[go: nahoru, domu]

JPH0561964A - Fingerprint matching device - Google Patents

Fingerprint matching device

Info

Publication number
JPH0561964A
JPH0561964A JP3223107A JP22310791A JPH0561964A JP H0561964 A JPH0561964 A JP H0561964A JP 3223107 A JP3223107 A JP 3223107A JP 22310791 A JP22310791 A JP 22310791A JP H0561964 A JPH0561964 A JP H0561964A
Authority
JP
Japan
Prior art keywords
fingerprint
data
registration
area
priority
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3223107A
Other languages
Japanese (ja)
Inventor
Michio Sakai
道生 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP3223107A priority Critical patent/JPH0561964A/en
Publication of JPH0561964A publication Critical patent/JPH0561964A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Collating Specific Patterns (AREA)

Abstract

PURPOSE:To obtain a fingerprint matching device in which matching time can be shortened for a fingerprint inputted frequently. CONSTITUTION:A matching number setting means 7 counts the number of times of matching at every case when coincidence is obtained by matching the fingerprint with fingerprint registration data in memory 4 for fingerprint registration, and a priority setting means 8 finds the priority of every piece of fingerprint registration data, respectively based on the number of times of matching, and a registration fingerprint data area change means 9 performs the change of registration on a new area in registration areas in the memory for fingerprint registration in sequence of the fingerprint registration data with highest priority, thereby, it is possible to shorten the matching time for the fingerprint inputted most frequently.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は指紋照合装置に関し、特
に最も多く入力する指紋を最も早く照合できる指紋照合
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fingerprint collation device, and more particularly to a fingerprint collation device capable of collating the most input fingerprints earliest.

【0002】[0002]

【従来の技術】例えば、IDコード等を用いない指紋照
合装置では、登録モードにして指紋の中心核による階層
化分類方式により得られた各種指紋データを分類毎に入
力順に予めメモリに登録し、そして照合モードにして入
力される指紋を階層化分類方式により、登録モード時と
同様に所定種類の階層に分類し、その分類されたメモリ
の各種指紋データと全てと照合する際に、アドレス番号
が多い領域に登録されている指紋データから照合し、一
致すると判断する指紋データがあれば指紋一致と判断す
るものであった。
2. Description of the Related Art For example, in a fingerprint collation device which does not use an ID code or the like, various fingerprint data obtained by a hierarchical classification system based on the central core of fingerprints is registered in a memory in advance in a registration mode, in an input order. Then, the fingerprint input in the collation mode is classified into a predetermined type of hierarchy by the hierarchical classification method in the same manner as in the registration mode, and the address number is used when matching all the various fingerprint data of the classified memory. The fingerprint data registered in a large number of areas is collated, and if there is fingerprint data that is determined to match, it is determined that the fingerprint matches.

【0003】[0003]

【発明が解決しようとする課題】上記のような指紋照合
装置では、指紋を照合する際に登録されて指紋データの
若い順番から照合するようにされているので、例えば登
録されている最も古い順番の指紋データと一致する指紋
がよく入力された場合は、最もよく入力される指紋ほど
照合に時間が長くかかるという問題点があった。
In the fingerprint collating apparatus as described above, when collating the fingerprints, the collation is performed from the youngest of the registered fingerprint data. If a fingerprint that matches the fingerprint data of 3 is often input, there is a problem in that the fingerprint that is input most often takes longer to collate.

【0004】本発明は以上の問題点を解決するためにな
されたもので、よく入力する指紋ほど照合時間が短くで
きる指紋照合装置を得ることを目的とする。
The present invention has been made in order to solve the above problems, and an object of the present invention is to provide a fingerprint collation device which can shorten the collation time for a fingerprint that is frequently input.

【0005】[0005]

【課題を解決するための手段】本発明に係わる指紋照合
装置は、指紋登録時には指紋データが入力する毎に階層
化分類し、分類毎に登録領域を指定し、その指定した登
録領域に入力順に指紋データを指紋登録データとして順
次登録し、また指紋照合時には指紋データが入力する毎
に階層化分類したときの指定した登録領域及び指紋デー
タの特徴を知らせる階層化分類手段を有する指紋照合装
置において、登録領域が指定されると、その登録領域に
指紋登録データが入力順に登録され、指紋登録データが
照合された後に、その指紋登録データに優先度及び照合
回数が付加(以下総称してデータという)され、データ
の登録順番が登録領域の中で変更される指紋登録用メモ
リと、階層化分類手段から登録領域が知らせられると、
その登録領域に登録されている指紋登録データを若い登
録順番から順次読み、指紋データの特徴と順次照合し、
一致するか否かを判断する照合手段と、照合手段が照合
一致と判断する毎に、照合回数を計数して、一致した指
紋登録データに照合回数を付加する照合回数設定手段
と、照合手段によって一致と判断されると、指紋登録デ
ータの照合回数に基づいてそれぞれの指紋登録データの
優先度を求めて付加する優先度設定手段と、優先度設定
手段によって指定された登録領域のそれぞれのデータの
優先度を読み、最も優先度が高いデータから順に、指定
された登録領域の若い領域に登録変更する指紋登録デー
タ領域変更手段とを備えたものである。
A fingerprint collation apparatus according to the present invention hierarchically classifies each time fingerprint data is input during fingerprint registration, specifies a registration area for each classification, and enters the specified registration area in the order of input. In a fingerprint collation device having a hierarchical classification means for sequentially registering fingerprint data as fingerprint registration data and for notifying the characteristics of the designated registration area and fingerprint data when hierarchically classifying each time fingerprint data is input during fingerprint matching, When the registration area is designated, the fingerprint registration data is registered in the registration area in the order of input, and after the fingerprint registration data is collated, the priority and the number of collations are added to the fingerprint registration data (hereinafter collectively referred to as data). Then, when the registration area is notified from the memory for fingerprint registration in which the registration order of the data is changed in the registration area and the hierarchical classification means,
The fingerprint registration data registered in the registration area is sequentially read from the youngest registration order, and the characteristics of the fingerprint data are sequentially compared,
The matching means for determining whether or not there is a match, the matching frequency setting means for counting the number of times of matching each time the matching means determines a matching match, and adding the number of times of matching to the matched fingerprint registration data, and the matching means. When it is determined that they match, priority setting means for obtaining and adding the priority of each fingerprint registration data based on the number of times of collation of fingerprint registration data, and data of each data of the registration area designated by the priority setting means. A fingerprint registration data area changing unit for reading the priority and sequentially changing the registration in the younger area of the designated registration areas in order from the highest priority data is provided.

【0006】[0006]

【作用】本発明においては、指紋照合時に階層化分類手
段によって、入力された指紋データが分類されて、その
分類に対応する指紋登録用メモリの登録領域及び入力さ
れた指紋データの特徴が知らせられると照合手段は、そ
の知らせられた登録領域の若い登録領域の指紋登録デー
タと順次照合し、一致するか否かを判断する。
In the present invention, the inputted classification data is classified by the hierarchical classification means at the time of fingerprint matching, and the registration area of the fingerprint registration memory corresponding to the classification and the characteristics of the inputted fingerprint data are notified. And the collating means sequentially collate with the fingerprint registration data of the notified young registration area of the registration area, and determine whether or not they match.

【0007】このとき、照合回数設定手段は一致と判断
されると、その指紋登録データの照合回数を計数して付
加する。
At this time, if it is determined that the collation number setting means coincides, the collation number of the fingerprint registration data is counted and added.

【0008】そして、優先度設定手段は照合回数設定手
段により照合回数が付加されると、登録領域のそれぞれ
の指紋登録データの照合過数に基づいて優先度を指紋登
録データに付加する。
Then, when the number of times of collation is added by the number of times of collation setting means, the priority setting means adds a priority to the fingerprint registration data based on the excessive number of collation of each fingerprint registration data in the registration area.

【0009】次に、指紋登録データ領域変更手段は、指
紋登録用メモリの登録領域のそれぞれの指紋登録データ
に優先度及び照合回数が付加されたデータの優先度を読
み、最も優先度が高いデータから順に、登録領域の若い
領域に登録変更する。
Next, the fingerprint registration data area changing means reads the priority of the data in which the priority and the number of collations are added to each fingerprint registration data in the registration area of the fingerprint registration memory, and the highest priority data is read. The registration is changed to the younger registration area in order from.

【0010】[0010]

【実施例】図1は本発明の指紋照合装置の概略構成図で
ある。図において、1は入力される指紋、2は光学式読
取部であり、指紋1に光を放射し、その反射波を電気信
号に変換して出力するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic block diagram of a fingerprint collation device of the present invention. In the figure, reference numeral 1 is an input fingerprint, and 2 is an optical reading unit, which emits light to the fingerprint 1 and converts the reflected wave into an electric signal and outputs it.

【0011】3はデジタル処理部であり、光学式読取部
2からの出力される電気信号をデジタル変換し、例えば
2値化した指紋(以下指紋データという)を出力するも
のである。
A digital processing unit 3 digitally converts the electric signal output from the optical reading unit 2 and outputs, for example, a binarized fingerprint (hereinafter referred to as fingerprint data).

【0012】4は指紋登録用メモリであり、後述する階
層化分類手段により分類された指紋データ(以下登録指
紋データという)が分類領域毎にかつ入力毎にアドレス
番号の少ない順位(以下古いアドレスという)から複数
格納され、また後述する照合回数設定手段によりそれぞ
れの登録指紋データ毎に照合回数及び優先度が設定され
る照合回数登録領域及び優先度登録領域が作成されて記
憶され、優先度が高い順に優先度、照合回数及び登録指
紋データの組合わせ(以下総称して登録指紋データ領域
という)でアドレス番号の多い順位(以下若いアドレス
という)の領域に変更されて登録されるものである。
Reference numeral 4 denotes a fingerprint registration memory, in which the fingerprint data (hereinafter referred to as registered fingerprint data) classified by a hierarchical classification means, which will be described later, has a small address number for each classification area (hereinafter referred to as old address). ) Is stored, and a matching count registration area and a priority registration area in which the matching count and priority are set for each registered fingerprint data by the matching count setting means to be described later are created and stored, and the priority is high. In this order, a combination of priority, number of times of matching, and registered fingerprint data (hereinafter collectively referred to as a registered fingerprint data area) is changed to an area having a larger address number (hereinafter referred to as a young address) and registered.

【0013】5は階層化分類手段であり、例えば登録モ
ードに設定されると周知の階層化分類方式により、デジ
タル処理部3から入力される指紋データの中心核を算出
し、その中心核から指紋流の特徴を算出し、その特徴毎
に分類して指紋登録用メモリ4に登録指紋データとして
登録するものである。
Reference numeral 5 denotes a hierarchical classification means, which calculates the central core of the fingerprint data input from the digital processing unit 3 by a well-known hierarchical classification system when set in the registration mode, and the fingerprint is calculated from the central core. Flow characteristics are calculated, classified according to the characteristics, and registered in the fingerprint registration memory 4 as registered fingerprint data.

【0014】また照合モードに設定されると、同様に指
紋流の特徴を求めその特徴を示す登録指紋データ群の分
類領域のアドレス(以下インデックスアドレスという)
を知らせると共に、入力された指紋データの特徴を知ら
せるものである。
Further, when the collation mode is set, the characteristic of the fingerprint stream is similarly obtained, and the address of the classification area of the registered fingerprint data group showing the characteristic (hereinafter referred to as index address).
And the characteristics of the input fingerprint data.

【0015】6は照合手段であり、照合モードに設定さ
れると、階層化分類手段5からのインデックスアドレス
を読み、そのインデックスアドレスの最も若いアドレス
の登録指紋データ領域の登録指紋データから順に照合
し、一致するものがあれば登録された指紋と判断するも
のである。
Reference numeral 6 denotes a collating means. When the collating mode is set, the index address from the hierarchical classifying means 5 is read, and collation is performed in order from the registered fingerprint data in the registered fingerprint data area of the youngest address of the index address. If there is a match, it is judged as the registered fingerprint.

【0016】7は照合回数設定手段であり、照合手段6
で登録指紋データと照合される毎にその登録指紋データ
領域に照合回数登録領域を作成し、照合回数に+1して
新たな照合回数を照合回数登録領域に設定するものであ
る。
Reference numeral 7 is a collation number setting means, and the collation means 6
Each time the registered fingerprint data is matched with, a matching count registration area is created in the registered fingerprint data area, and the matching count is incremented by 1 to set a new matching count in the matching count registration area.

【0017】8は優先度設定手段であり、照合手段6で
一致と判断すると、一致と判断された登録指紋データ領
域の照合回数を読み、その登録指紋データ領域に優先度
登録領域を作成し、照合回数に基づいて新たな優先度を
設定して登録すると共に、他の登録指紋データの優先度
を新たな優先度に基づいて同様に設定するものである。
Reference numeral 8 is a priority setting means, which when the matching means 6 judges that the registered fingerprint data area is matched, reads the number of times of matching and creates a priority registration area in the registered fingerprint data area. A new priority is set and registered based on the number of collations, and the priorities of other registered fingerprint data are similarly set based on the new priority.

【0018】9は登録指紋データ領域変更手段であり、
優先度設定手段8で設定された優先度に基づいて、登録
指紋データ、照合回数及び優先度の組合わせで若いアド
レス領域から順番に登録しなおすものである。
Reference numeral 9 is a registered fingerprint data area changing means,
Based on the priority set by the priority setting means 8, the registered fingerprint data, the number of collations, and the priority are re-registered in order from the younger address area.

【0019】上記のように構成された指紋照合装置につ
いて、以下に動作を説明する。図2及び図3は本発明の
動作を説明するフローチャートである。この場合は登録
モードについては本発明と関係がないので概略説明とす
る。
The operation of the fingerprint collation device configured as described above will be described below. 2 and 3 are flowcharts for explaining the operation of the present invention. In this case, the registration mode has no relation to the present invention and will be described briefly.

【0020】初めに初期設定として、予め複数の指紋を
入力させ階層分類手段5により、複数の特徴を示す階層
に分類し、類似した指紋データをそれぞれ階層毎に分類
し、最終的に中心核及び指紋流の流れが類似する指紋デ
ータ群を1つのタイプとしてタイプ毎に、かつ入力順
(例えばアドレス00000H〜10000H)に格納
する(S1)。この場合はアドレス00000Hを古い
アドレス、アドレス10000Hを若いアドレスとす
る。
First, as an initial setting, a plurality of fingerprints are input in advance and classified into a hierarchy showing a plurality of characteristics by the hierarchy classification means 5, and similar fingerprint data are classified into respective hierarchies, and finally the central core and A fingerprint data group having a similar flow of fingerprints is stored as one type for each type and in the input order (for example, addresses 00000H to 10000H) (S1). In this case, the address 00000H is the old address and the address 10000H is the young address.

【0021】図4は指紋の中心核を用いた階層化分類処
理の概略を説明する図である。同図は入力画像として指
紋データが入力すると、中心核が何個かを求め、中心核
毎に分類する。そして、指紋流の特徴毎に分類し、対応
する指紋登録領域に格納する。
FIG. 4 is a diagram for explaining the outline of the hierarchical classification processing using the central core of the fingerprint. In the figure, when fingerprint data is input as an input image, the number of central cores is determined, and the central cores are classified. Then, the fingerprints are classified according to their characteristics and stored in the corresponding fingerprint registration area.

【0022】この場合は8種類(A〜E)のタイプの指
紋登録領域を有して、類似する指紋データ群をそれぞれ
の指紋登録領域に格納したことを示すものである。
In this case, the fingerprint registration areas of eight types (A to E) are provided, and the similar fingerprint data group is stored in each fingerprint registration area.

【0023】次に、照合モードの設定の入力指示がされ
(S2)、指紋1が入力されると(S3)、階層化分類
手段5は図2に説明した周知の処理をして分類し、分類
した指紋登録領域のインデックスアドレスを照合手段6
に知らせる。この場合はAの指紋登録領域のインデック
スアドレスを知らせたとする。
Next, when the input instruction for setting the collation mode is given (S2) and the fingerprint 1 is input (S3), the hierarchical classification means 5 classifies by performing the well-known processing described in FIG. The collating means 6 uses the index addresses of the classified fingerprint registration areas.
Let me know. In this case, it is assumed that the index address of the fingerprint registration area of A is notified.

【0024】次に照合手段6は照合モードが設定される
と、階層化分類手段4からのインデックスアドレス及び
入力された指紋データの特徴を読み、古いアドレス領域
の登録指紋データから順次照合すると共に、照合した登
録指紋データのアドレスを照合回数設定手段7に知らせ
る(S5)。すると、照合回数設定手段7は照合した登
録指紋データ領域のアドレス領域に照合設定領域を作成
して照合回数を設定する(S6)。
Next, when the collation mode is set, the collation unit 6 reads the index address from the hierarchical classification unit 4 and the characteristics of the input fingerprint data, and sequentially collates from the registered fingerprint data in the old address area. The address of the collated registered fingerprint data is notified to the collation number setting means 7 (S5). Then, the collation number setting means 7 creates a collation setting area in the address area of the collated registered fingerprint data area and sets the number of collations (S6).

【0025】次に、登録指紋データと入力された指紋デ
ータとが一致したかを判断し、一致していない場合は、
その登録指紋データのアドレスを照合回数設定手段7に
知らせると共に、一致していないことを知らせる(S
7)。一致していないことが知らせられ登録指紋データ
のアドレスが知らせられると、照合回数設定手段7は設
定した照合回数を減算し(S8)、次の登録指紋データ
のアドレスを設定し(S9)、ステップS5に制御を移
し、分類されたインデックスアドレスの領域の登録指紋
データ全てについて照合させる。
Next, it is judged whether the registered fingerprint data and the input fingerprint data match, and if they do not match,
The address of the registered fingerprint data is notified to the matching number setting means 7 and the fact that they do not match is notified (S
7). When it is notified that they do not match and the address of the registered fingerprint data is notified, the matching number setting means 7 subtracts the set matching number (S8) and sets the address of the next registered fingerprint data (S9), and the step The control is shifted to S5, and all registered fingerprint data in the classified index address area are collated.

【0026】次に、ステップS7で入力した指紋データ
と登録指紋データとが一致したと判断されると、照合手
段6は照合を停止し、一致したことを知らせると共に、
一致した登録指紋データのアドレスを知らせる(S1
0)。
Next, when it is determined that the fingerprint data input in step S7 and the registered fingerprint data match, the collating means 6 stops the collation and notifies the fact that they coincide.
Notify the registered fingerprint data address (S1
0).

【0027】一致したことが知らせられると、優先度設
定手段8は一致した登録指紋データの領域の照合回数に
基づいて優先度を設定し、優先レベルを上げる(S1
1)。そして、インデックスアドレスの領域の他の複数
の登録指紋データの領域の照合回数を読み、一致した登
録指紋データの領域の優先度に基づいてそれぞれの登録
指紋データの領域の優先度を求めて優先度設定領域に設
定する(S12)。この場合はAのインデックアドレス
の領域の全ての登録指紋データについて実施する。
When it is notified that they match, the priority setting means 8 sets the priority based on the number of times of matching of the areas of the registered fingerprint data that match, and raises the priority level (S1).
1). Then, the number of times the other registered fingerprint data areas in the index address area are compared is read, and the priority of each registered fingerprint data area is calculated based on the priority of the matching registered fingerprint data area. It is set in the setting area (S12). In this case, the process is performed for all registered fingerprint data in the area of the index address of A.

【0028】すると、登録指紋データ領域変更手段9は
インデックスアドレスの登録指紋データ領域の中で最も
若いアドレスの登録指紋データ領域をセーブし、新たに
設定された優先度の中で最も優先レベルの高い登録指紋
データ領域をその最も若いアドレス領域に登録する(S
13)。
Then, the registered fingerprint data area changing means 9 saves the registered fingerprint data area of the youngest address among the registered fingerprint data areas of the index address, and has the highest priority level among the newly set priorities. The registered fingerprint data area is registered in the youngest address area (S
13).

【0029】次に終了かを判断し(S14)、終了でな
い場合は制御をステップS3に制御を移す。
Next, it is judged whether or not it is finished (S14), and if it is not finished, the control is shifted to step S3.

【0030】従って、新たに指紋データが入力すると、
最も優先度の高い登録指紋データから照合する。このよ
うな指紋照合装置を例えばセキュレティの高い部屋のカ
ギ、家のカギ自動車のカギ等に使用すると有効である。
Therefore, when new fingerprint data is input,
Matching is performed from the registered fingerprint data with the highest priority. It is effective to use such a fingerprint collation device for a key of a room with high security, a key of a house, a key of a car, or the like.

【0031】[0031]

【発明の効果】以上のように本発明によれば、指紋登録
用メモリの指紋登録データと照合して一致と判断される
毎に、照合回数を計数し、その照合回数に基づいてそれ
ぞれの指紋登録データの優先度を求め、最も優先度の高
い指紋登録データから順に、指紋登録用メモリの登録領
域の若い領域に登録変更することにより、入力する指紋
データが特定の指紋登録データと多く一致すると、その
一致分優先度が上昇してその指紋登録データが順次若い
領域に登録されるので、優先度の高い指紋登録データか
ら照合し、最も多く入力される指紋ほど照合時間が短い
という効果が得られている。
As described above, according to the present invention, the number of times of collation is counted every time the fingerprint registration data in the memory for fingerprint registration is collated and judged to be coincident, and each fingerprint is based on the number of collations. When the priority of the registration data is calculated and the registration data is changed to the younger registration area of the fingerprint registration memory in order from the fingerprint registration data with the highest priority, the input fingerprint data will match the specific fingerprint registration data. , The matching priority increases and the fingerprint registration data is registered in the younger area in sequence, so the fingerprint registration data with higher priority is matched, and the matching time is shorter for the fingerprint with the highest number of inputs. Has been.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の指紋照合装置の概略構成図FIG. 1 is a schematic configuration diagram of a fingerprint matching device of the present invention.

【図2】本発明の動作を説明するフローチャートFIG. 2 is a flowchart explaining the operation of the present invention.

【図3】本発明の動作を説明するフローチャートFIG. 3 is a flowchart illustrating the operation of the present invention.

【図4】指紋の中心核を用いた階層化分類処理の概略を
説明する図
FIG. 4 is a diagram for explaining an outline of a hierarchical classification process using a fingerprint core.

【符号の説明】[Explanation of symbols]

1 入力される指紋 2 光学式読取部 3 デジタル処理部 4 指紋登録用メモリ 5 階層化分類手段 6 照合手段 7 照合回数設定手段 8 優先度設定手段 9 登録指紋データ領域変更手段 DESCRIPTION OF SYMBOLS 1 Input fingerprint 2 Optical reading unit 3 Digital processing unit 4 Fingerprint registration memory 5 Hierarchical classification means 6 Collating means 7 Matching frequency setting means 8 Priority setting means 9 Registered fingerprint data area changing means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 指紋登録時には指紋データが入力する毎
に階層化分類し、分類毎に登録領域を指定し、その指定
した登録領域に入力順に前記指紋データを指紋登録デー
タとして順次登録し、また指紋照合時には前記指紋デー
タが入力する毎に階層化分類したときの前記指定した登
録領域及び該指紋データの特徴を知らせる階層化分類手
段を有する指紋照合装置において、 前記登録領域が指定されると、その登録領域に前記指紋
登録データが入力順に登録され、該指紋登録データが照
合された後に、その指紋登録データに優先度及び照合回
数が付加(以下総称してデータという)され、該データ
の登録順番が前記登録領域の中で変更される指紋登録用
メモリと、 前記階層化分類手段から登録領域が知らせられると、そ
の登録領域に登録されている指紋登録データを若い登録
順番から順次読み、前記指紋データの特徴と順次照合
し、一致するか否かを判断する照合手段と、 前記照合手段が照合一致と判断する毎に、照合回数を計
数して、一致した指紋登録データに照合回数を付加する
照合回数設定手段と、 前記照合手段によって一致と判断されると、指紋登録デ
ータの照合回数に基づいてそれぞれの指紋登録データの
優先度を求めて付加する優先度設定手段と、 前記優先度設定手段によって指定された登録領域のそれ
ぞれのデータの優先度を読み、最も優先度が高いデータ
から順に、指定された登録領域の若い領域に登録変更す
る指紋登録データ領域変更手段とを有することを特徴と
する指紋照合装置。
1. When registering a fingerprint, hierarchical classification is performed every time fingerprint data is input, a registration area is designated for each classification, and the fingerprint data is sequentially registered in the designated registration area in the order of input, and In the fingerprint collation device having the designated registration area at the time of performing hierarchical classification each time the fingerprint data is input and the hierarchical classification means for notifying the characteristics of the fingerprint data at the time of fingerprint collation, when the registration area is designated, The fingerprint registration data is registered in the registration area in the order of input, the fingerprint registration data is collated, and then the priority and the number of collations are added to the fingerprint registration data (hereinafter collectively referred to as data) to register the data. A fingerprint registration memory whose order is changed in the registration area, and when the registration area is notified from the hierarchical classification means, the registration area is registered. The fingerprint registration data is sequentially read from a younger registration order, the fingerprint data is sequentially collated with the features of the fingerprint data, and collation means for determining whether or not there is a match, and the number of times of collation is counted each time the collation means determines a collation match. Then, the matching count setting means for adding the matching count to the matched fingerprint registration data, and when the matching means determines that they match, the priority of each fingerprint registration data is obtained based on the matching count of the fingerprint registration data. The priority setting means to be added and the priority of each data in the registration area designated by the priority setting means are read, and the registration is changed to the younger area of the designated registration area in order from the highest priority data. A fingerprint collation device comprising: fingerprint registration data area changing means.
JP3223107A 1991-09-03 1991-09-03 Fingerprint matching device Pending JPH0561964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3223107A JPH0561964A (en) 1991-09-03 1991-09-03 Fingerprint matching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3223107A JPH0561964A (en) 1991-09-03 1991-09-03 Fingerprint matching device

Publications (1)

Publication Number Publication Date
JPH0561964A true JPH0561964A (en) 1993-03-12

Family

ID=16792938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3223107A Pending JPH0561964A (en) 1991-09-03 1991-09-03 Fingerprint matching device

Country Status (1)

Country Link
JP (1) JPH0561964A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002092617A (en) * 2000-09-12 2002-03-29 Oki Electric Ind Co Ltd Seal impression registration-collation system
JP2005242521A (en) * 2004-02-25 2005-09-08 Ricoh Co Ltd Authentication method
US6954553B2 (en) * 2000-10-20 2005-10-11 Fujitsu Limited Personal authentication system using fingerprint information, registration-and-authentication method for the system, determination method for the system, and computer-readable recording medium
JP2007122529A (en) * 2005-10-31 2007-05-17 Hitachi Omron Terminal Solutions Corp Automatic cash receiving and payment system and apparatus
JP2008250508A (en) * 2007-03-29 2008-10-16 Fujitsu Ltd Biometrics authentication program, biometrics authentication system and biometrics authentication method
JP2011096270A (en) * 2010-12-10 2011-05-12 Hitachi Omron Terminal Solutions Corp Automatic teller system and device
US9036662B1 (en) 2005-09-29 2015-05-19 Silver Peak Systems, Inc. Compressing packet data
US9152574B2 (en) 2007-07-05 2015-10-06 Silver Peak Systems, Inc. Identification of non-sequential data stored in memory
US9191342B2 (en) 2006-08-02 2015-11-17 Silver Peak Systems, Inc. Data matching using flow based packet data storage
US9253277B2 (en) 2007-07-05 2016-02-02 Silver Peak Systems, Inc. Pre-fetching stored data from a memory
WO2016047006A1 (en) * 2014-09-24 2016-03-31 康弘 久田 Fingerprint authentication system, fingerprint authentication program, and fingerprint authentication method
JP2016081410A (en) * 2014-10-21 2016-05-16 康弘 久田 Biometrics authentication method system, biometrics authentication program, and biometrics authentication method
US9363248B1 (en) 2005-08-12 2016-06-07 Silver Peak Systems, Inc. Data encryption in a network memory architecture for providing data based on local accessibility
US9363309B2 (en) 2005-09-29 2016-06-07 Silver Peak Systems, Inc. Systems and methods for compressing packet data by predicting subsequent data
US9397951B1 (en) 2008-07-03 2016-07-19 Silver Peak Systems, Inc. Quality of service using multiple flows
US9584403B2 (en) 2006-08-02 2017-02-28 Silver Peak Systems, Inc. Communications scheduler
JP2017052408A (en) * 2015-09-09 2017-03-16 株式会社東海理化電機製作所 Determination device
US9613071B1 (en) 2007-11-30 2017-04-04 Silver Peak Systems, Inc. Deferred data storage
US9626224B2 (en) 2011-11-03 2017-04-18 Silver Peak Systems, Inc. Optimizing available computing resources within a virtual environment
US9712463B1 (en) 2005-09-29 2017-07-18 Silver Peak Systems, Inc. Workload optimization in a wide area network utilizing virtual switches
US9717021B2 (en) 2008-07-03 2017-07-25 Silver Peak Systems, Inc. Virtual network overlay
EP3252640A3 (en) * 2016-05-31 2018-01-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for launching application and terminal
US9875344B1 (en) 2014-09-05 2018-01-23 Silver Peak Systems, Inc. Dynamic monitoring and authorization of an optimization device
US9906630B2 (en) 2011-10-14 2018-02-27 Silver Peak Systems, Inc. Processing data packets in performance enhancing proxy (PEP) environment
US9948496B1 (en) 2014-07-30 2018-04-17 Silver Peak Systems, Inc. Determining a transit appliance for data traffic to a software service
US9967056B1 (en) 2016-08-19 2018-05-08 Silver Peak Systems, Inc. Forward packet recovery with constrained overhead
US10164861B2 (en) 2015-12-28 2018-12-25 Silver Peak Systems, Inc. Dynamic monitoring and visualization for network health characteristics
US10198614B2 (en) 2016-02-01 2019-02-05 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for fingerprint recognition
US10257082B2 (en) 2017-02-06 2019-04-09 Silver Peak Systems, Inc. Multi-level learning for classifying traffic flows
US10432484B2 (en) 2016-06-13 2019-10-01 Silver Peak Systems, Inc. Aggregating select network traffic statistics
US10637721B2 (en) 2018-03-12 2020-04-28 Silver Peak Systems, Inc. Detecting path break conditions while minimizing network overhead
US10771394B2 (en) 2017-02-06 2020-09-08 Silver Peak Systems, Inc. Multi-level learning for classifying traffic flows on a first packet from DNS data
US10805840B2 (en) 2008-07-03 2020-10-13 Silver Peak Systems, Inc. Data transmission via a virtual wide area network overlay
US10892978B2 (en) 2017-02-06 2021-01-12 Silver Peak Systems, Inc. Multi-level learning for classifying traffic flows from first packet data
US11044202B2 (en) 2017-02-06 2021-06-22 Silver Peak Systems, Inc. Multi-level learning for predicting and classifying traffic flows from first packet data
US11212210B2 (en) 2017-09-21 2021-12-28 Silver Peak Systems, Inc. Selective route exporting using source type

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002092617A (en) * 2000-09-12 2002-03-29 Oki Electric Ind Co Ltd Seal impression registration-collation system
US6954553B2 (en) * 2000-10-20 2005-10-11 Fujitsu Limited Personal authentication system using fingerprint information, registration-and-authentication method for the system, determination method for the system, and computer-readable recording medium
JP2005242521A (en) * 2004-02-25 2005-09-08 Ricoh Co Ltd Authentication method
JP4576132B2 (en) * 2004-02-25 2010-11-04 株式会社リコー Authentication method and authentication apparatus
US9363248B1 (en) 2005-08-12 2016-06-07 Silver Peak Systems, Inc. Data encryption in a network memory architecture for providing data based on local accessibility
US10091172B1 (en) 2005-08-12 2018-10-02 Silver Peak Systems, Inc. Data encryption in a network memory architecture for providing data based on local accessibility
US9363309B2 (en) 2005-09-29 2016-06-07 Silver Peak Systems, Inc. Systems and methods for compressing packet data by predicting subsequent data
US9036662B1 (en) 2005-09-29 2015-05-19 Silver Peak Systems, Inc. Compressing packet data
US9712463B1 (en) 2005-09-29 2017-07-18 Silver Peak Systems, Inc. Workload optimization in a wide area network utilizing virtual switches
US9549048B1 (en) 2005-09-29 2017-01-17 Silver Peak Systems, Inc. Transferring compressed packet data over a network
JP4671838B2 (en) * 2005-10-31 2011-04-20 日立オムロンターミナルソリューションズ株式会社 Automatic cash transaction equipment
JP2007122529A (en) * 2005-10-31 2007-05-17 Hitachi Omron Terminal Solutions Corp Automatic cash receiving and payment system and apparatus
US9438538B2 (en) 2006-08-02 2016-09-06 Silver Peak Systems, Inc. Data matching using flow based packet data storage
US9961010B2 (en) 2006-08-02 2018-05-01 Silver Peak Systems, Inc. Communications scheduler
US9191342B2 (en) 2006-08-02 2015-11-17 Silver Peak Systems, Inc. Data matching using flow based packet data storage
US9584403B2 (en) 2006-08-02 2017-02-28 Silver Peak Systems, Inc. Communications scheduler
JP2008250508A (en) * 2007-03-29 2008-10-16 Fujitsu Ltd Biometrics authentication program, biometrics authentication system and biometrics authentication method
US9253277B2 (en) 2007-07-05 2016-02-02 Silver Peak Systems, Inc. Pre-fetching stored data from a memory
US9152574B2 (en) 2007-07-05 2015-10-06 Silver Peak Systems, Inc. Identification of non-sequential data stored in memory
US9613071B1 (en) 2007-11-30 2017-04-04 Silver Peak Systems, Inc. Deferred data storage
US11419011B2 (en) 2008-07-03 2022-08-16 Hewlett Packard Enterprise Development Lp Data transmission via bonded tunnels of a virtual wide area network overlay with error correction
US11412416B2 (en) 2008-07-03 2022-08-09 Hewlett Packard Enterprise Development Lp Data transmission via bonded tunnels of a virtual wide area network overlay
US10313930B2 (en) 2008-07-03 2019-06-04 Silver Peak Systems, Inc. Virtual wide area network overlays
US10805840B2 (en) 2008-07-03 2020-10-13 Silver Peak Systems, Inc. Data transmission via a virtual wide area network overlay
US9397951B1 (en) 2008-07-03 2016-07-19 Silver Peak Systems, Inc. Quality of service using multiple flows
US9717021B2 (en) 2008-07-03 2017-07-25 Silver Peak Systems, Inc. Virtual network overlay
JP2011096270A (en) * 2010-12-10 2011-05-12 Hitachi Omron Terminal Solutions Corp Automatic teller system and device
US9906630B2 (en) 2011-10-14 2018-02-27 Silver Peak Systems, Inc. Processing data packets in performance enhancing proxy (PEP) environment
US9626224B2 (en) 2011-11-03 2017-04-18 Silver Peak Systems, Inc. Optimizing available computing resources within a virtual environment
US11374845B2 (en) 2014-07-30 2022-06-28 Hewlett Packard Enterprise Development Lp Determining a transit appliance for data traffic to a software service
US10812361B2 (en) 2014-07-30 2020-10-20 Silver Peak Systems, Inc. Determining a transit appliance for data traffic to a software service
US9948496B1 (en) 2014-07-30 2018-04-17 Silver Peak Systems, Inc. Determining a transit appliance for data traffic to a software service
US11381493B2 (en) 2014-07-30 2022-07-05 Hewlett Packard Enterprise Development Lp Determining a transit appliance for data traffic to a software service
US11921827B2 (en) 2014-09-05 2024-03-05 Hewlett Packard Enterprise Development Lp Dynamic monitoring and authorization of an optimization device
US9875344B1 (en) 2014-09-05 2018-01-23 Silver Peak Systems, Inc. Dynamic monitoring and authorization of an optimization device
US11868449B2 (en) 2014-09-05 2024-01-09 Hewlett Packard Enterprise Development Lp Dynamic monitoring and authorization of an optimization device
US11954184B2 (en) 2014-09-05 2024-04-09 Hewlett Packard Enterprise Development Lp Dynamic monitoring and authorization of an optimization device
US10719588B2 (en) 2014-09-05 2020-07-21 Silver Peak Systems, Inc. Dynamic monitoring and authorization of an optimization device
US10885156B2 (en) 2014-09-05 2021-01-05 Silver Peak Systems, Inc. Dynamic monitoring and authorization of an optimization device
US9911027B2 (en) 2014-09-24 2018-03-06 Yasuhiro Kuda Fingerprint authentication system, fingerprint authentication program and fingerprint authentication method
JP5977899B1 (en) * 2014-09-24 2016-08-24 康弘 久田 Fingerprint authentication system, fingerprint authentication program, and fingerprint authentication method
WO2016047025A1 (en) * 2014-09-24 2016-03-31 康弘 久田 Fingerprint authentication system, fingerprint authentication program, and fingerprint authentication method
WO2016047006A1 (en) * 2014-09-24 2016-03-31 康弘 久田 Fingerprint authentication system, fingerprint authentication program, and fingerprint authentication method
JP2016081410A (en) * 2014-10-21 2016-05-16 康弘 久田 Biometrics authentication method system, biometrics authentication program, and biometrics authentication method
JP2017052408A (en) * 2015-09-09 2017-03-16 株式会社東海理化電機製作所 Determination device
US10164861B2 (en) 2015-12-28 2018-12-25 Silver Peak Systems, Inc. Dynamic monitoring and visualization for network health characteristics
US10771370B2 (en) 2015-12-28 2020-09-08 Silver Peak Systems, Inc. Dynamic monitoring and visualization for network health characteristics
US11336553B2 (en) 2015-12-28 2022-05-17 Hewlett Packard Enterprise Development Lp Dynamic monitoring and visualization for network health characteristics of network device pairs
US10198614B2 (en) 2016-02-01 2019-02-05 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for fingerprint recognition
EP3252640A3 (en) * 2016-05-31 2018-01-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for launching application and terminal
US11757740B2 (en) 2016-06-13 2023-09-12 Hewlett Packard Enterprise Development Lp Aggregation of select network traffic statistics
US11757739B2 (en) 2016-06-13 2023-09-12 Hewlett Packard Enterprise Development Lp Aggregation of select network traffic statistics
US10432484B2 (en) 2016-06-13 2019-10-01 Silver Peak Systems, Inc. Aggregating select network traffic statistics
US11601351B2 (en) 2016-06-13 2023-03-07 Hewlett Packard Enterprise Development Lp Aggregation of select network traffic statistics
US11424857B2 (en) 2016-08-19 2022-08-23 Hewlett Packard Enterprise Development Lp Forward packet recovery with constrained network overhead
US10848268B2 (en) 2016-08-19 2020-11-24 Silver Peak Systems, Inc. Forward packet recovery with constrained network overhead
US9967056B1 (en) 2016-08-19 2018-05-08 Silver Peak Systems, Inc. Forward packet recovery with constrained overhead
US10326551B2 (en) 2016-08-19 2019-06-18 Silver Peak Systems, Inc. Forward packet recovery with constrained network overhead
US11044202B2 (en) 2017-02-06 2021-06-22 Silver Peak Systems, Inc. Multi-level learning for predicting and classifying traffic flows from first packet data
US10257082B2 (en) 2017-02-06 2019-04-09 Silver Peak Systems, Inc. Multi-level learning for classifying traffic flows
US11582157B2 (en) 2017-02-06 2023-02-14 Hewlett Packard Enterprise Development Lp Multi-level learning for classifying traffic flows on a first packet from DNS response data
US11729090B2 (en) 2017-02-06 2023-08-15 Hewlett Packard Enterprise Development Lp Multi-level learning for classifying network traffic flows from first packet data
US10892978B2 (en) 2017-02-06 2021-01-12 Silver Peak Systems, Inc. Multi-level learning for classifying traffic flows from first packet data
US10771394B2 (en) 2017-02-06 2020-09-08 Silver Peak Systems, Inc. Multi-level learning for classifying traffic flows on a first packet from DNS data
US11212210B2 (en) 2017-09-21 2021-12-28 Silver Peak Systems, Inc. Selective route exporting using source type
US11805045B2 (en) 2017-09-21 2023-10-31 Hewlett Packard Enterprise Development Lp Selective routing
US11405265B2 (en) 2018-03-12 2022-08-02 Hewlett Packard Enterprise Development Lp Methods and systems for detecting path break conditions while minimizing network overhead
US10637721B2 (en) 2018-03-12 2020-04-28 Silver Peak Systems, Inc. Detecting path break conditions while minimizing network overhead
US10887159B2 (en) 2018-03-12 2021-01-05 Silver Peak Systems, Inc. Methods and systems for detecting path break conditions while minimizing network overhead

Similar Documents

Publication Publication Date Title
JPH0561964A (en) Fingerprint matching device
US9378433B2 (en) Method and system for address result arbitration
JP2940933B2 (en) Pattern recognition method
JPH1063707A (en) Device and method for logic circuit verification
JP2000215313A (en) Method and device identifying data
EP1096418A2 (en) Error derived scores for detection systems
JPH0498370A (en) Fingerprint identification device
JP2732593B2 (en) Character reading system
JPH11296676A (en) Image data classification method and image data registration method
JP2658501B2 (en) Data processing device and data processing method
JP3243000B2 (en) Mail processing apparatus and mail processing method
JPH08202828A (en) Pattern discrimination method
JPH0895999A (en) Device and method for retrieving data
US20110093300A1 (en) Method of Processing Travel Ticket Data
JPH1011543A (en) Pattern recognition dictionary production device and pattern recognizer
JP2773657B2 (en) String search device
JPH0475557B2 (en)
JPS599743A (en) Classifying circuit
RU2294013C2 (en) System for supporting taking of decisions concerning profitability of air transportation
JPS6243752A (en) Signal controller
JPH0535919A (en) Character discrimination device
JPH09223193A (en) Character recognizing method
JPS5960685A (en) Optical character reader
JPS59226399A (en) Voice recognition processing system
JPS6310197A (en) Reference pattern generator