又は銀を含む合金材で金錫系合金材として金80重量%、残部が錫で溶融温度が280℃、又銀錫系合金として銀3.5重量%、残部が錫で溶融温度が221℃、そして、金88重量%、残部がゲルマニウムで溶融温度が356℃、又銀と錫とインジウムから成り、溶融温度が450℃から472℃の共晶合金であり、その代表例を表4に示す。
The radiation transmitting material coil 32 and the joining member 4 directly joined to the metal strand of the core wire 2 have a temperature range (180 ° C.) in which the melting temperature matches the temperature range in which the tensile breaking strength of the metal strand increases steeply. To 525 ° C.), and by using a eutectic alloy that melts in this temperature range, it is possible to perform strong bonding while improving the tensile breaking strength of the metal wire at the joint.
The joining member 4 is made of a eutectic alloy having a melting temperature of 180 ° C. to 495 ° C., or an eutectic alloy having a melting point of 180 ° C. to 525 ° C. when the metal strand is an austenitic stainless steel wire containing Mo. The eutectic alloy here refers to a special alloy having the lowest melting point (melting temperature) obtained by changing the component ratio of the alloy, and specifically, an alloy material containing gold or silver. 80% by weight of gold as a tin-based alloy material, the balance being tin and a melting temperature of 280 ° C., and 3.5% by weight of silver as a tin-based alloy, the balance being tin and a melting temperature of 221 ° C., and 88% by weight of gold, The balance is germanium, a melting temperature of 356 ° C., a eutectic alloy composed of silver, tin, and indium and having a melting temperature of 450 ° C. to 472 ° C. Table 4 shows typical examples.
ここで接合部材4として金を用いる理由は、放射線透視下における視認性向上、及び耐食性、展延性向上の為であり、銀を用いる理由は、融点調整等の為であり、錫を用いる理由は、融点を低下させてコイル体3、及び芯線2との濡れ性を向上させる為であり、又インジウム、銅を用いる理由も濡れ性向上の為であり、そしてゲルマニウムを用いる理由は、金属間化合物の結晶粒粗大化を抑止して、接合強度の低下防止を図る為である。 The reason why gold is used as the bonding member 4 is to improve visibility under radioscopy, corrosion resistance, and spreadability. The reason why silver is used is to adjust the melting point and the reason why tin is used. In order to improve the wettability with the coil body 3 and the core wire 2 by lowering the melting point, the reason for using indium and copper is to improve the wettability, and the reason for using germanium is an intermetallic compound This is to suppress the coarsening of the crystal grains and prevent a decrease in the bonding strength.
そして接合部材4の溶融温度が180℃から495℃、又は180℃から525℃とした理由は、180℃を下回ると強加工伸線して加工硬化させた芯線2の金属素線の引張破断強度を接合部材4の溶融熱を利用して向上させる効果は低く、そして495℃を超えると前記金属素線のオーステナイト系ステンレス鋼線の特質から、又は525℃を超えるとMoを含むオーステナイト系ステンレス鋼線の特質から、前記各オーステナイト系ステンレス鋼線を520℃、又は540℃を超える800℃に加熱すると鋭敏化現象を生じて、前述のように極端に引張破断強度特性等を低下させることとなり、この現象を防ぎ、芯線2の機械的強度特性を最大限に発揮させる為である。
そして、接合部材4の溶融熱により各接合部の前記金属素線の引張破断強度は増大し、この引張破断強度増大に伴い引張応力は増大し、その結果接合部での芯線2の耐繰り返し曲げ疲労特性は向上する。
The reason why the melting temperature of the joining member 4 is 180 ° C. to 495 ° C., or 180 ° C. to 525 ° C. is that the tensile breaking strength of the metal strand of the core wire 2 that is hard-drawn and work hardened below 180 ° C. The effect of improving the heat of melting of the joining member 4 is low, and if it exceeds 495 ° C., the characteristics of the austenitic stainless steel wire of the metal strand, or if it exceeds 525 ° C., austenitic stainless steel containing Mo From the characteristics of the wire, when each austenitic stainless steel wire is heated to 520 ° C. or 800 ° C. exceeding 540 ° C., a sensitization phenomenon occurs, and as described above, the tensile fracture strength characteristics are extremely reduced. This is to prevent this phenomenon and to maximize the mechanical strength characteristics of the core wire 2.
And the tensile breaking strength of the said metal strand of each joining part increases with the fusion heat of the joining member 4, and tensile stress increases with this tensile breaking strength increase, As a result, the bending resistance of the core wire 2 in a joining part is repeated. Fatigue properties are improved.
そして、例えば、図5に示すように先導栓5の先端から50mm(図示D寸法)に位置する中間接合部材411と中間接合部材412、413との各間隔を10mm(図示C寸法)として前記同様の中間接合部材を10個配置して中間接合部材間の全長を90mmとすることにより、部分的に接合する接合部材を用いても芯線2の長尺位置(図示90mm)にわたって低温加熱処理を施すことができ、芯線2の引張破断強度を高めることができる。
この方法によれば、全体加熱する雰囲気加熱による熱処理炉を用いなくても、部分的に一定の狭い範囲であっても必要部位の芯線2の引張破断強度を向上させることができる。 そしてさらに、この構造体では、等間隔の中間接合部材411、412、413の配置とすることにより、狭窄病変長の計測が可能となる効果を併せもつことができる。尚、中間接合部材の位置、及びその範囲を前記寸法としたのは、この範囲であれば、一般的に冠状動脈に多く見られる狭窄病変位置に該当するからである。
そして補足すれば、先導栓5に共晶合金である接合部材4を用いることにより、先導栓5と芯線2との接合部での金属素線の引張破断強度を向上させることができ、その結果狭窄病変内で前記接合部での耐屈曲疲労特性を向上させることができる。尚、補足すれば、この接合工程は芯線先端部21の機械的加工の研削工程後に、又は研削工程後に押圧加工した後に、芯線先端部21の外周部にコイル体3を装着し、その後接合部材4を用いて接合部材41〜43、411、412、413の接合、及び先導栓5を接合する。その後コイル体3の外周部に樹脂被膜6を施す工程となる。
For example, as shown in FIG. 5, each interval between the intermediate joint member 411 and the intermediate joint members 412 and 413 located 50 mm (D dimension in the figure) from the tip of the leading plug 5 is 10 mm (C dimension in the figure). By arranging 10 intermediate joining members and setting the total length between the intermediate joining members to 90 mm, a low-temperature heat treatment is performed over a long position (90 mm in the drawing) of the core wire 2 even when a joining member that is partially joined is used. The tensile breaking strength of the core wire 2 can be increased.
According to this method, it is possible to improve the tensile breaking strength of the core wire 2 at a necessary site even without using a heat treatment furnace by atmospheric heating for heating the whole, even in a partially narrow range. Furthermore, in this structure, by arranging the intermediate joint members 411, 412, and 413 at equal intervals, it is possible to have an effect that the length of the stenotic lesion can be measured. The reason why the position and the range of the intermediate joint member are the above dimensions is that this range corresponds to a stenotic lesion position generally observed in the coronary artery.
And if it supplements, by using the joining member 4 which is a eutectic alloy for the leading plug 5, the tensile breaking strength of the metal strand at the junction between the leading plug 5 and the core wire 2 can be improved, and as a result. Bending fatigue resistance at the joint can be improved within a stenotic lesion. In addition, if it supplements, this joining process will attach the coil body 3 to the outer peripheral part of the core wire front-end | tip part 21, after the grinding process of the mechanical processing of the core-wire front-end | tip part 21, or after a grinding process, and will be joined after that. 4, the joining members 41 to 43, 411, 412, 413 and the leading plug 5 are joined. Thereafter, the resin film 6 is applied to the outer peripheral portion of the coil body 3.
そしてガイドワイヤは手技前に生理食塩水に浸漬、又は手技後の生理食塩水を用いて洗浄する為、例えば接合部材4が銀系共晶合金を用いた場合には、浸漬約1時間以内で硫化銀等の形成、又は塩化銀を形成して銀化合物の感光性により、黒色化が始まり、時間の経過とともに黒色化がさらに進んで腐食が増大して接合強度が低下する。この為、腐食進行による接合強度の低下防止、及び黒色化の防止の為には、金系共晶合金の接合部材4を用いることが望ましい。
そして前記金系共晶合金の接合部材4を用いて放射線透過材コイル32と、放射線不透過材コイル31とを部分的に接合する際、放射線不透過材コイル31の金属線が金、又は金成分を含む材料、並びに金めっきした材料であれば、前記接合部材4との濡れ性が向上し、より望ましい接合形態である。
Since the guide wire is immersed in a physiological saline before the procedure or washed with a physiological saline after the procedure, for example, when the joining member 4 uses a silver-based eutectic alloy, the immersion is performed within about one hour. The formation of silver sulfide or the like, or the formation of silver chloride and the photosensitivity of the silver compound starts blackening, and the blackening further proceeds with the passage of time, increasing corrosion and reducing the bonding strength. For this reason, it is desirable to use a bonding member 4 made of a gold-based eutectic alloy in order to prevent a decrease in bonding strength due to the progress of corrosion and to prevent blackening.
When the radiation transmitting material coil 32 and the radiation opaque material coil 31 are partially bonded using the gold-based eutectic alloy bonding member 4, the metal wire of the radiation opaque material coil 31 is gold or gold. If it is the material containing a component and the material which carried out gold plating, the wettability with the said joining member 4 will improve, and it is a more desirable joining form.
そして次に、接合部材4を併せ用いた医療用ガイドワイヤの具体例について、以下説明する。
可とう性細長体から成る芯線と、前記芯線の先端部に前記芯線を貫挿したコイルスプリング体を装着し、前記芯線と前記コイルスプリング体とを接合部材を用いて部分的に接合した医療用ガイドワイヤにおいて、
前記芯線は金属素線から成り、
前記金属素線は、固溶化処理したオーステナイト系ステンレス鋼線を用いて、伸線と伸線後の低温加熱処理を1セットとして少なくとも1セット以上繰り返した後に最終伸線を設けて、
前記最終伸線までの総減面率を90%から99.5%とし、
前記低温加熱処理が、180℃から495℃とし、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、180℃から525℃とし、
前記最終伸線までの前記低温加熱処理による前記金属素線の引張破断強度の増加率の合計が8%以上とし、
前記最終伸線した後に、前記芯線と前記コイルスプリング体とを前記接合部材を用いた部分的な接合が、前記接合部材の溶融熱を利用した低温加熱処理とし、
前記接合部材は、180℃から495℃の溶融温度をもつ共晶合金から成り、又は前記芯線がMoを含むオーステナイト系ステンレス鋼線のときには、180℃から525℃の溶融温度をもつ共晶合金から成り、
前記金属素線の引張破断強度をY(kgf/mm2 )とし、総減面率をX(%)とした場合に、
450≧Y≧2.000X+70の関係式を満たし、
前記金属素線を用いた前記芯線から成ることを特徴とする医療用ガイドワイヤである。
Next, a specific example of a medical guide wire using the joining member 4 will be described below.
A medical wire in which a core wire made of a flexible elongated body and a coil spring body having the core wire inserted through the tip of the core wire are attached, and the core wire and the coil spring body are partially joined using a joining member. In the guide wire,
The core wire is made of a metal wire,
The metal element wire is a solution-treated austenitic stainless steel wire, and the final wire drawing is performed after repeating at least one set of drawing and low-temperature heat treatment after drawing as one set,
The total area reduction until the final wire drawing is 90% to 99.5%,
When the low temperature heat treatment is 180 ° C. to 495 ° C., or when the metal strand is an austenitic stainless steel wire containing Mo, the temperature is 180 ° C. to 525 ° C.,
The total increase rate of the tensile breaking strength of the metal strand by the low-temperature heat treatment until the final wire drawing is 8% or more,
After the final wire drawing, the core wire and the coil spring body are partially joined using the joining member as a low-temperature heat treatment using the heat of fusion of the joining member,
The joining member is made of a eutectic alloy having a melting temperature of 180 ° C. to 495 ° C., or when the core wire is an austenitic stainless steel wire containing Mo, from a eutectic alloy having a melting temperature of 180 ° C. to 525 ° C. Consisting of
When the tensile strength at break of the metal wire is Y (kgf / mm @ 2) and the total area reduction is X (%),
Satisfies the relational expression of 450 ≧ Y ≧ 2.000X + 70,
A medical guide wire comprising the core wire using the metal strand.
そして又、接合部材4を併せ用いた医療用ガイドワイヤの製造方法として、
可とう性細長体から成る芯線と、前記芯線の先端部に前記芯線を貫挿したコイルスプリング体を装着し、前記芯線と前記コイルスプリング体とを接合部材を用いて部分的に接合した医療用ガイドワイヤの製造方法において、
前記芯線は金属素線から成り、
前記金属素線は、固溶化処理したオーステナイト系ステンレス鋼線を用いて、伸線工程と伸線工程後の低温加熱処理を1セットとして少なくとも1セット以上繰り返した後に最終伸線工程を設けて、
前記最終伸線工程までの総減面率を90%から99.5%とし、
前記低温加熱処理工程が、180℃から495℃で10分から180分とし、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、180℃から525℃で10分から180分とし、
前記最終伸線工程までの前記低温加熱処理工程による前記金属素線の引張破断強度の増加率の合計が8%以上とし、
その後、前記最終伸線後の前記金属素線に、前記金属素線の温度が180℃から495℃で30秒から180分、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、180℃から525℃で30秒から180分の低温加熱処理工程下で、
前記金属素線の一端に捻回加工前の前記金属素線の引張破断力の5%から30%の負荷加重を加えた状態で、他端を100回/mから275回/mの捻回加工工程とする前記低温加熱処理下での前記捻回加工工程とし、
その後、前記芯線と前記コイルスプリング体とを前記接合部材を用いて部分的に接合する工程が、前記接合部材の溶融熱を利用した低温加熱処理工程とし、
前記接合部材は、180℃から495℃の溶融温度をもつ共晶合金から成り、又は前記芯線がMoを含むオーステナイト系ステンレス鋼線のときには、180℃から525℃の溶融温度をもつ共晶合金から成り、
前記金属素線の引張破断強度をY(kgf/mm2 )とし、総減面率をX(%)とした場合に、
450≧Y≧2.000X+70の関係式を満たし、
前記金属素線を用いた前記芯線から成ることを特徴とする医療用ガイドワイヤの製造方法である。
この構成により、特に芯線先端部21の押圧加工による局部的に発生している残留応力の除去、及びコイルスプリング体のコイル成形加工による局部的に発生している残留応力を除去し、かつ接合部での芯線先端部21の引張破断強度向上に伴う耐繰り返し曲げ疲労特性を向上させることができる医療用ガイドワイヤ、及びその製造方法である。
In addition, as a method for manufacturing a medical guide wire using the joining member 4 together,
A medical wire in which a core wire made of a flexible elongated body and a coil spring body having the core wire inserted through the tip of the core wire are attached, and the core wire and the coil spring body are partially joined using a joining member. In the guide wire manufacturing method,
The core wire is made of a metal wire,
The metal element wire is a solution-treated austenitic stainless steel wire, and after the wire drawing step and the low-temperature heat treatment after the wire drawing step are repeated as at least one set, a final wire drawing step is provided.
The total area reduction until the final wire drawing step is 90% to 99.5%,
When the low-temperature heat treatment step is 180 to 495 ° C. for 10 to 180 minutes, or when the metal strand is an austenitic stainless steel wire containing Mo, the temperature is 180 to 525 ° C. for 10 to 180 minutes,
The total increase rate of the tensile breaking strength of the metal strand by the low-temperature heat treatment step until the final wire drawing step is 8% or more,
Then, when the temperature of the metal strand is 180 ° C. to 495 ° C. for 30 seconds to 180 minutes, or when the metal strand is an austenitic stainless steel wire containing Mo, Under a low-temperature heat treatment process at 180 to 525 ° C. for 30 seconds to 180 minutes,
With one end of the metal wire being subjected to a load load of 5% to 30% of the tensile breaking force of the metal wire before twisting, the other end is twisted from 100 times / m to 275 times / m. The twisting process step under the low-temperature heat treatment to be a processing step,
Thereafter, the step of partially bonding the core wire and the coil spring body using the bonding member is a low-temperature heat treatment step using the heat of fusion of the bonding member,
The joining member is made of a eutectic alloy having a melting temperature of 180 ° C. to 495 ° C., or when the core wire is an austenitic stainless steel wire containing Mo, from a eutectic alloy having a melting temperature of 180 ° C. to 525 ° C. Consisting of
When the tensile strength at break of the metal wire is Y (kgf / mm @ 2) and the total area reduction is X (%),
Satisfies the relational expression of 450 ≧ Y ≧ 2.000X + 70,
A medical guide wire manufacturing method comprising the core wire using the metal element wire.
With this configuration, in particular, the residual stress generated locally by the pressing process of the core wire tip 21 is removed, and the residual stress generated locally by the coil forming process of the coil spring body is removed. It is the medical guide wire which can improve the bending bending fatigue-proof characteristic accompanying the tensile fracture strength improvement of the core wire front-end | tip part 21, and its manufacturing method.
(発明の効果)
以上説明のとおり、本発明の医療用ガイドワイヤは、強加工の伸線加工と低温加熱処理とを組み合わせて、強加工の伸線加工した金属素線の温度と引張破断強度特性との相関性に着目して、引張破断強度が急傾斜増大する温度域での鋼種に適した低温加熱処理を行うことにより、高強度の引張破断強度を有する金属素線を得ることができる。
そしてさらに、最終伸線した後の芯線に、芯線の温度が芯線の引張破断強度が急傾斜増大する温度域で鋼種に適した「低温加熱処理下での捻回加工」、又は「捻回加工後の低温加熱処理」を行うことにより、芯線の引張破断強度が高く、かつ直線性・回転伝達性の高い芯線を用いて成る医療用ガイドワイヤにより、狭窄病変部へ導入する際の屈曲変形後のストレート状への復元力を高め、かつ耐繰り返し曲げ疲労特性を向上させた新たな技術思想から成る医療用ガイドワイヤ等を提供するものである。以上の諸効果がある。
(Effect of the invention)
As described above, the medical guide wire according to the present invention is a combination of the temperature of the metal wire that has been subjected to strong wire drawing and the tensile strength at break by combining strong wire drawing and low-temperature heat treatment. By paying attention to the above, by performing a low-temperature heat treatment suitable for the steel type in a temperature range where the tensile breaking strength increases steeply, a metal wire having a high tensile breaking strength can be obtained.
In addition, the core wire after the final wire drawing is suitable for the steel type in the temperature range where the core wire temperature suddenly increases the tensile breaking strength of the core wire, or “twist processing under low temperature heat treatment” or “twist processing” After bending at the time of introduction into a stenotic lesion with a medical guide wire using a core wire with high tensile strength at break and high linearity and rotation transmission. It is intended to provide a medical guide wire or the like having a new technical idea that improves the restoring force to straight shape and improves the resistance to repeated bending fatigue. There are the above various effects.
1 ガイドワイヤ(医療用ガイドワイヤ)
2 芯線
21 芯線先端部
3 コイルスプリング体(コイル体)
31 放射線不透過材コイル
32 放射線透過材コイル
33 内側コイルスプリング体
4 接合部材
41 中間前側接合部
42 中間後側接合部
43 後端接合部
5 先導栓
6 樹脂被膜
7 親水性被膜
100 マイクロカテーテル
110 ガイディングカテーテル
1 Guide wire (medical guide wire)
2 Core wire 21 Core wire tip 3 Coil spring body (coil body)
31 Radiopaque material coil 32 Radiation transparent material coil 33 Inner coil spring body 4 Joining member 41 Middle front side joined portion 42 Middle rear side joined portion 43 Rear end joined portion 5 Lead plug 6 Resin coating 7 Hydrophilic coating 100 Microcatheter
110 Guiding catheter
Claims (4)
前記芯線は金属素線から成り、
前記金属素線は、固溶化処理したオーステナイト系ステンレス鋼線の再溶解材を用いて、伸線工程と伸線工程後の低温加熱処理工程とを1セットとして少なくとも1セット以上繰り返した後に、最終伸線工程と最終伸線工程後の低温加熱処理工程とを設けて、
前記最終伸線工程までの総減面率を90%から99.5%とし、
前記伸線工程後の低温加熱処理工程及び前記最終伸線工程後の低温加熱処理工程が、300℃から495℃で10分から180分とし、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、300℃から525℃で10分から180分とし、
前記最終伸線工程までの前記伸線工程後の低温加熱処理工程による前記金属素線の引張破断強度の増加率の合計が8%以上とし、
前記最終伸線工程後の低温加熱処理工程の後に、前記金属素線に、前記金属素線の一端に捻回加工前の前記金属素線の引張破断力の5%から30%の負荷加重を加えた状態で、他端を100回/mから275回/mの捻回加工工程とし、
その後、前記金属素線の温度が300℃から495℃で30秒から180分、又は前記金属素線がMoを含むオーステナイト系ステンレス鋼線のときには、300℃から525℃で30秒から180分の低温加熱処理工程とする、前記捻回加工工程後の前記低温加熱処理工程とし、
前記金属素線の引張破断強度をY(kgf/mm2 )とし、総減面率をX(%)とした場合に、
450≧Y≧2.150X+70の関係式を満たし、
前記金属素線を用いた前記芯線から成ることを特徴とする医療用ガイドワイヤの製造方法。 A medical wire in which a core wire made of a flexible elongated body and a coil spring body having the core wire inserted through the tip of the core wire are attached, and the core wire and the coil spring body are partially joined using a joining member. In the guide wire manufacturing method,
The core wire is made of a metal wire,
The metal strands, with re-melting material of the solid solution treated austenitic stainless steel wire, and a low-temperature heat treatment step after the drawing process and drawing process after repeating at least more than one set as one set, the final Provide a wire drawing process and a low-temperature heat treatment process after the final wire drawing process ,
The total area reduction until the final wire drawing step is 90% to 99.5%,
The low temperature heat treatment step after the wire drawing step and the low temperature heat treatment step after the final wire drawing step are performed at 300 ° C. to 495 ° C. for 10 minutes to 180 minutes, or the metal strand contains austenitic stainless steel wire containing Mo In the case of 300 to 525 ° C. for 10 to 180 minutes,
The total increase rate of the tensile breaking strength of the metal strand by the low-temperature heat treatment step after the wire drawing step until the final wire drawing step is 8% or more,
After the low-temperature heat treatment step after the final wire drawing step , the metal strand is subjected to a load load of 5% to 30% of the tensile breaking force of the metal strand before twisting at one end of the metal strand. In the added state, the other end is a twisting process of 100 times / m to 275 times / m,
Thereafter, the temperature of the metal strand is 300 ° C. to 495 ° C. for 30 seconds to 180 minutes, or when the metal strand is an austenitic stainless steel wire containing Mo, 300 ° C. to 525 ° C. for 30 seconds to 180 minutes. A low-temperature heat treatment step, the low-temperature heat treatment step after the twisting step,
When the tensile strength at break of the metal wire is Y (kgf / mm @ 2) and the total area reduction is X (%),
450 ≧ Y ≧ 2. 15 satisfy the relation of 0X + 70,
A medical guide wire manufacturing method comprising the core wire using the metal element wire.
前記捻回加工工程が、前記金属素線の一端に捻回加工前の前記金属素線の引張破断力の5%から30%の負荷加重を加えた状態で、他端を100回/mから200回/mの捻回加工工程とし、
前記金属素線を用いた前記芯線から成ることを特徴とする医療用ガイドワイヤの製造方法。 In the manufacturing method of the medical guide wire of Claim 1 ,
In a state where the front Symbol twisting processing step, was added 30% of the load weight from 5% of the tensile breaking force of the metal wire before twisting process to one end of the metal wire, the other end 100 turns / m To 200 times / m twisting process,
A medical guide wire manufacturing method comprising the core wire using the metal element wire.
前記捻回加工工程が、
前記金属素線の一端に負荷加重を加えた状態で他端を捻回し、
前記金属素線の捻回加工前の引張破断力P(kgf)に対する負荷加重W(kgw)の割を負荷加重比X(%)とし、前記負荷加重比X(%)はW÷P×100の関係とした場合に、捻回数N(回/m)は、
−0.8X+124≦N≦−1.8X+284の関係式を満たし、
前記金属素線を用いた前記芯線から成ることを特徴とする医療用ガイドワイヤの製造方法。 In the manufacturing method of the medical guide wire of Claim 1 or 2 ,
Before Symbol twisting processing step,
Twist the other end with load applied to one end of the metal strand,
The ratio of the load weight W (kgw) to the tensile breaking force P (kgf) before twisting of the metal wire is defined as a load weight ratio X (%), and the load weight ratio X (%) is W ÷ P × 100. In the case of the relationship, the number of twists N (times / m) is
-0.8X + 124 ≦ N ≦ −1.8X + 284 is satisfied,
A medical guide wire manufacturing method comprising the core wire using the metal element wire.
前記捻回加工工程が、前記金属素線の一端に負荷加重を加えた状態で他端を捻回し、
前記金属素線の捻回加工前の引張破断力P(kgf)に対する負荷加重W(kgw)の割合を負荷加重比X(%)とし、前記負荷加重比X(%)はW÷P×100の関係とした場合に、捻回数N(回/m)は、
−0.8X+124≦N≦−2.8X+264の関係式を満たし、
前記金属素線を用いた前記芯線から成ることを特徴とする医療用ガイドワイヤの製造方法。
In the manufacturing method of the medical guide wire of Claim 3 ,
The twisting process is to twist the other end with a load applied to one end of the metal wire,
The ratio of the load weight W (kgw) to the tensile breaking force P (kgf) before twisting of the metal element wire is defined as a load weight ratio X (%), and the load weight ratio X (%) is W ÷ P × 100. In the case of the relationship, the number of twists N (times / m) is
−0.8X + 124 ≦ N ≦ −2.8X + 264 is satisfied,
A medical guide wire manufacturing method comprising the core wire using the metal element wire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010221675A JP5497604B2 (en) | 2010-09-30 | 2010-09-30 | Manufacturing method of medical guide wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010221675A JP5497604B2 (en) | 2010-09-30 | 2010-09-30 | Manufacturing method of medical guide wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012075532A JP2012075532A (en) | 2012-04-19 |
JP5497604B2 true JP5497604B2 (en) | 2014-05-21 |
Family
ID=46236529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010221675A Active JP5497604B2 (en) | 2010-09-30 | 2010-09-30 | Manufacturing method of medical guide wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5497604B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113702204B (en) * | 2021-08-23 | 2023-09-19 | 华能国际电力股份有限公司 | Prediction method and system for advanced high-temperature alloy endurance strength for high-parameter power station |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2057799C (en) * | 1990-12-18 | 1999-02-02 | Robert M. Abrams | Superelastic guiding member |
JP3746877B2 (en) * | 1997-06-26 | 2006-02-15 | 日本精線株式会社 | Stainless steel wire for springs with excellent corrosion resistance and spring characteristics |
JP2003342696A (en) * | 2002-05-24 | 2003-12-03 | Kanai Hiroaki | Guide wire core material for medical treatment, its production method, and guide wire for medical treatment |
JP2004194768A (en) * | 2002-12-17 | 2004-07-15 | Kanai Hiroaki | Guide wire core material of catheter for medical use and guide wire of catheter for medical use using it |
JP4141336B2 (en) * | 2003-06-26 | 2008-08-27 | 朝日インテック株式会社 | Manufacturing method of medical guide wire |
JP5099978B2 (en) * | 2005-04-07 | 2012-12-19 | 大同特殊鋼株式会社 | High-strength thin wire and manufacturing method thereof |
US9084694B2 (en) * | 2005-09-09 | 2015-07-21 | Boston Scientific Scimed, Inc. | Coil shaft |
JP4562197B2 (en) * | 2006-09-29 | 2010-10-13 | 朝日インテック株式会社 | Balloon catheter assembly |
JP4977445B2 (en) * | 2006-11-01 | 2012-07-18 | トクセン工業株式会社 | Guide wire and manufacturing method thereof |
JP5386088B2 (en) * | 2008-01-25 | 2014-01-15 | 金井 宏彰 | Guide wire core, method for manufacturing the core, and medical guide wire using the core |
JP5219545B2 (en) * | 2008-02-20 | 2013-06-26 | 金井 宏彰 | Guide wire core and method for evaluating the core |
-
2010
- 2010-09-30 JP JP2010221675A patent/JP5497604B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012075532A (en) | 2012-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4913198B2 (en) | Medical guide wire, method for manufacturing medical guide wire, assembly of medical guide wire, microcatheter and guiding catheter, and assembly of medical guide wire, balloon catheter and guiding catheter | |
EP2402051B1 (en) | Medical guide wire | |
JP5436266B2 (en) | Medical coil structure, manufacturing method thereof, medical endoscope formed with medical coil structure, medical treatment instrument, ultrasonic diagnostic medical catheter, and optical interference diagnostic medical catheter | |
EP1791589B1 (en) | Intravascular guide wire | |
US6329069B1 (en) | Composite structure and devices made from same and method | |
JP4913180B2 (en) | Medical guide wire, method for manufacturing the same, and assembly of medical guide wire, balloon catheter, and guiding catheter | |
EP2724745A1 (en) | Guide wire with core having welded wire segments | |
EP3052177B1 (en) | Guide wire core with improved torsional ductility | |
JPH11502434A (en) | Highly functional wire used for medical instruments and alloy for the wire | |
JP5500924B2 (en) | Medical guide wire and manufacturing method thereof | |
WO2015020724A1 (en) | Guide wire with core made from low-modulus cobalt-chromium alloy | |
JP2011110384A (en) | Medical guide wire, method of manufacturing the same, and assembly of medical guide wire and microcatheter or balloon catheter and guiding catheter | |
JP5497604B2 (en) | Manufacturing method of medical guide wire | |
JP5367503B2 (en) | Medical guide wire, manufacturing method thereof, and assembly of medical guide wire and microcatheter, or balloon catheter and guiding catheter | |
JP5481359B2 (en) | Medical guidewire | |
JP5437772B2 (en) | Medical treatment tool | |
JP5437778B2 (en) | Medical treatment tool | |
JP4913249B2 (en) | Medical guide wire and manufacturing method thereof | |
JP4913252B1 (en) | Medical guide wire and manufacturing method thereof | |
JP5367518B2 (en) | Medical endoscope, method for manufacturing medical endoscope, assembly of medical endoscope and treatment instrument for medical endoscope, and medical endoscope and medical endoscope image processing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120907 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20121024 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140225 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140306 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5497604 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |