JP6632128B2 - Method of designing container in liquid level reflection type tilt sensor, tilt sensor having the container, and method of producing tilt sensor having the container - Google Patents
Method of designing container in liquid level reflection type tilt sensor, tilt sensor having the container, and method of producing tilt sensor having the container Download PDFInfo
- Publication number
- JP6632128B2 JP6632128B2 JP2016007021A JP2016007021A JP6632128B2 JP 6632128 B2 JP6632128 B2 JP 6632128B2 JP 2016007021 A JP2016007021 A JP 2016007021A JP 2016007021 A JP2016007021 A JP 2016007021A JP 6632128 B2 JP6632128 B2 JP 6632128B2
- Authority
- JP
- Japan
- Prior art keywords
- container
- liquid
- liquid surface
- surface shape
- curve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000007788 liquid Substances 0.000 title claims description 204
- 238000000034 method Methods 0.000 title claims description 41
- 238000004364 calculation method Methods 0.000 claims description 31
- 238000013041 optical simulation Methods 0.000 claims description 28
- 238000013461 design Methods 0.000 claims description 13
- 230000002706 hydrostatic effect Effects 0.000 claims description 8
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 17
- 230000003287 optical effect Effects 0.000 description 11
- 230000008859 change Effects 0.000 description 7
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 6
- 229910052731 fluorine Inorganic materials 0.000 description 6
- 239000011737 fluorine Substances 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000005499 meniscus Effects 0.000 description 4
- 238000012887 quadratic function Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 3
- 238000010191 image analysis Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 241000233805 Phoenix Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C9/00—Measuring inclination, e.g. by clinometers, by levels
- G01C9/18—Measuring inclination, e.g. by clinometers, by levels by using liquids
- G01C9/20—Measuring inclination, e.g. by clinometers, by levels by using liquids the indication being based on the inclination of the surface of a liquid relative to its container
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C9/00—Measuring inclination, e.g. by clinometers, by levels
- G01C9/02—Details
- G01C9/06—Electric or photoelectric indication or reading means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C9/00—Measuring inclination, e.g. by clinometers, by levels
- G01C9/02—Details
- G01C9/06—Electric or photoelectric indication or reading means
- G01C2009/066—Electric or photoelectric indication or reading means optical
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
- Fluid Mechanics (AREA)
Description
本発明は、液面反射式傾斜センサに関し、該センサの自由液面を形成するための容器を設計する方法、該容器を有する傾斜センサ、及び該容器を有する傾斜センサの生産方法に関する。 The present invention relates to a liquid level reflection type tilt sensor, a method of designing a container for forming a free liquid surface of the sensor, a tilt sensor having the container, and a method of producing a tilt sensor having the container.
一般に、測量機は内部に傾斜センサを備えており、該傾斜センサの検出結果に基づいて整準され水平姿勢となるように調整される。この傾斜センサには、液面反射式のものがよく利用されている。液面反射式では、光源から所定の暗視野パターンを照射して液体の表面(自由液面)で反射させ、この反射光を受光センサで受光し、その受光パターン(受光像)の変位量を検出する。例えば特許文献1では、一次元のスリットによる暗視野パターンを自由液面で反射させ、その移動量を検出している。特許文献2では、格子状の二次元スリットによる暗視野パターンを自由液面で反射させ、受光センサの検出結果をX方向とY方向とに加算したパターン配列から、パターン位置を算出している。 Generally, a surveying instrument has a tilt sensor inside, and is leveled based on the detection result of the tilt sensor and adjusted to be in a horizontal attitude. As the tilt sensor, a liquid surface reflection type is often used. In the liquid-surface reflection type, a predetermined dark-field pattern is emitted from a light source and reflected on the surface of the liquid (free liquid surface). The reflected light is received by a light-receiving sensor, and the displacement of the light-receiving pattern (light-receiving image) is measured. To detect. For example, in Patent Literature 1, a dark field pattern formed by a one-dimensional slit is reflected on a free liquid surface, and the amount of movement is detected. In Patent Document 2, a pattern position is calculated from a pattern arrangement in which a dark-field pattern by a lattice-like two-dimensional slit is reflected on a free liquid surface, and the detection results of a light receiving sensor are added in an X direction and a Y direction.
上記の自由液面は、筒状の蓋付き容器に適度の粘性を有する液体を封入することで形成されている。この容器のサイズは、容器の壁面付近における液面の形状変化(メニスカス)を許容できる程の大きさを備えなければならない。一方で、近年センサの小型化の要求を受け、容器のサイズをより小さくすることが求められている。しかし、従来の容器形状の設計方法では、実際に容器を作成し、これに液体を封入し、これに光源光を照射して実際の受光パターンを得て、この結果を再度設計にフィードバックするという方法が採られていた。また、液面形状は封入する液体の特性や温度条件によっても変化するため、センサに要求される仕様(センサが使用される温度範囲)に応じて上記の方法を様々な条件で繰り返す必要があった。このため、容器形状の最適化のために時間とコストがかかるという問題があった。 The above-mentioned free liquid surface is formed by sealing a liquid having an appropriate viscosity in a cylindrical container with a lid. The size of the container must be large enough to allow a change in the liquid surface shape (meniscus) near the wall surface of the container. On the other hand, in recent years, there has been a demand for downsizing of the sensor, and a further reduction in the size of the container has been required. However, in the conventional method of designing a container shape, a container is actually created, a liquid is sealed therein, a light source light is applied to the container, an actual light receiving pattern is obtained, and the result is fed back to the design. The method was taken. In addition, since the liquid surface shape changes depending on the characteristics of the liquid to be sealed and the temperature conditions, it is necessary to repeat the above method under various conditions according to the specifications required for the sensor (temperature range in which the sensor is used). Was. Therefore, there is a problem that it takes time and cost to optimize the shape of the container.
本発明は、前記問題を解決するためになされたもので、液面反射式傾斜センサにおいて、迅速かつ低コストでセンサ仕様に応じた容器形状を得ることを目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problem, and an object of the present invention is to provide a liquid-reflection-type tilt sensor that can quickly and inexpensively obtain a container shape according to sensor specifications.
上記課題を解決するために、本発明のある態様の液面反射式傾斜センサの容器の設計方法は、ヤング・ラプラス式および静水圧の式から、水平な液面に対して垂直かつ無限に広い板に形成される液体の液面形状を水平方向xおよび鉛直方向yに求める液面形状計算工程と、仮光源から暗視野パターンを照射して前記液面形状を有する仮鏡面で反射させた受光パターンを得る光学シミュレーション工程と、前記受光パターンの画像精度がセンサ精度要求を満たすか判定し、前記液体を封入する筒状の容器の形状を調整する容器調整工程と、を有することを特徴とする。 In order to solve the above-mentioned problems, a method of designing a container of a liquid-surface reflection type inclination sensor according to an embodiment of the present invention is based on a Young-Laplace type and a hydrostatic pressure type. A liquid surface shape calculation step for determining the liquid surface shape of the liquid formed on the plate in the horizontal direction x and the vertical direction y, and receiving light reflected from a temporary mirror surface having the liquid surface shape by irradiating a dark field pattern from a temporary light source An optical simulation step of obtaining a pattern; and a container adjusting step of determining whether the image accuracy of the light receiving pattern satisfies a sensor accuracy requirement and adjusting the shape of a cylindrical container for enclosing the liquid. .
上記態様において、前記液面形状計算工程では、前記容器に対する前記液体の実際の接触角θ1を求め、前記液面形状を表す第1の曲線f1とそのy軸との角度が前記接触角θ1となる位置まで前記y軸をx軸方向にオフセットさせる第2の工程を含むのも好ましい。 In the above aspect, in the liquid surface shape calculation step, an actual contact angle θ1 of the liquid with respect to the container is obtained, and the angle between a first curve f1 representing the liquid surface shape and its y axis is the contact angle θ1. It is also preferable to include a second step of offsetting the y-axis in the x-axis direction to a certain position.
上記態様において、前記液面形状計算工程では、前記容器の一方の壁面とこれと対向する他方の壁面の二方向から前記第1の曲線f1を求め、前記容器の中心から水平方向の距離をX,液面の高さをYとした容器内の液面形状を示す第2の曲線f2を求める第3の工程を含むのも好ましい。 In the above aspect, in the liquid surface shape calculation step, the first curve f1 is obtained from two directions of one wall surface of the container and the other wall surface opposite thereto, and a horizontal distance from the center of the container is X. It is also preferable to include a third step of obtaining a second curve f2 indicating the liquid level shape in the container with the liquid level height being Y.
上記態様において、前記液面形状計算工程では、前記第2の曲線f2のX=0付近の形状を多項式で補完する第4の工程を含むのも好ましい。 In the above aspect, it is preferable that the liquid surface shape calculation step further includes a fourth step of complementing a shape near X = 0 of the second curve f2 with a polynomial.
上記態様において、前記容器調整工程では、前記容器に入射される光源光の光束径を固定し、前記容器の前記X方向の長さを仮定して前記光学シミュレーション工程を行い、前記受光パターンの画像精度が前記センサ精度要求を満たすときは前記容器の前記X方向の長さを狭め、満たさないときは前記容器の前記X方向の長さを広げるのも好ましい。 In the above aspect, in the container adjusting step, the optical simulation step is performed assuming a length of the container in the X direction while fixing a light beam diameter of light source light incident on the container, and an image of the light receiving pattern is formed. It is also preferable that when the accuracy satisfies the sensor accuracy requirement, the length of the container in the X direction is reduced, and when the accuracy is not satisfied, the length of the container in the X direction is increased.
上記態様において、前記容器調整工程では、前記容器の前記X方向の長さを固定し、前記容器に入射される光源光の光束径を仮定して前記光学シミュレーション工程を行い、前記受光パターンの画像精度が前記センサ精度要求を満たすときは前記光束径を広げ、満たさないときは前記光束径を狭めるのも好ましい。 In the above aspect, in the container adjustment step, the length of the container in the X direction is fixed, and the optical simulation step is performed assuming a light beam diameter of light source light incident on the container, and an image of the light receiving pattern is formed. It is also preferable that the diameter of the light beam is expanded when the accuracy satisfies the sensor accuracy requirement, and the diameter of the light beam is narrowed when the accuracy is not satisfied.
上記態様において、前記第2の曲線f2のY値の最高値Ymaxを求め、前記容器の高さhを、前記液体の水平液面の高さh´に前記最高値Ymaxを加えた値以上に設計する容器高さ設計工程を含むのも好ましい。 In the above aspect, the maximum value Ymax of the Y value of the second curve f2 is obtained, and the height h of the container is set to be equal to or greater than the value obtained by adding the maximum value Ymax to the height h ′ of the horizontal liquid surface of the liquid. It is also preferable to include a container height designing step for designing.
また、本発明のある態様の液面反射式傾斜センサは、光源と、前記光源からの光束を平行にするコリメートレンズと、前記コリメートレンズからの光が入射され、コントラストが画像解析で認識可能な暗視野パターンと、前記暗視野パターンを通過した光を自由液面に向けるビームスプリッタと、前記ビームスプリッタからの光を集光するフォーカスレンズと、前記自由液面を形成する液体と、前記液体が封入され、ヤング・ラプラス式および静水圧の式から、水平な液面に対して垂直かつ無限に広い板に形成される前記液体の液面形状で作成された仮鏡面に前記暗視野パターンを照射して得た受光パターンの画像精度がセンサ精度要求を満たすとして最小に設計された水平方向の長さで筒状に形成された容器と、前記自由液面からの反射光を受光する受光素子と、前記受光素子の受光像を解析する演算処理装置と、を有することを特徴とする。 Further, in the liquid-surface reflection type tilt sensor according to an aspect of the present invention, a light source, a collimating lens for collimating a light beam from the light source, and light from the collimating lens are incident, and the contrast can be recognized by image analysis. A dark-field pattern, a beam splitter that directs light passing through the dark-field pattern to a free liquid surface, a focus lens that collects light from the beam splitter, a liquid that forms the free liquid surface, and the liquid The dark field pattern is applied to the temporary mirror surface formed by the liquid surface shape of the liquid, which is enclosed and is formed on an infinitely wide plate perpendicular to the horizontal liquid surface from the Young Laplace formula and the hydrostatic pressure formula. A cylindrical container having a horizontal length designed to minimize the image accuracy of the light receiving pattern obtained by satisfying the sensor accuracy requirement, and light reflected from the free liquid surface A light receiving element for receiving, and having an a processing unit for analyzing the received image of said light receiving element.
また、本発明のある態様の液面反射式傾斜センサの生産方法は、ヤング・ラプラス式および静水圧の式から水平な液面に対して垂直かつ無限に広い板に形成される液体の液面形状を水平方向xおよび鉛直方向yに求める液面形状計算工程と、 仮光源から暗視野パターンを照射して前記液面形状を有する仮鏡面で反射させた受光パターンを得る光学シミュレーション工程と、前記受光パターンの画像精度がセンサ精度要求を満たすか判定し、前記液体を封入する筒状の容器の形状を調整する容器調整工程と、を行って、最小に設計された水平方向の長さで筒状に形成された容器を有することを特徴とする。 Further, according to a method of producing a liquid-surface reflection type inclination sensor according to an embodiment of the present invention, the liquid surface formed on a plate that is vertically and infinitely wide with respect to the horizontal liquid surface from the Young-Laplace system and the hydrostatic pressure system. A liquid surface shape calculating step of obtaining a shape in the horizontal direction x and the vertical direction y; an optical simulation step of irradiating a dark field pattern from a temporary light source to obtain a light receiving pattern reflected by a temporary mirror surface having the liquid surface shape; Determine whether the image accuracy of the light receiving pattern satisfies the sensor accuracy requirement, and adjust the shape of the cylindrical container for enclosing the liquid, and perform a container adjusting step, and adjust the cylindrical length to the minimum designed horizontal length. It has a container formed in a shape.
液面反射式傾斜センサにおいて、迅速かつ低コストで、センサ仕様に応じた容器形状を得ることができる。 In the liquid-surface reflection type tilt sensor, a container shape according to the sensor specification can be obtained quickly and at low cost.
本発明の好適な実施の形態について、図面を参照して説明する。 A preferred embodiment of the present invention will be described with reference to the drawings.
図1は、実施の形態に係る液面反射式傾斜センサ(以下、単に傾斜センサと称する)1の光学系の構成図である。傾斜センサ1は、光源2、コリメートレンズ3、暗視野パターン4、偏光板5、ビームスプリッタ6、フォーカスレンズ7、λ/4板8、液体9、容器10、受光素子11、および演算処理装置12を有する。 FIG. 1 is a configuration diagram of an optical system of a liquid reflection type inclination sensor (hereinafter, simply referred to as an inclination sensor) 1 according to an embodiment. The tilt sensor 1 includes a light source 2, a collimating lens 3, a dark field pattern 4, a polarizing plate 5, a beam splitter 6, a focus lens 7, a λ / 4 plate 8, a liquid 9, a container 10, a light receiving element 11, and an arithmetic processing unit 12. Having.
光源2は、LEDが用いられるが、他の光源であってもよい。コリメートレンズ3は、光源2からの光束を平行にして出射する。暗視野パターン4は、その詳細は上記した特許文献2に記載されているが、図2に示すように、黒マスク部4aに多数のスリット4bが整列配置された二次元パターンを有する。偏光板5は、暗視野パターン4を通過した光束をビームスプリッタ6に対してs偏光に偏光する。ビームスプリッタ6は、半透過面6aを有し、偏光板5を通過した光束を上方に反射する。フォーカスレンズ7は、ビームスプリッタ6による反射光を集光する。λ/4板8は、フォーカスレンズ7を通過した光束に位相差を与える。λ/4板8を通過した光束は、筒状の容器10内に封入された液体9に入射して、液体9の表面(自由液面9a)で反射される。液体9には、表面張力が小さく、比重が大きく、温度変化による影響が小さいものが好ましく、例えばシリコンオイル、フッ素系液体等が選択される。自由液面9aは、測量機(傾斜センサ1)の傾きに対して水平液面を維持する。図1の符号h´は測量機が水平時の容器10の底面から上記水平液面までの高さを示す。符号hは容器10の高さ、符号Dは容器10の容器中心を通るある水平方向の長さを示す。自由液面9aで反射された光束は、再びλ/4板8、フォーカスレンズ7、およびビームスプリッタ6を透過し、受光素子11で受光される。受光素子11には、イメージセンサや二次元エリアセンサ等が用いられる。受光素子11で得られた受光像(受光パターン)は、演算処理装置12により画像解析される。演算処理装置12は、受光した暗視野パターン4の変位量を検出する。演算処理装置12には、CPUなどが使用される。 As the light source 2, an LED is used, but another light source may be used. The collimating lens 3 emits the light beam from the light source 2 in parallel. The dark field pattern 4 is described in detail in the above-mentioned Patent Document 2, but has a two-dimensional pattern in which a large number of slits 4b are arranged in a black mask portion 4a as shown in FIG. The polarizing plate 5 polarizes the light beam that has passed through the dark field pattern 4 into s-polarized light with respect to the beam splitter 6. The beam splitter 6 has a semi-transmissive surface 6a, and reflects the light flux passing through the polarizing plate 5 upward. The focus lens 7 condenses the light reflected by the beam splitter 6. The λ / 4 plate 8 gives a phase difference to the light beam that has passed through the focus lens 7. The light beam that has passed through the λ / 4 plate 8 enters the liquid 9 sealed in the cylindrical container 10 and is reflected on the surface of the liquid 9 (free liquid surface 9a). The liquid 9 preferably has a small surface tension, a large specific gravity, and a small effect due to a temperature change. For example, a silicon oil, a fluorine-based liquid, or the like is selected. The free liquid surface 9a maintains a horizontal liquid surface with respect to the inclination of the surveying instrument (inclination sensor 1). 1 denotes the height from the bottom surface of the container 10 to the horizontal liquid level when the surveying instrument is horizontal. The symbol h indicates the height of the container 10, and the symbol D indicates the length of the container 10 in a certain horizontal direction passing through the center of the container. The light beam reflected by the free liquid surface 9a again passes through the λ / 4 plate 8, the focus lens 7, and the beam splitter 6, and is received by the light receiving element 11. As the light receiving element 11, an image sensor, a two-dimensional area sensor, or the like is used. The light receiving image (light receiving pattern) obtained by the light receiving element 11 is subjected to image analysis by the arithmetic processing unit 12. The processing unit 12 detects the amount of displacement of the received dark-field pattern 4. For the arithmetic processing unit 12, a CPU or the like is used.
上記において、λ/4板8,偏光板5は、望まない方向に反射した光束を除外するために設けられているが、任意の構成要素である。また、上記の光学要素を他の光学要素で構成することや、他の光学要素の追加は許容される。上記の暗視野パターン4は一例であり、ドット等、コントラストが画像解析で認識可能なパターンであれば他のものも許容される。また、暗視野パターン4を一次元バーコードとし、受光素子11をラインセンサとしてもよい。上記の光学系の配置は一例であり、上記では光束が液体9の下方から入射するが、光束が液体9の上方から入射する構成であってもよい。また、上記構成では光束が自由液面9aの水平液面(水平部分)に対し直交する方向から入射するが、光束が自由液面9aの水平液面に対し傾斜した方向から入射する構成であってもよい。 In the above description, the λ / 4 plate 8 and the polarizing plate 5 are provided to exclude a light beam reflected in an undesired direction, but are optional components. Further, it is permissible to configure the above optical element with another optical element or to add another optical element. The above dark-field pattern 4 is an example, and other patterns such as dots, which are recognizable by image analysis, are acceptable. Further, the dark field pattern 4 may be a one-dimensional barcode, and the light receiving element 11 may be a line sensor. The above arrangement of the optical system is an example. In the above description, the light beam enters from below the liquid 9, but the light beam may enter from above the liquid 9. Further, in the above configuration, the light beam enters from a direction perpendicular to the horizontal liquid surface (horizontal portion) of the free liquid surface 9a, but the light beam enters from a direction inclined with respect to the horizontal liquid surface of the free liquid surface 9a. May be.
本発明の要旨は、上記の傾斜センサ1における容器10を実際に作成することなくサイズ調整すること、及び最小のサイズで容器10を作成することに関する。なお、以下に記載する設計方法は、パーソナルコンピュータ等、少なくともCPU,RAM,ROM,キーボード,表示部をハードウェア要素として有するものにより実現される。ROMには本形態の各工程を実行する各種プログラムが格納され、CPUはこのプログラムを実行する。キーボードからは各種条件等が入力でき、表示部には液面形状のグラフやシミュレーション結果,算出した値等が出力される。 The gist of the present invention relates to adjusting the size of the above-described tilt sensor 1 without actually manufacturing the container 10 and manufacturing the container 10 with the minimum size. The design method described below is realized by a personal computer or the like having at least a CPU, a RAM, a ROM, a keyboard, and a display unit as hardware elements. Various programs for executing each step of the present embodiment are stored in the ROM, and the CPU executes the programs. Various conditions and the like can be input from the keyboard, and a graph of the liquid surface shape, simulation results, calculated values, and the like are output to the display unit.
図3は、実施の形態に係る傾斜センサ1の容器10の設計方法に係るフローチャートである。各工程の詳細は後に説明する。 FIG. 3 is a flowchart according to a method for designing the container 10 of the tilt sensor 1 according to the embodiment. Details of each step will be described later.
まず、設計を開始すると、ステップS1に移行し、ある形状の容器10に液体9を封入した場合の液面形状を計算する(液面形状計算工程)。 First, when the design is started, the process proceeds to step S1, where the liquid surface shape when the liquid 9 is sealed in a container 10 having a certain shape is calculated (liquid surface shape calculation step).
次に、ステップS2に移行し、ステップS1で計算した液面形状を元に、受光素子11で得られるであろう受光像を光学シミュレーションする(光学シミュレーション工程)。 Next, the process proceeds to step S2, where an optical simulation of a light-receiving image that will be obtained by the light-receiving element 11 is performed based on the liquid surface shape calculated in step S1 (optical simulation step).
次に、ステップS3に移行し、光学シミュレーションの結果を参照して、容器10の形状がセンサ仕様に照らして許容範囲か判定する。許容範囲内であれば(YES)、その形状に決定し設計を終了してよい。許容範囲外である場合は(NO)、ステップS4に移行し、容器10の形状を変更し、ステップS1に戻る(容器調整工程)。ステップS5の「容器高さ決定工程」については後述する。 Next, the process proceeds to step S3, and it is determined with reference to the result of the optical simulation whether the shape of the container 10 is in an allowable range in light of sensor specifications. If it is within the allowable range (YES), the shape may be determined and the design may be terminated. If it is outside the allowable range (NO), the process proceeds to step S4, the shape of the container 10 is changed, and the process returns to step S1 (container adjustment step). The “container height determination step” of step S5 will be described later.
(液面形状計算工程)
液面形状計算工程では、第1の工程として、図4に示す様な、水平な液面に対して垂直且つ無限に広い板に形成される液体の液面形状(メニスカス)を求める。この液面形状は、ヤング・ラプラスの式と静水圧の式から導かれ、次のようになる(宮崎誠、水谷正海、竹本正、松縄朗著「円柱周囲に形成されるメニスカス形状の解析」溶接学会論文集 第15巻 第4号、1997年、p674〜680)。垂直板に垂直な方向の距離をx、垂直板方向の液の高さをy、水平面と曲面のなす角をφとすると、x,yは[数1],[数2]になる。ここで、γは液体の表面張力、ρは液体の密度である。θは、垂直板と曲面がなす接触角を示している。φを変化させる事により、垂直無限壁面からの液面形状を、水平方向xと鉛直方向yの二次元直交座標上に求める事ができる。以降、垂直無限壁面に形成される液面形状を表す曲線を第1の曲線f1と称する。
(Liquid surface shape calculation process)
In the liquid surface shape calculation step, as a first step, a liquid surface shape (meniscus) of a liquid formed on an infinitely wide plate perpendicular to the horizontal liquid surface as shown in FIG. 4 is obtained. This liquid surface shape is derived from the Young Laplace equation and the hydrostatic equation, and is as follows (Makoto Miyazaki, Masami Mizutani, Tadashi Takemoto, Akira Matsunawa, "Analysis of the meniscus shape formed around a cylinder") Journal of the Japan Welding Society, Vol. 15, No. 4, 1997, pp. 674-680). Assuming that the distance in the direction perpendicular to the vertical plate is x, the height of the liquid in the direction of the vertical plate is y, and the angle between the horizontal plane and the curved surface is φ, x and y are [Equation 1] and [Equation 2]. Here, γ is the surface tension of the liquid, and ρ is the density of the liquid. θ indicates the contact angle between the vertical plate and the curved surface. By changing φ, the liquid surface shape from the vertical infinite wall surface can be obtained on the two-dimensional orthogonal coordinates in the horizontal direction x and the vertical direction y. Hereinafter, a curve representing the liquid surface shape formed on the vertical infinite wall surface is referred to as a first curve f1.
次に、第1の工程の第1の曲線f1は、無限垂直板と液体が完全に濡れている状態(接触角θ=0度)での形状であるが、実際には接触角θ≠0度である場合がある。この場合は補正するのが好ましい。第2の工程では、容器壁面と封入液体の実際の接触角θ1を求め、第1の曲線f1とそのy軸との角度が接触角θ1となる位置まで、y軸をx軸方向にオフセットする(図4の一点鎖線で示すy軸を参照)。実際の接触角θ1は、実際に容器10を形成する予定の材料板に対し封入予定の液体9を垂らし、実測して得ればよい(例えば、自動接触角計 DMs-601、Phoenix 150、ハイトゲージHD−AXを使用)。 Next, the first curve f1 in the first step is a shape in a state where the infinite vertical plate and the liquid are completely wet (contact angle θ = 0 degree), but actually, the contact angle θ ≠ 0. Can be degrees. In this case, it is preferable to correct. In the second step, the actual contact angle θ1 between the container wall surface and the sealed liquid is obtained, and the y-axis is offset in the x-axis direction until the angle between the first curve f1 and its y-axis becomes the contact angle θ1. (See the y-axis shown by the dashed line in FIG. 4). The actual contact angle θ1 may be obtained by dropping the liquid 9 to be sealed on a material plate on which the container 10 is to be actually formed and actually measuring it (for example, an automatic contact angle meter DMs-601, Phoenix 150, height gauge, etc.). HD-AX).
次に、実際の容器10は筒状で、両側壁面を有するのに対し、上記工程までで得られるのは片側壁面の液面形状である。よって、第3の工程でこれを補正する。図5は、その結果であり、両側壁面に形成される液面形状の計算結果を示す図である。図5を例にして説明する。第1〜第2の工程を経て、片側壁面に対する第1の曲線f1が得られている(図5は液体表面張力γ=20.9[mN/m],液体密度ρ=965[kg/m^3],実際の接触角θ1=0度として作成した)。第3の工程では、容器10の水平方向の長さを24mmと仮定し、第1の曲線f1のうちx=0からx=12(即ち仮定した水平方向の長さ÷2)までの曲線を、x=12を中心に左右対称に展開させ、x=12を容器の中心(X=0)として新たにX軸(図5横軸)を設定し、第1の曲線f1のy軸を容器10内の液面高さを示すY軸(図5縦軸)として設定する。これにより、図5に示すような、両側壁面での液面形状を示す第2の曲線f2を得ることができる。 Next, while the actual container 10 is cylindrical and has both side walls, what is obtained up to the above process is a liquid surface shape of one side wall surface. Therefore, this is corrected in the third step. FIG. 5 is a diagram showing the result of the calculation, showing the calculation result of the liquid surface shape formed on both side wall surfaces. This will be described with reference to FIG. Through the first and second steps, a first curve f1 for one side wall surface is obtained (FIG. 5 shows a liquid surface tension γ = 20.9 [mN / m] and a liquid density ρ = 965 [kg / m]. ^ 3], the actual contact angle θ1 was made as 0 °). In the third step, the horizontal length of the container 10 is assumed to be 24 mm, and the curve from x = 0 to x = 12 (that is, the assumed horizontal length ÷ 2) of the first curve f1 is obtained. , X = 12 is developed symmetrically, a new X-axis (horizontal axis in FIG. 5) is set with x = 12 as the center of the container (X = 0), and the y-axis of the first curve f1 is set as the container. It is set as a Y-axis (vertical axis in FIG. 5) indicating the liquid level in 10. As a result, a second curve f2 indicating the liquid surface shape on both side walls as shown in FIG. 5 can be obtained.
次に、液面反射式傾斜センサでは、容器中心付近(X=0付近)の形状が重要である。第3の工程の液面形状(図5)は、左右から曲線を交差させて作成されたため、容器中心付近の連続性を欠いている。そのため、第4の工程では、第2の曲線f2を二次関数で補間する。二次関数補間の手法は公知である。なお、二次に限らず、三次,四次,五次・・・の多項式で補間してもよいが、ハードウェア資源の負担を軽くするには二次関数補間が好適であり、二次関数補間で十分な結果が得られることを確認した。図5を二次関数補間した結果を図6に示す。図6は図5の容器中心付近を拡大したものであり、横軸Xは容器中心からの距離[mm]、縦軸Yは液面高さ[μm]である。実線が第3の工程で得られた液面形状、破線が第4の工程により補間された液面形状を示している。以上のように、「液面形状計算工程」では、第1の工程を基本とし、第2〜第4の工程を必要に応じて行うことで、より実際の液面形状に近い曲線を得ることができる。 Next, in the liquid-surface reflection type tilt sensor, the shape near the center of the container (near X = 0) is important. The liquid surface shape in the third step (FIG. 5) lacks continuity near the center of the container because the liquid surface shape is created by crossing curves from the left and right. Therefore, in the fourth step, the second curve f2 is interpolated by a quadratic function. Techniques for quadratic function interpolation are known. The interpolation is not limited to the quadratic one, and may be performed by a polynomial of cubic, quartic, quintic,..., But quadratic function interpolation is preferable to reduce the load on hardware resources. It was confirmed that sufficient results could be obtained by interpolation. FIG. 6 shows the result of quadratic function interpolation of FIG. FIG. 6 is an enlarged view of the vicinity of the center of the container in FIG. 5. The horizontal axis X is the distance [mm] from the center of the container, and the vertical axis Y is the liquid level [μm]. The solid line indicates the liquid surface shape obtained in the third step, and the broken line indicates the liquid surface shape interpolated in the fourth step. As described above, in the “liquid level shape calculation step”, a curve closer to the actual liquid level shape is obtained by performing the second to fourth steps as necessary based on the first step. Can be.
図7は、上記の「液面形状計算工程」により得られた計算結果で、各温度条件(摂氏−40℃、20℃、70℃)で容器壁面から形成される液面形状を示す図である。図7の横軸は容器中心からの距離[mm]、縦軸は液面高さ[mm]を示す。図7では、液体9にフッ素系液体を想定し、実際の接触角θ1を0度、液体表面張力γは−40℃で21.00[mN/m]、20℃で16.40[mN/m]、70℃で12.75[mN/m],液体密度ρは−40℃で2000[kg/m^3]、20℃で1869[kg/m^3]、70℃で1760[kg/m^3]とし、容器10の水平方向の長さは15mmと仮定した。図7から、温度条件を変更しても、各温度条件の液面形状を予測できることが確認された。 FIG. 7 is a diagram showing the liquid surface shape formed from the container wall surface at each temperature condition (−40 ° C., 20 ° C., and 70 ° C.) in the calculation result obtained by the above “liquid level shape calculation step”. is there. The horizontal axis in FIG. 7 indicates the distance [mm] from the center of the container, and the vertical axis indicates the liquid level [mm]. In FIG. 7, assuming that the liquid 9 is a fluorinated liquid, the actual contact angle θ1 is 0 degree, the liquid surface tension γ is 21.00 [mN / m] at −40 ° C., and 16.40 [mN / m] at 20 ° C. m], 12.75 [mN / m] at 70 ° C, liquid density ρ 2000 [kg / m ^ 3] at -40 ° C, 1869 [kg / m ^ 3] at 20 ° C, 1760 [kg] at 70 ° C / m ^ 3], and the horizontal length of the container 10 is assumed to be 15 mm. From FIG. 7, it was confirmed that even when the temperature conditions were changed, the liquid surface shape under each temperature condition could be predicted.
(光学シミュレーション工程)
「液面形状計算工程」により、容器10内の二次元的な液面形状を第2の曲線f2で予測することができる。光学シミュレーション工程では、第2の曲線f2の三次元モデルZ=f(X,Y)で仮鏡面9a´を作成し、該仮鏡面9a´の反射光の受光像をシミュレーションする。
(Optical simulation process)
By the “liquid level shape calculation step”, a two-dimensional liquid level shape in the container 10 can be predicted by the second curve f2. In the optical simulation step, a temporary mirror surface 9a 'is created using the three-dimensional model Z = f (X, Y) of the second curve f2, and a light reception image of the reflected light from the temporary mirror surface 9a' is simulated.
図8は、「光学シミュレーション工程」で仮定する仮想光学系である。光源2´からの光は、コリメートレンズ3´で平行光とされ、暗視野パターン4´を通過し、半透過面6a´で仮鏡面9a´に向けて転向される。仮鏡面9a´は、直径φD(図8参照)の正円円筒形の容器10に液体を封入した時に形成される自由液面を模したものである。仮鏡面9a´で反射された受光パターンが受光素子11´で取得される。仮鏡面9a´に入射される光源光の光束中心は仮鏡面9a´の中心O(容器中心X=0)を通る。光源光の光束径φd(図8参照)は、液面の有効範囲(受光像の解析に使用される範囲)であり、受光素子11の性能に応じて設定される。上記した光学シミュレーションは、例えばZEMAX(ZEMAX Development Corporation製)により行うことができる。但し、このソフトウェアに限定されるものでなく、他の市販の光学ソフトウェアが用られてもよい。 FIG. 8 shows a virtual optical system assumed in the “optical simulation step”. The light from the light source 2 'is collimated by the collimating lens 3', passes through the dark field pattern 4 ', and is turned by the semi-transmissive surface 6a' toward the temporary mirror surface 9a '. The temporary mirror surface 9a 'simulates a free liquid surface formed when a liquid is sealed in a container 10 having a diameter of φD (see FIG. 8) and a cylindrical shape. The light receiving pattern reflected by the temporary mirror surface 9a 'is acquired by the light receiving element 11'. The center of the light beam of the light source light incident on the temporary mirror surface 9a 'passes through the center O (container center X = 0) of the temporary mirror surface 9a'. The light beam diameter φd of the light source light (see FIG. 8) is an effective range of the liquid surface (a range used for analyzing the received light image), and is set according to the performance of the light receiving element 11. The optical simulation described above can be performed by, for example, ZEMAX (manufactured by ZEMAX Development Corporation). However, the present invention is not limited to this software, and other commercially available optical software may be used.
図9は「光学シミュレーション工程」で得られた受光像と実際の受光像を対比した図である。図9の右列は、実際に、正円円筒形の容器10を直径15mmで作成し、これにフッ素系液体を封入して実測した受光像である。なお、本明細書においてフッ素系液体とは、構成元素にフッ素を含む溶剤(有機溶剤等)を指す。図9の左列は、図7に示す液面形状で図8に示した仮鏡面9a´を作成して光学シミュレーションを行った受光像である。上段は摂氏20℃、中段は−40℃、下段は70℃のものである。図9から、各温度条件で、シミュレーション結果(左列)が実際(右列)と酷似しているのがわかる。 FIG. 9 is a diagram comparing the received light image obtained in the “optical simulation step” with the actual received light image. The right column of FIG. 9 is a light-receiving image obtained by actually preparing a circular cylindrical container 10 with a diameter of 15 mm, enclosing a fluorine-based liquid into the container, and measuring the light-receiving image. Note that in this specification, a fluorine-based liquid refers to a solvent (such as an organic solvent) containing fluorine as a constituent element. The left column in FIG. 9 is a light-receiving image obtained by creating the temporary mirror surface 9a 'shown in FIG. 8 with the liquid surface shape shown in FIG. 7 and performing an optical simulation. The upper row is at 20 ° C., the middle row is at −40 ° C., and the lower row is at 70 ° C. From FIG. 9, it can be seen that the simulation result (left column) is very similar to the actual (right column) under each temperature condition.
また、図9の左列から、20℃でピントが合っていた像が、−40℃、70℃においてはフォーカスがずれてしまっている事がわかる。この場合、容器10の直径φDを広げる事により、温度変化による液面形状の変化を小さくすることができる。図10は液面形状の容器径による違いを示す図であり、(a)は容器直径15mmの液面形状を示す図、(b)は容器直径20mmの液面形状を示す図である。図10は「液面形状計算工程」で得られたものであり、横軸は容器中心からの距離[mm]、縦軸は容器内の液面高さ[μm]である。(a)は、即ち図7の拡大図)であり、容器の直径φD=15mmとした場合の容器中心付近の液面形状を示す図である。(b)は、容器の直径のみをφD=20mmに変更した場合の容器中心付近の液面形状を示す図ある。容器の直径φDを広げることで、温度変化による液面形状の変化が小さくなることが確認できる。このことから、所望の受光像が得られように「液面形状計算工程」と「光学シミュレーション工程」を行うことにより容器10のサイズを調整することができ、さらに、上記を繰り返すことにより容器10の最小のサイズを予測することができる。以下その方法を説明する。 Further, it can be seen from the left column of FIG. 9 that the image focused at 20 ° C. is out of focus at −40 ° C. and 70 ° C. In this case, by increasing the diameter φD of the container 10, a change in the liquid surface shape due to a temperature change can be reduced. 10A and 10B are diagrams showing a difference in the liquid surface shape depending on the diameter of the container. FIG. 10A is a diagram showing a liquid surface shape with a container diameter of 15 mm, and FIG. 10B is a diagram showing a liquid surface shape with a container diameter of 20 mm. FIG. 10 is obtained in the “liquid level shape calculation step”. The horizontal axis represents the distance [mm] from the center of the container, and the vertical axis represents the liquid level height in the container [μm]. (A) is an enlarged view of FIG. 7), and is a diagram showing a liquid surface shape near the center of the container when the diameter φD of the container is 15 mm. (B) is a diagram showing a liquid surface shape near the center of the container when only the diameter of the container is changed to φD = 20 mm. By increasing the diameter φD of the container, it can be confirmed that the change in the liquid surface shape due to the temperature change becomes small. From this, the size of the container 10 can be adjusted by performing the “liquid surface shape calculation step” and the “optical simulation step” so that a desired light-receiving image can be obtained. Can be predicted. Hereinafter, the method will be described.
(容器調整工程)
容器調整工程では、「光学シミュレーション工程」の結果から、容器10の形状がセンサ仕様に照らして許容範囲であったか判定する。この判定は、受光パターンの画像精度を示す数値がセンサに求められる精度を満たす数値条件として許容される範囲内か否かで行う。画像精度を示す数値には、光学ソフトウェアで得られる受光パターンの、コントラスト値,エッジの立ち上がりを示す数値等のいずれか又はその組み合わせが使用される。センサ精度を満たす数値条件の具体的な数値は当業者であれば選択する値が用いられてよい。
(Container adjustment process)
In the container adjustment step, it is determined from the result of the “optical simulation step” whether the shape of the container 10 is within an allowable range in light of the sensor specifications. This determination is made based on whether or not the numerical value indicating the image accuracy of the light receiving pattern is within a range allowed as a numerical condition satisfying the accuracy required for the sensor. As the numerical value indicating the image accuracy, any one of a contrast value, a numerical value indicating the rising edge of an edge, and the like of the light receiving pattern obtained by the optical software, or a combination thereof is used. As a specific numerical value of the numerical condition satisfying the sensor accuracy, a value selected by those skilled in the art may be used.
図3に示す通り、画像精度を示す数値が許容範囲内であれば(YES)、その容器10のサイズに決定し設計を終了してもよい。許容範囲でない場合(NO)は、ステップS4に移行し、センサ仕様を満足するように容器10のサイズを変更し調整することができるが、図11のフローを実行することで、そのセンサ仕様における最小の容器サイズを求めることができる。 As shown in FIG. 3, if the numerical value indicating the image accuracy is within the allowable range (YES), the size of the container 10 may be determined and the design may be terminated. If it is not within the allowable range (NO), the process moves to step S4, and the size of the container 10 can be changed and adjusted so as to satisfy the sensor specifications. By executing the flow of FIG. A minimum container size can be determined.
図11は図3のステップS4「容器形状変更」工程を詳細にしたフローチャートである。図11では、ステップS1〜S2は図3で説明した通りであるが、光束径φd(図8参照)の値は固定した上で、容器10の直径φD(図8参照)を仮設定し、ステップS1〜S2を行う。次に、ステップS3に移行して、画像精度を示す数値がセンサ仕様に照らして許容範囲か判定する。数値が許容範囲でない場合(NO)は、ステップS41に移行し、容器直径φDを広げ、ステップS1に戻る。許容範囲である場合(YES)は、ステップS42に移行し、容器直径φDを狭め、ステップS1に戻る。これを繰り返すことで、容器10の最小直径φDminを決定することができる。容器直径φDは、光学シミュレーションの画像精度を示す数値が同等であれば、より小さい値が最適として決定される。 FIG. 11 is a flowchart detailing the step S4 “change container shape” of FIG. In FIG. 11, steps S1 and S2 are as described with reference to FIG. 3, but the value of the light beam diameter φd (see FIG. 8) is fixed, and the diameter φD of the container 10 (see FIG. 8) is temporarily set. Steps S1 and S2 are performed. Next, the process proceeds to step S3, and it is determined whether the numerical value indicating the image accuracy is in an allowable range in light of the sensor specifications. If the numerical value is not within the allowable range (NO), the process proceeds to step S41, the container diameter φD is increased, and the process returns to step S1. If it is within the allowable range (YES), the process proceeds to step S42, where the container diameter φD is reduced, and the process returns to step S1. By repeating this, the minimum diameter φDmin of the container 10 can be determined. As long as the numerical value indicating the image accuracy of the optical simulation is equal, the smaller value of the container diameter φD is determined as optimal.
または、図11のステップS41,S42に括弧書きで示した設計を行うことも可能である。測量機内の空間仕様制限により、傾斜センサ1のためのスペースが制限される場合がある。即ち、容器直径φDが制限されるときは、容器直径φDの値を固定する。その上で、光束径φdを仮設定し、ステップS1〜S2を行う。次に、ステップS3で画像精度を示す数値が許容範囲でない場合(NO)は、ステップS4で光束径φdを狭め、ステップS1に戻る。ステップS3で許容範囲である場合(YES)は、光束径φdを広げ、ステップS1に戻る。これを繰り返すことで、容器直径φDが制限されるときの最適な光束径φdを決定することができる。光束径φdは、画像精度を示す数値が同等であれば、より大きいほうが受光素子11の精度が緩和されるため好ましい。 Alternatively, the design shown in parentheses in steps S41 and S42 in FIG. 11 can be performed. Space for the inclination sensor 1 may be limited due to space specification limitation in the surveying instrument. That is, when the container diameter φD is limited, the value of the container diameter φD is fixed. Then, the beam diameter φd is provisionally set, and steps S1 and S2 are performed. Next, if the numerical value indicating the image accuracy is not in the allowable range in step S3 (NO), the beam diameter φd is reduced in step S4, and the process returns to step S1. If it is within the allowable range in step S3 (YES), the beam diameter φd is increased, and the process returns to step S1. By repeating this, it is possible to determine the optimum light beam diameter φd when the container diameter φD is limited. It is preferable that the luminous flux diameter φd has the same numerical value indicating the image accuracy, because the accuracy of the light receiving element 11 is relaxed as the value is larger.
以上のように、本形態によれば、傾斜センサ1の容器10を実際に作成しなくても受光像を予測する事が可能であり、かつシミュレーション結果を元に設計のフィードバックが行える。また、容器10に封入する液体9の種類や温度条件を変更してもその液面形状を予測することができるので、容器サイズの調整が容易に行える。また、フィードバックを繰り返すことにより、最小の容器サイズを求めることができるので、容器10の形状の最適化のための時間とコストを大幅に低減することができる。 As described above, according to the present embodiment, it is possible to predict a received light image without actually creating the container 10 of the tilt sensor 1, and to provide design feedback based on a simulation result. Further, even if the type and temperature conditions of the liquid 9 to be sealed in the container 10 are changed, the shape of the liquid surface can be predicted, so that the size of the container can be easily adjusted. Further, since the minimum container size can be obtained by repeating the feedback, the time and cost for optimizing the shape of the container 10 can be greatly reduced.
さらに、容器直径φD(容器の水平方向の長さ)が決定されると、容器10の最適な高さh(図1参照)も決定することができる。 Further, when the container diameter φD (the length of the container in the horizontal direction) is determined, the optimum height h (see FIG. 1) of the container 10 can also be determined.
図12は容器高さの違いによる受光像への影響を示す図である。図12は、実際に作成した容器直径φD=15mmの正円円筒形の容器10に、フッ素系液体を封入して、温度条件摂氏20℃と−30℃で実測した受光像である。右列は容器高さh=4.6mmとしたもの、左列が容器高さh=3.6mmとしたものである。高さ3.6mmの容器では、低温のとき、液体9が容器天井(蓋体)と接してしまい、液面形状が変化し、受光像がぼけている。即ち、容器直径φDがセンサ仕様を満たしていても、容器高さhが液面高さh´(図1参照)よりも低いと、シミュレーション通りの結果が得られなくなることがわかる。これを回避する為、容器10にはある程度の高さが必要である。 FIG. 12 is a diagram showing the influence on the received light image due to the difference in the container height. FIG. 12 is a light-receiving image measured at a temperature condition of 20 ° C. and −30 ° C. by enclosing a fluorine-based liquid in a cylindrical container 10 having a container diameter φD = 15 mm actually prepared. The right column shows the container height h = 4.6 mm, and the left column shows the container height h = 3.6 mm. In a container having a height of 3.6 mm, when the temperature is low, the liquid 9 comes into contact with the ceiling (lid) of the container, the liquid surface shape changes, and the received light image is blurred. That is, even if the container diameter φD satisfies the sensor specifications, if the container height h is lower than the liquid level height h ′ (see FIG. 1), it will be understood that the result according to the simulation cannot be obtained. In order to avoid this, the container 10 needs a certain height.
容器高さhは、「液面形状計算工程」で得られた各温度における液面高さの最高値から、必要最低限の値を求める事ができる。例えば、図7の様な特性を持つ液体を使用する場合、第2の曲線f2のY値の最高値Ymaxは1.43mmであるから、容器高さhは、容器10に封入した液体9の水平液面の高さh´に1.43mmを加えた値以上にしておかなければならない。このように、容器10の直径φDが決定されると、液面形状に影響を与えない最小の容器高さhminを、hmin=h´+Ymaxで決定することができる。 The minimum required value of the container height h can be determined from the maximum value of the liquid level at each temperature obtained in the “liquid level shape calculation step”. For example, when a liquid having the characteristics shown in FIG. 7 is used, the maximum value Ymax of the Y value of the second curve f2 is 1.43 mm. The height must be equal to or greater than the height h 'of the horizontal liquid level plus 1.43 mm. Thus, when the diameter φD of the container 10 is determined, the minimum container height hmin that does not affect the liquid surface shape can be determined by hmin = h ′ + Ymax.
この「容器高さ設計工程」は、図3のステップS5として、最適な容器直径φD(又は光束径φd)が決定されたのちに、最終段階で行えばよい。これにより、容器形状として、高さ方向においても最小の容器10を設計する事ができる。 This “container height designing process” may be performed in the final stage after the optimum container diameter φD (or light beam diameter φd) is determined as step S5 in FIG. Accordingly, the smallest container 10 in the height direction can be designed as the container shape.
(実施例)
以下に実施例を示す。図13は実施例の液面形状計算工程の計算結果を示す図である。実施例では、液体9にフッ素系液体を使用した。この液体特性は、液体表面張力γが−40℃で21.00[mN/m]、20℃で16.40[mN/m]、70℃で12.75[mN/m],液体密度ρが−40℃で2000[kg/m^3]、20℃で1869[kg/m^3]、70℃で1760[kg/m^3],毛管定数が−40℃で0.014、20℃で0.013、70℃で0.012,実際の接触角θ1が0度であった。なお、暗視野パターン4のパターンピッチを80μm、パターン幅を40μmとし、光束径φdは2.5mmで行った。この条件で本形態の設計方法を実行した結果、本実施例での容器10の最小形状は、図13に示すように、最小直径φDmin=18mmであり、Y値の最高値Ymaxが−40℃で1.46mm,20℃で1.33mm,70℃で1.21mmであったため、最小の容器高さhmin=h´+1.46mmと分かった。即ち、容器直径φDを18mm以下とすると、容器中心(X=0)付近の水平部分が無くなり、傾斜センサ1の精度が悪くなる。容器直径φDを18mm以上とすると、傾斜センサ1が大型化する。高さについても、容器10の高さhを液面の高さh´+1.46mm以下とすると、容器天井と液体9が接触して傾斜センサ1の精度が悪くなると分かった。
(Example)
Examples will be described below. FIG. 13 is a diagram showing a calculation result of the liquid surface shape calculation step of the embodiment. In the example, a fluorine-based liquid was used as the liquid 9. The liquid characteristics are as follows: liquid surface tension γ is 21.00 [mN / m] at −40 ° C., 16.40 [mN / m] at 20 ° C., 12.75 [mN / m] at 70 ° C., and liquid density ρ Is 2000 [kg / m ^ 3] at -40 ° C, 1869 [kg / m ^ 3] at 20 ° C, 1760 [kg / m ^ 3] at 70 ° C, and the capillary constant is 0.014, 20 at -40 ° C. The actual contact angle θ1 was 0.013 at 70 ° C and 0.012 at 70 ° C. The pattern pitch of the dark field pattern 4 was 80 μm, the pattern width was 40 μm, and the luminous flux diameter φd was 2.5 mm. As a result of executing the design method of the present embodiment under this condition, the minimum shape of the container 10 in the present embodiment is, as shown in FIG. 13, the minimum diameter φDmin = 18 mm and the maximum Y value Ymax is −40 ° C. Was 1.46 mm at 20 ° C., 1.33 mm at 20 ° C., and 1.21 mm at 70 ° C., indicating that the minimum container height was hmin = h ′ + 1.46 mm. That is, if the container diameter φD is 18 mm or less, there is no horizontal portion near the center of the container (X = 0), and the accuracy of the tilt sensor 1 deteriorates. When the container diameter φD is 18 mm or more, the inclination sensor 1 becomes large. Regarding the height, when the height h of the container 10 was set to be equal to or less than the height h ′ of the liquid surface +1.46 mm, it was found that the liquid 9 contacted with the container ceiling and the accuracy of the tilt sensor 1 was deteriorated.
上記の実施例の結果を受けて作成された傾斜センサ1の容器10の形態例を図14に示す。図14は容器10の縦断面図であって、(a)は形態例1、(b)は形態例2を示す図である。容器10は、液体9を収容する有底の正円円筒状のオイルバス101と、正円円筒状の蓋体102により液体9を密封する。(a)は、オイルバス101の内周面と蓋体102の外周面を接着し液体9を封入した形態であり、(b)は、オイルバス101の外周面と蓋体102の内周面を接着し液体9を封入した形態である。水平液面の高さh´は測量機(傾斜センサ1)を最大に傾けた状態で0以上となればよく、例えばh´=2mmとすると、容器10は、(a)の形態では、蓋体102の内径が18mm、蓋体102の内周部の高さが3.46mmとなるように作成され、(b)の形態では、オイルバス101の内径が18mm、オイルバス101の内周部の高さが3.46mmとなるように作成される。 FIG. 14 shows an embodiment of the container 10 of the tilt sensor 1 created based on the results of the above embodiment. FIGS. 14A and 14B are longitudinal sectional views of the container 10, wherein FIG. 14A is a diagram illustrating a first embodiment, and FIG. 14B is a diagram illustrating a second embodiment. The container 10 hermetically seals the liquid 9 with a bottomed oil cylinder 101 having a bottomed circular cylinder and a lid 102 having a circular cylindrical shape. (A) is a form in which the inner peripheral surface of the oil bath 101 and the outer peripheral surface of the lid 102 are adhered and the liquid 9 is sealed, and (b) is the outer peripheral surface of the oil bath 101 and the inner peripheral surface of the lid 102. And the liquid 9 is sealed. The height h ′ of the horizontal liquid level may be 0 or more when the surveying instrument (tilt sensor 1) is tilted to the maximum. For example, if h ′ = 2 mm, the container 10 is a lid in the form of FIG. The inner diameter of the body 102 is 18 mm, and the height of the inner peripheral portion of the lid 102 is 3.46 mm. In the form (b), the inner diameter of the oil bath 101 is 18 mm, and the inner peripheral portion of the oil bath 101 is formed. Is created so that the height of the is 3.46 mm.
なお、最小の容器高さhminは、容器10が傾く事に備えて、Ymaxの値を+(容器半径×tan(傾斜角))にして作成するのも好ましい。また、最小直径φDminは、光学部品の精度,表面精度,または部品の許容差を考慮して、最小直径φDminの値を+20%まで余裕を持たせて作成するのも好ましい。このような理由から、本形態で最小と設計された値より大きく作成された容器10であっても、本発明の方法を使用していれば本発明の範囲に含まれる。 Note that the minimum container height hmin is also preferably prepared by setting the value of Ymax to + (container radius × tan (inclination angle)) in preparation for the container 10 being inclined. Further, it is preferable that the minimum diameter φDmin is created with a margin of + 20% for the value of the minimum diameter φDmin in consideration of the precision of the optical component, the surface accuracy, or the tolerance of the component. For this reason, even if the container 10 is made larger than the minimum designed value in the present embodiment, it is included in the scope of the present invention if the method of the present invention is used.
さらに、本形態の好適な変形例を述べる。 Further, a preferred modified example of the present embodiment will be described.
(変形例1)
上記では、容器直径φDの正円円筒形の容器10の設計方法及び作成方法を例示したが、本形態の方法は他の容器形状にも応用することができる。例えば、正四角柱形の容器10を作成したい場合は、容器10の対角方向と、容器10の対向する二辺と直交する方向においてそれぞれ第2の曲線f2を作成し、これらを合成した三次元モデルで光学シミュレーションを行えばよい。楕円円筒形の容器10を作成したい場合は、短軸方向と長軸方向においてそれぞれ第2の曲線f2を作成し、これらを合成した三次元モデルで光学シミュレーションを行えばよい。このように、容器10のある水平方向に第2の曲線f2を複数箇所求めれば、多角形や非正円形の容器であっても液面形状を予測することができるので、その液面形状に基づいて最小のサイズで容器10を作成することができる。
(Modification 1)
In the above, the design method and the preparation method of the regular cylindrical container 10 having the container diameter φD are illustrated, but the method of the present embodiment can be applied to other container shapes. For example, when it is desired to create a square prism-shaped container 10, two-dimensional curves f2 are created in a diagonal direction of the container 10 and a direction orthogonal to two opposing sides of the container 10, and these are combined into a three-dimensional shape. An optical simulation may be performed using the model. When it is desired to create an elliptical cylindrical container 10, second curves f2 may be created in the short axis direction and the long axis direction, respectively, and an optical simulation may be performed using a three-dimensional model obtained by combining these. As described above, if a plurality of second curves f2 are obtained in a certain horizontal direction of the container 10, the liquid surface shape can be predicted even in a polygonal or non-circular container. Based on this, the container 10 can be made in a minimum size.
(変形例2)
図12の様に、容器高さhが低く液面が蓋体102の天井に触れてしまう場合でも、容器壁面から形成される液面形状(第2の曲線f2)と天井壁面から形成される液面形状(第1の曲線f1)を合成することにより、液面形状を予測することができる。すなわち、測量機内の空間仕様制限により容器高さhを高くできない場合でも、この液面形状を用いて図3のフローを実行することにより容器直径φDを調整することができる。
(Modification 2)
As shown in FIG. 12, even when the container height h is low and the liquid surface touches the ceiling of the lid 102, the liquid surface is formed from the container wall surface (second curve f2) and the ceiling wall surface. By synthesizing the liquid surface shape (first curve f1), the liquid surface shape can be predicted. That is, even if the container height h cannot be increased due to the space specification limitation in the surveying instrument, the container diameter φD can be adjusted by executing the flow of FIG. 3 using this liquid surface shape.
以上、本発明の好ましい実施の形態および変形例を述べたが、各形態および各変形例を当業者の知識に基づいて組み合わせることも可能であり、そのような形態は本発明の範囲に含まれる。 As described above, the preferred embodiments and modified examples of the present invention have been described. However, it is also possible to combine each form and each modified example based on the knowledge of those skilled in the art, and such forms are included in the scope of the present invention. .
1 傾斜センサ
2 光源
3 コリメートレンズ
4 暗視野パターン
6 ビームスプリッタ
7 フォーカスレンズ
9 液体
9a 自由液面
9a´ 仮鏡面(仮想的な自由液面)
10 容器
11 受光素子
12 演算処理装置
DESCRIPTION OF SYMBOLS 1 Tilt sensor 2 Light source 3 Collimating lens 4 Dark field pattern 6 Beam splitter 7 Focus lens 9 Liquid 9a Free liquid surface 9a 'Temporary mirror surface (virtual free liquid surface)
10 container 11 light receiving element 12 arithmetic processing unit
Claims (7)
仮光源から暗視野パターンを照射して前記液面形状を有する仮鏡面で反射させた受光パターンを得る光学シミュレーション工程と、
前記受光パターンの画像精度がセンサ精度要求を満たすか判定し、前記液体を封入する筒状の容器の形状を調整する容器調整工程と、
を備え、
前記液面形状計算工程では、前記容器の一方の壁面とこれと対向する他方の壁面の二方向から前記液面形状を表す第1の曲線f1を求め、前記第1の曲線f1を基に前記容器の中心から水平方向の距離をX,液面の高さをYとした容器内の液面形状を示す第2の曲線f2を求め、
前記容器調整工程では、前記容器に入射される光源光の光束径を固定し、前記容器の前記X方向の長さを仮定して前記光学シミュレーション工程を行い、前記受光パターンの画像精度が前記センサ精度要求を満たすときは前記容器の前記X方向の長さを狭め、満たさないときは前記容器の前記X方向の長さを広げ、これを繰り返し、前記センサ精度要求を満たす時の前記X方向の長さのより小さい値を最適として前記容器の直径を決定する
ことを特徴とする液面反射式傾斜センサの容器の設計方法。
From the Young-Laplace equation and the equation of hydrostatic pressure, a liquid surface shape calculation step of calculating the liquid surface shape of the liquid formed on an infinitely wide plate perpendicular to the horizontal liquid surface in the horizontal direction x and the vertical direction y,
An optical simulation step of irradiating a dark field pattern from a temporary light source to obtain a light receiving pattern reflected by a temporary mirror surface having the liquid surface shape,
A container adjustment step of determining whether the image accuracy of the light receiving pattern satisfies a sensor accuracy requirement, and adjusting the shape of a cylindrical container that encloses the liquid,
With
In the liquid surface shape calculation step, a first curve f1 representing the liquid surface shape is obtained from two directions of one wall surface of the container and the other wall surface opposite thereto, and the first curve f1 is determined based on the first curve f1. A second curve f2 indicating the liquid surface shape in the container is obtained, where X is the horizontal distance from the center of the container, and Y is the height of the liquid surface.
In the container adjusting step, the optical simulation step is performed by assuming the length of the container in the X direction while fixing the light beam diameter of the light source light incident on the container, and the image accuracy of the light receiving pattern is determined by the sensor. When the accuracy requirement is satisfied, the length of the container in the X direction is reduced, and when the accuracy requirement is not satisfied, the length of the container in the X direction is increased. A method of designing a container for a liquid level reflection type tilt sensor, wherein the diameter of the container is determined by optimizing a smaller value of the length .
仮光源から暗視野パターンを照射して前記液面形状を有する仮鏡面で反射させた受光パターンを得る光学シミュレーション工程と、
前記受光パターンの画像精度がセンサ精度要求を満たすか判定し、前記液体を封入する筒状の容器の形状を調整する容器調整工程と、
を備え、
前記液面形状計算工程では、前記容器の一方の壁面とこれと対向する他方の壁面の二方向から前記液面形状を表す第1の曲線f1を求め、前記第1の曲線f1を基に前記容器の中心から水平方向の距離をX,液面の高さをYとした容器内の液面形状を示す第2の曲線f2を求め、
前記容器調整工程では、前記容器調整工程では、前記容器の前記X方向の長さを固定し、前記容器に入射される光源光の光束径を仮定して前記光学シミュレーション工程を行い、前記受光パターンの画像精度が前記センサ精度要求を満たすときは前記光束径を広げ、満たさないときは前記光束径を狭め、これを繰り返し、前記センサ精度要求を満たす時の前記光速径のより大きい値を最適として前記光速径を決定する
ことを特徴とする液面反射式傾斜センサの容器の設計方法。
From the Young-Laplace equation and the equation of hydrostatic pressure, a liquid surface shape calculation step of calculating the liquid surface shape of the liquid formed on an infinitely wide plate perpendicular to the horizontal liquid surface in the horizontal direction x and the vertical direction y,
An optical simulation step of irradiating a dark field pattern from a temporary light source to obtain a light receiving pattern reflected by a temporary mirror surface having the liquid surface shape,
A container adjustment step of determining whether the image accuracy of the light receiving pattern satisfies a sensor accuracy requirement, and adjusting the shape of a cylindrical container that encloses the liquid,
With
In the liquid surface shape calculation step, a first curve f1 representing the liquid surface shape is obtained from two directions of one wall surface of the container and the other wall surface opposite thereto, and the first curve f1 is determined based on the first curve f1. A second curve f2 indicating the liquid surface shape in the container is obtained, where X is the horizontal distance from the center of the container, and Y is the height of the liquid surface.
In the container adjusting step, in the container adjusting step, the length of the container in the X direction is fixed, and the optical simulation step is performed assuming a light beam diameter of light source light incident on the container, and the light receiving pattern is formed. When the image accuracy satisfies the sensor accuracy requirement, the light beam diameter is expanded, and when the image accuracy is not satisfied, the light beam diameter is reduced, and this is repeated. design method of the container of the liquid surface reflective inclination sensor you and determining the speed of light diameter.
In the liquid surface shape calculation step, an actual contact angle θ1 of the liquid with respect to the container is obtained, and the y-axis is shifted by x until the angle between the first curve f1 and the y-axis becomes the contact angle θ1. The method for designing a container for a liquid-reflection-type tilt sensor according to claim 1 or 2 , further comprising a step of offsetting in the axial direction .
The container of the liquid level reflection type tilt sensor according to claim 1 or 2 , wherein the liquid level shape calculation step includes a step of complementing a shape near X = 0 of the second curve f2 with a polynomial. Design method.
The maximum value Ymax of the Y value of the second curve f2 is determined, and the height h of the container is designed to be equal to or greater than the value obtained by adding the maximum value Ymax to the height h ′ of the horizontal liquid level of the liquid. The method for designing a container for a liquid-reflection-type tilt sensor according to claim 1, further comprising a design step .
仮光源から暗視野パターンを照射して前記液面形状を有する仮鏡面で反射させた受光パターンを得る光学シミュレーション工程と、An optical simulation step of irradiating a dark field pattern from a temporary light source to obtain a light receiving pattern reflected by a temporary mirror surface having the liquid surface shape,
前記受光パターンの画像精度がセンサ精度要求を満たすか判定し、前記液体を封入する筒状の容器の形状を調整する容器調整工程と、を行って、It is determined whether the image accuracy of the light receiving pattern satisfies the sensor accuracy requirement, and a container adjusting step of adjusting the shape of the cylindrical container for enclosing the liquid,
前記液面形状計算工程では、前記容器の一方の壁面とこれと対向する他方の壁面の二方向から前記液面形状を表す第1の曲線f1を求め、前記第1の曲線f1を基に前記容器の中心から水平方向の距離をX,液面の高さをYとした容器内の液面形状を示す第2の曲線f2を求め、In the liquid surface shape calculation step, a first curve f1 representing the liquid surface shape is obtained from two directions of one wall surface of the container and the other wall surface opposite thereto, and the first curve f1 is determined based on the first curve f1. A second curve f2 indicating the liquid surface shape in the container is obtained, where X is the horizontal distance from the center of the container, and Y is the height of the liquid surface.
前記容器調整工程では、前記容器に入射される光源光の光束径を固定し、前記容器の前記X方向の長さを仮定して前記光学シミュレーション工程を行い、前記受光パターンの画像精度が前記センサ精度要求を満たすときは前記容器の前記X方向の長さを狭め、満たさないときは前記容器の前記X方向の長さを広げ、これを繰り返し、前記センサ精度要求を満たす時の前記X方向の長さのより小さい値を最適として前記容器の直径を決定して、In the container adjusting step, the optical simulation step is performed by assuming the length of the container in the X direction while fixing the light beam diameter of the light source light incident on the container, and the image accuracy of the light receiving pattern is determined by the sensor. When the accuracy requirement is satisfied, the length of the container in the X direction is reduced, and when the accuracy requirement is not satisfied, the length of the container in the X direction is increased. Determining the diameter of the container with a smaller value of the length being optimal,
最小に設計された水平方向の長さで筒状に容器を生産することを特徴とする液面反射式傾斜センサの生産方法。A method for producing a liquid level reflection type tilt sensor, wherein a container is produced in a cylindrical shape with a minimum horizontal length.
仮光源から暗視野パターンを照射して前記液面形状を有する仮鏡面で反射させた受光パターンを得る光学シミュレーション工程と、 An optical simulation step of irradiating a dark field pattern from a temporary light source to obtain a light receiving pattern reflected by a temporary mirror surface having the liquid surface shape,
前記受光パターンの画像精度がセンサ精度要求を満たすか判定し、前記液体を封入する筒状の容器の形状を調整する容器調整工程と、を行って、 It is determined whether the image accuracy of the light receiving pattern satisfies the sensor accuracy requirement, and a container adjusting step of adjusting the shape of the cylindrical container for enclosing the liquid,
前記液面形状計算工程では、前記容器の一方の壁面とこれと対向する他方の壁面の二方向から前記液面形状を表す第1の曲線f1を求め、前記第1の曲線f1を基に前記容器の中心から水平方向の距離をX,液面の高さをYとした容器内の液面形状を示す第2の曲線f2を求め、In the liquid surface shape calculation step, a first curve f1 representing the liquid surface shape is obtained from two directions of one wall surface of the container and the other wall surface opposite thereto, and the first curve f1 is determined based on the first curve f1. A second curve f2 indicating the liquid surface shape in the container is obtained, where X is the horizontal distance from the center of the container, and Y is the height of the liquid surface.
前記容器調整工程では、前記容器調整工程では、前記容器の前記X方向の長さを固定し、前記容器に入射される光源光の光束径を仮定して前記光学シミュレーション工程を行い、前記受光パターンの画像精度が前記センサ精度要求を満たすときは前記光束径を広げ、満たさないときは前記光束径を狭め、これを繰り返し、前記センサ精度要求を満たす時の前記光速径のより大きい値を最適として前記光速径を決定して、In the container adjusting step, in the container adjusting step, the length of the container in the X direction is fixed, and the optical simulation step is performed assuming a light beam diameter of light source light incident on the container, and the light receiving pattern is formed. When the image accuracy satisfies the sensor accuracy requirement, the light beam diameter is expanded, and when the image accuracy is not satisfied, the light beam diameter is reduced, and this is repeated, and a larger value of the light speed diameter when the sensor accuracy requirement is satisfied is optimized. Determine the light speed diameter,
前記容器の前記X方向の長さに対し最大に設計された光速径で筒状に容器を生産することを特徴とする液面反射式傾斜センサの生産方法。A method for producing a liquid-surface reflection type tilt sensor, comprising producing a container in a cylindrical shape with a light speed diameter designed to be the maximum with respect to the length of the container in the X direction.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016007021A JP6632128B2 (en) | 2016-01-18 | 2016-01-18 | Method of designing container in liquid level reflection type tilt sensor, tilt sensor having the container, and method of producing tilt sensor having the container |
US15/407,804 US10215561B2 (en) | 2016-01-18 | 2017-01-17 | Method of designing container of liquid reflection inclination sensor, inclination sensor including the container, and method of producing inclination sensor including the container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016007021A JP6632128B2 (en) | 2016-01-18 | 2016-01-18 | Method of designing container in liquid level reflection type tilt sensor, tilt sensor having the container, and method of producing tilt sensor having the container |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017129371A JP2017129371A (en) | 2017-07-27 |
JP6632128B2 true JP6632128B2 (en) | 2020-01-15 |
Family
ID=59313683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016007021A Expired - Fee Related JP6632128B2 (en) | 2016-01-18 | 2016-01-18 | Method of designing container in liquid level reflection type tilt sensor, tilt sensor having the container, and method of producing tilt sensor having the container |
Country Status (2)
Country | Link |
---|---|
US (1) | US10215561B2 (en) |
JP (1) | JP6632128B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6752525B2 (en) * | 2016-11-15 | 2020-09-09 | 株式会社トプコン | Tilt sensor |
CN109405802B (en) * | 2018-12-14 | 2023-03-31 | 中国地质大学(武汉) | Landslide inclination angle sensor based on linear variable |
CN110631552A (en) * | 2019-09-27 | 2019-12-31 | 西安华腾光电有限责任公司 | Photoelectric liquid pendulum two-dimensional inclination angle sensor |
CN112362031B (en) * | 2020-11-13 | 2022-08-23 | 重庆大学 | Inclination angle sensor for landslide measurement and use method thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8620812D0 (en) * | 1986-08-28 | 1986-10-08 | Thames Water Authority | Monitoring flow of fluid along conduit |
US5227862A (en) * | 1989-04-21 | 1993-07-13 | Hitachi, Ltd. | Projection exposure apparatus and projection exposure method |
US6094268A (en) * | 1989-04-21 | 2000-07-25 | Hitachi, Ltd. | Projection exposure apparatus and projection exposure method |
JP3787736B2 (en) | 1997-10-08 | 2006-06-21 | 株式会社トプコン | Tilt sensor |
US6512385B1 (en) * | 1999-07-26 | 2003-01-28 | Paul Pfaff | Method for testing a device under test including the interference of two beams |
JP4653898B2 (en) * | 2001-03-28 | 2011-03-16 | 株式会社トプコン | Tilt detection device |
US7259842B2 (en) * | 2002-06-07 | 2007-08-21 | Leica Geosystem Ag | Optical inclinometer |
EP1836518B1 (en) * | 2005-01-12 | 2013-10-30 | Trimble Jena GmbH | Translational positioning device |
JP2007127628A (en) | 2005-10-07 | 2007-05-24 | Topcon Corp | Position detecting device and inclination sensor device of surveying apparatus using same |
FR2989472B1 (en) * | 2012-04-13 | 2015-09-25 | Bioaxial | METHOD AND OPTICAL DEVICE |
JP6388214B2 (en) * | 2013-06-19 | 2018-09-12 | パナソニックIpマネジメント株式会社 | Optical information apparatus and information processing apparatus |
WO2016121449A1 (en) * | 2015-01-28 | 2016-08-04 | 株式会社 日立ハイテクノロジーズ | Liquid surface inspection device, automated analysis device, and processing device |
JP6650727B2 (en) * | 2015-10-20 | 2020-02-19 | 株式会社トプコン | Tilt angle measuring device |
-
2016
- 2016-01-18 JP JP2016007021A patent/JP6632128B2/en not_active Expired - Fee Related
-
2017
- 2017-01-17 US US15/407,804 patent/US10215561B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US10215561B2 (en) | 2019-02-26 |
JP2017129371A (en) | 2017-07-27 |
US20170205233A1 (en) | 2017-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6632128B2 (en) | Method of designing container in liquid level reflection type tilt sensor, tilt sensor having the container, and method of producing tilt sensor having the container | |
US8336005B2 (en) | Pattern dimension calculation method and computer program product | |
JP5747180B2 (en) | Shape measuring method and shape measuring apparatus | |
CN109655837B (en) | Laser ranging method and laser range finder | |
JP6330539B2 (en) | Laser scanning device | |
JP2018518708A (en) | Scanning apparatus and scanning method | |
JP2013181926A (en) | Spectral optical system and spectral measuring apparatus | |
JP6259664B2 (en) | Scanning optical system, optical scanning device, and distance measuring device | |
US20200341379A1 (en) | Pattern drawing device | |
JPH1144641A (en) | Method and apparatus for measuring refractive index distribution | |
JP2019211246A (en) | Device and method for measurement | |
JP2017096656A (en) | Pose measurement device, method and program | |
JP2019124732A (en) | Light emission device and image display system | |
JP4319554B2 (en) | Refractive index distribution measuring method and measuring apparatus | |
WO2018159606A1 (en) | Photonic crystal laser | |
CN107607197B (en) | Spectrometer and manufacturing method thereof | |
Heikkinen | Defocused speckle imaging for remote surface motion measurements | |
JP5948949B2 (en) | Diffractive optical element and measuring device | |
KR101371371B1 (en) | Shape measuring apparatus | |
JP5351815B2 (en) | Optical member and surface plasmon resonance measuring apparatus | |
JP2016109602A (en) | Inclination detector | |
JP2007225428A (en) | Tilt angle detector | |
JP6302864B2 (en) | Lens shape measuring method and shape measuring apparatus | |
Tutsch et al. | Reducing the influence of speckle structures on laser light sectioning sensors | |
JP6752525B2 (en) | Tilt sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181003 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190704 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190716 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190821 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191209 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6632128 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |